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Abstract
Graphical models are powerful tools that are regularly used to investigate complex

dependence structures in high-throughput biomedical datasets. They allow for

holistic, systems-level view of the various biological processes, for intuitive and

rigorous understanding and interpretations. In the context of large networks,

Bayesian approaches are particularly suitable because it encourages sparsity of the

graphs, incorporate prior information, and most importantly account for uncertainty

in the graph structure. These features are particularly important in applications with

limited sample size, including genomics and imaging studies. In this paper, we

review several recently developed techniques for the analysis of large networks

under non-standard settings, including but not limited to, multiple graphs for data

observed from multiple related subgroups, graphical regression approaches used for

the analysis of networks that change with covariates, and other complex sampling

and structural settings. We also illustrate the practical utility of some of these

methods using examples in cancer genomics and neuroimaging.

Keywords Graphical models � Bayesian methods � Complex data � Genomics �
Neuroimaging

1 Introduction

Graphical models have been widely applied to describe the conditional dependence

structure of a p-dimensional random vector; a graphical model is a pair consisting of

a graph G and an associated probability distribution respecting the conditional

independence encoded by G. Graphical models have been extensively studied in the

literature for both directed (Friedman et al. 2000; Spirtes et al. 2000; Geiger and

Heckerman 2002; Shojaie and Michailidis 2010; Stingo et al. 2010) and undirected

graphs (Dobra et al. 2004; Meinshausen and Bühlmann 2006; Yuan and Lin 2007;
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Banerjee et al. 2008; Friedman et al. 2008; Carvalho and Scott 2009; Kundu et al.

2013; Stingo and Marchetti 2015). In this paper we review some recent Bayesian

techniques developed to estimate large graphical models for complex data

structures, motivated by applications in biology and medicine. Our focus is on

non-standard settings with particular interest in heterogeneous data, integrative

graphical models for multiple related subgroups, and multi-dimensional graphical

models for data measured with covariates and along multiple axes/dimensions.

In the context of large networks, Bayesian approaches are particularly

suitable because prior distributions can be used both to encourage sparsity of the

graphs, which is a realistic assumption for many real-world applications including

inference of biological networks, and to incorporate prior information in the

inferential process. Moreover, Bayesian approaches allow us to naturally account

for uncertainty in the graph structure; graph uncertainty is especially important in

the context of high-dimensional complex data, since with a limited sample size,

several graphs may explain the data equally well and hence point estimators are

often not adequate.

Many of the motivating applications of the methodology presented in this review

come from cancer genomics, although the methodology is general and applicable to

diverse contexts. Cancer is a set of diseases characterized by coordinated genomic

alterations, the complexity of which is defined at multiple levels of cellular and

molecular organization (Hanahan and Weinberg 2011). The application of Bayesian

graphical models to cancer genomics as well as other disease types hinges on the

ability of these methods to learn biological networks that describe the various

complex regulatory and associations patterns in molecular units (genes or proteins)

across different organs and organ systems (Iyengar et al. 2015). The overarching

goal of the methodology discussed in the following sections is to provide an

enhanced understanding of the biological mechanisms underlying the disease of

interest.

A key task to this end is to develop flexible and efficient quantitative models for

the analysis of dependence structures of these high-throughput assays. Several

approaches have been developed for the analysis of genomic or proteomic networks,

including co-expression, gene regulatory, and protein interaction networks (Fried-

man 2004; Dobra et al. 2004; Mukherjee and Speed 2008; Stingo et al. 2010;

Telesca et al. 2012). However, these methods lack the ability to analyze

heterogeneous populations, characterized, for example, by networks that change

with respect to covariates. More generally, the methodology we present for the

analysis of complex networks directly applies to other scientific applications such as

the analysis of disease subgroups, experiments performed under different condi-

tions, or even settings that go beyond biology and medicine.

We do not aim to provide a comprehensive review of standard graphical models

with e.g., the independent and identically distributed (iid) assumption; nor do we

attempt to cover different learning strategies (algorithmic versus probabilistic).

Rather we focus on reviewing recently developed Bayesian probabilistic graphical

models for large-scale biological networks under non-iid settings with the hope to

stimulate future research in this exciting area. For broader dissemination, we also
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make available the codes for the multiple graphical model1 and the graphical

regression model,2 which generate the results in Sects. 3.2 and 4.2.

The rest of the paper is organized as follows: basic concepts of Bayesian

inference of graphical models are presented in Sect. 2. In Sect. 3 we describe

models for the analysis of multiple related networks, one for each of the sub-

population. We discuss approaches for networks that change with covariates in in

Sect. 4, and provide an overview of methods for other complex data and network

structures in Sect. 5. We conclude with a brief discussion in Sect. 6.

2 Basic concepts in graphical modeling

In this section we provide some background material concerning undirected and

directed graphical models. More information on graphs and graphical models can be

found in Lauritzen (1996b). We also briefly describe some recent techniques

developed for the analysis of homogeneous populations (single networks).

2.1 Undirected Gaussian graphical models

Let G ¼ ðV;EÞ be a graph defined by a set of nodes, j 2 V and a set of edges

ði; jÞ 2 E joining pairs of nodes i; j 2 V , and let Y ¼ ðYjÞj2V be a p� 1 random

vector indexed by the finite set V with p ¼ jVj. A graph, associated to a random

vector Y, is generally used to represent conditional independence structures under

suitable Markov properties. Typically, missing edges in G correspond to conditional

independencies for the joint distribution of Y. An undirected Gaussian graphical

model (GGM) is a family of multivariate normal distributions for p variables Y ¼
ðY1; . . .; YpÞT�Npðl;RÞ with mean l, and positive definite covariance matrix R
defined by a set of zero restrictions xij ¼ 0 on the elements of concentration matrix

X ¼ R�1 ¼ ðxijÞ. Each constrain xij ¼ 0 is equivalent to a conditional indepen-

dence of Yi and Yj given the remaining variables, written as Yi ?? Yj j YVnij. In fact,

in a Gaussian model conditional independence is equivalent to zero partial

correlation between Yi and Yj given the rest

Yi ?? Yj j YVnij () qij:Vnij ¼ 0() xij ¼ 0:

The likelihood function of a random sample of n independent and identically dis-

tributed (iid) observations Yð1Þ; . . .; Y ðnÞ from Npð0;XÞ is

LðXjSÞ / ðdetXÞn=2
expf1

2
trðXSÞg; ð1Þ

where X is in the parameter space

1 https://github.com/elinshaddox/MultiplePlatformBayesianNetworks.
2 https://www.stat.tamu.edu/*yni/files/GR_code.zip.
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PG ¼ fX positive definite p� p matrix : xij ¼ 0 whenever fi; jg 62 Eg ð2Þ

and S ¼
Pn

l¼1 Y
ðlÞðYðlÞÞT is the sample sum-of-products matrix. The parameter space

PG has a complex structure, being the cone of positive-definite matrices with zero-

patterns compatible with the missing edges in G.

2.2 Bayesian inference of undirected GGMs

In this section we briefly review Bayesian approaches for inference on both the

graph structure G and precision matrix X. A fully Bayesian approach provides a

clear measure of uncertainty on the estimated network structures. For the special

case of decomposable graphs, efficient algorithm based on hyper-inverse Wishart

priors can be implemented (Roverato 2000). In this context, marginal likelihoods of

the graph can be calculated in closed form (Clyde and George 2004). Jones et al.

(2005) proposed an approach for graph selection for both decomposable and

nondecomposable high-dimensional models; computations for the nondecompos-

able case were found to be much more cumbersome. Alternative stochastic

algorithms for inference of decomposable models include the feature-inclusion

stochastic search algorithm of Scott and Carvalho (2008); this approach uses online

estimates of edge-inclusion probabilities and scales to larger dimensions reasonably

well in comparison with Markov chain Monte Carlo (MCMC) algorithms.

Decomposable graphs are a small subset of all possible graphs, and are not

appropriate in many applied settings. From a computational perspective, the key

difference between decomposable and nondecomposable models hinges on the

calculation of the normalizing constant of the marginal likelihoods. For the

decomposable case, it can be exactly calculated; whereas for nondecomposable

graphs the same calculation relies on expensive numerical approximations. Many

popular approaches for nondecomposable graphs are based on the G-Wishart prior

for precision matrices (Atay-Kayis and Massam 2005); conditional on a given graph

G, this prior imposes that the elements of the precision matrix that correspond to

missing edges are set exactly to zero. Dobra et al. (2011) proposed an efficient

Bayesian sampler that avoids the direct calculation of posterior normalizing

constants. Wang and Li (2012) proposed an exchange algorithm based on G-Wishart

priors that bypasses the calculation of prior normalizing constants and it is overall

computationally more efficient than the one proposed by Dobra et al. (2011).

Building upon the decomposable Gaussian graphical model framework, Stingo and

Marchetti (2015) proposed a computationally efficient approach that exploits graph

theory results for local updates that facilitate fast exploration of the space of all

nondecomposable graphs. Mohammadi and Wit (2015) developed a computation-

ally efficient trans-dimensional MCMC algorithm based on continuous-time birth-

death processes that performs comparatively very well with respect to alternative

Bayesian approaches in terms of computing time and graph reconstruction,

particularly for large graphs; this algorithm is part of the R package BDgraph
(Mohammadi and Wit 2019).

Methods based on priors alternative to the G-Wishart prior have been developed

to overcome the computational burden that comes with this approach. Continuous
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shrinkage priors are a viable alternative that results in algorithms for posterior

inference which are more efficient and have greater scalability. Continuous

shrinkage priors such as scale mixture of normal distributions (Carvalho et al. 2010;

Griffin et al. 2010) and the spike-and-slab prior (George and McCulloch 1993),

have been extensively studied for variable selection in regression models, and

recently used in estimating covariance and precision matrices (Wang 2012).

Methods that are suited for the analysis of large undirected graphs include stochastic

search structure learning algorithm of Wang (2015). This method is based on

continuous shrinkage priors indexed by binary indicators that are basically the

elements of the adjacency matrix of the graph; the companion algorithm exploits

efficient block updates of the network parameters and result in relatively fast

computation.

2.3 Directed acyclic graphs

A directed acyclic graph (DAG), also called a Bayesian network, G ¼ ðV ;EÞ
consists of a set V ¼ ð1; 2; . . .; pÞ of nodes, representing random variables

fY1; Y2; . . .; Ypg, as in the undirected case, and a set E � fði; jÞ : i; j 2 Vg of

directed edges, representing the dependencies between the nodes. Denote a directed

edge from i to j by i! j where i is a parent of j. The set of all the parents of j is

denoted by paðjÞ. The absence of edges represents conditional independence

assumptions. We assume that there are no cycles in the graph (i.e., there is no path

that goes back to the starting node), which allows for factorization of the joint

distribution as the product of the conditional distributions of each node given its

parents:

PðY1; . . .; YpÞ ¼
Yp

g¼1

PðYgjYpaðgÞÞ; ð3Þ

where YpaðgÞ ¼ fYj : j 2 paðgÞg. Without loss of generality, the ordering is defined

as f1; 2; . . .; pg, which can be obtained through prior knowledge such as known

reference biological pathways, for example. Define ½g�� to be the set f1; 2; . . .; g�
1g and y½g�� to be fyi : i 2 ½g��g. Each conditional distribution in the product term

of equation (3) can be expressed by the following system of recursive regressions:

Yg ¼ fgðY½g��Þ þ �g; g ¼ 1; 2; . . .; p; ð4Þ

where fgðY½g��Þ is the predictor function and �g is the error term; if the error terms

are iid and normally distributed, �g�Nð0; k�1
g Þ, and fgð�Þ is the classical linear

predictor, then the joint distribution of Y is p-dimensional multivariate Gaussian.

Note that if an ordering of the nodes is not specified, we cannot distinguish

between two Gaussian DAGs that belong to the same Markov equivalence class.
DAGs within this class have the same skeleton and v-structures, and they represent

the same conditional independence structure (Lauritzen 1996b). Given an obser-

vational dataset, two Gaussian DAGs belonging to the same Markov equivalence

class will have the same likelihood function and cannot be distinguished without
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further assumptions; throughout this paper, we will assume a known node ordering,

given which all Markov equivalence classes have size one.

2.4 Bayesian inference of directed acyclic graphs

If there is a known ordering of the nodes, DAGs can be framed as a set of

independent regression models. In this setting techniques developed for variable

selection, such as the spike-and-slab prior (George and McCulloch 1993), can be

easily adapted to infer graph structures. For example, Stingo et al. (2010) developed

a framework for inference of miRNA regulatory networks as DAGs. The ordering of

the variables is determined by the biological role of the observed variables. This

framework can be extended to account for non-linear association, as proposed by Ni

et al. (2015); each conditional distribution was represented by a semi-parametric

regression model based on penalized splines and variable selection priors that can

discriminate linear and non-linear associations. Alternative approaches to spike-

and-slab priors are also possible, one example is the objective Bayesian approach,

based on non-local priors, proposed by Altomare et al. (2013).

If the ordering of the variables in unknown, two Gaussian DAGs that belong to

the same Markov equivalence class can not be distinguished based on observational

data. In this setting DAGs can be partitioned into Markov equivalence classes, and

each class can be represented by a chain graph called Essential Graph (EG)

(Andersson et al. 1997) or Completed Partially Directed Acyclic Graph (CPDAG)

(Chickering 2002). Castelletti et al. (2018) proposed an approach for model

selection of EGs/CPDAGs using a method based on the fractional Bayes factor;

notably, this approach results in closed form expression for the marginal likelihood

of an EG/CPDAG that can be used for model selection.

3 Bayesian multiple graphs

Consider a dataset of gene expression measurements collected from a set of subjects

affected by a given disease, and assume that these patients can be grouped by

disease stage. For many diseases, the biological network representing important

cellular functions may evolve with disease stage. Each subgroup of patients should

be then characterized by a different gene network. In the example above and in

many other scenarios, samples can be naturally divided into homogeneous

subgroups. If we can reasonably assume that the sampling model of each subgroup

can be represented by a graphical model, then methods for multiple graphical

models are an appropriate choice for data analysis. In such cases, if we infer a single

network using the entire data set as the basis for inference we may identify spurious

relationships, results may not be easily interpreted, and we may also miss important

connections present in many subgroups but missing in few others. Alternatively, we

may perform an analysis of each subgroup separately; this approach considerably

reduces the sample size, as in many real world scenarios we may end up with very

small subgroups.
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The approaches we discuss in this section are designed to analyze multiple

directed or undirected networks in settings where some networks may be totally

different, while others may have a similar structure. We focus on the approach

proposed by Peterson et al. (2015). This approach is based on Markov random field

(MRF) priors and infers a different network for each subgroup but it encourages

some networks to be similar when supported by the data.

3.1 Approaches based on Markov random field priors

We focus on Bayesian approaches to the problem of multiple undirected network

inference based on MRF priors. These priors link the estimation of the group

specific graphs encouraging common structures. In practice, the inclusion of an edge

in the network of a given group is encouraged if the same connection is present in

the graphs of related groups. A key aspect of this methodology is the absence of the

otherwise common assumption in approaches based on penalized likelihoods, e.g.,

Danaher et al. (2014), that all subgroups are related. Unlike alternative approaches

in the frequentist framework (Pierson et al. 2015; Saegusa and Shojaie 2016), which

require a preliminary step to learn which subgroups are related, the approach

proposed by Peterson et al. (2015) learns both the within-group and cross-group

relationships. Another key difference is that, even though penalization based

approaches can be applied to problems of higher dimensions, they provide only

point estimates of large networks, which are often unstable given limited sample

sizes. By taking a Bayesian approach, it is possible to quantify uncertainty in the

network estimates.

The basic model setup can be summarized as follow. Let K be the number of

sample subgroups, and Yk be the nk � p matrix of observed data for sample

subgroup k, where k ¼ 1; 2; . . .;K. The same p random variables are observed

across all subgroups; the sample sizes nk do not need to be identical. Within each

subgroup, observations are iid, and under the normality assumption the contribution

to the likelihood of subject i in group k is yk;i�Nðlk;X�1
k Þ; i ¼ 1; . . .; nk, where

lk 2 Rp is the vector of expected values for subgroup k, and Xk is the precision

matrix for the same subgroup constrained by a graph Gk specific to that subgroup,

with a generic element gk;ij indicating the inclusion of edge (i, j) in Gk; lk, Xk, and

Gk are the subgroup specific model parameters.

At the cornerstone of this methodology is an MRF that links all K networks. This

prior is designed to share information across subgroups, when appropriate, and to

incorporate relevant prior knowledge, when available. In this context, an MRF is

used as the prior distribution of the indicators of edge inclusion gk;ij. For each edge

(i, j), we define the K � 1 binary vector gij ¼ ðg1;ij; . . .; gK;ijÞT where 1� i\j� p,

and impose a MRF prior distribution such as

pðgijjmij;HÞ ¼ Cðmij;HÞ�1
expðmij1Tgij þ gij

THgijÞ;

where mij is connected to baseline prior probability of selecting edge (i, j), H is a

K � K symmetric matrix representing pairwise between-group associations, and 1 is

the K-dimensional vector of ones. The off-diagonal elements of H, hkm, are the
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parameters that connect the K networks since a non-zero hkm implies that groups k
and m share information; the posterior distribution of these parameters can be

interpreted as a measure of relative network similarity across the groups. From a

computational perspective, particular care is needed in dealing with the normalizing

constant Cðmij;HÞ ¼
P

gij2f0;1gK expðmij1Tgij þ gij
THgijÞ. As long as the number of

subgroups K is small or the parameters m and H are fixed to constant values, the

computation of this constant is feasible; otherwise methods for doubly unknown

normalizing constants need to be implemented (Møller et al. 2006; Stingo et al.

2011).

The joint prior on the graphs ðG1; . . .;GKÞ is the product of the densities for each

edge pðG1; . . .;Gkjm;HÞ ¼
Q

i\j pðgijjmij;HÞ; where m ¼ fmijj1� i\j� pg. Prior

distributions on m and H complete the prior specification. A prior on m controls the

overall sparsity of the networks, and can be set to reduce false selection of edges

(Scott and Berger 2010; Peterson et al. 2015). A prior on the K � K symmetric

matrix H characterizes the a priori similarity of the graphs between the subgroups.

Specifically, each off-diagonal element hkm represents the similarity between

subgroup k and subgroup m. This prior can be defined to learn which groups are

related (in terms of network structure), and if they are, how strong this similarity is.

Peterson et al. (2015) proposed the following spike and slab prior on each hkm:

pðhkmjckmÞ ¼ ð1� ckmÞd0 þ ckm
ba

CðaÞ h
a�1
km e�bhkm ;

where a and b are fixed hyper parameters, and the binary indicator ckm determines

whether subgroups k and m have related network structure. The binary indicators

ckm’s follow independent Bernoulli priors. If ckm ¼ 0, this prior does not encourage

similarity (i.e., subgroups have different graph structures); if ckm ¼ 1, this prior

encourages borrowing strength between subgroups k and m. A Bernoulli prior is

imposed on ckm� Bernoulli ðwÞ.
Within this prior framework, we can easily incorporate prior knowledge on

specific connections through the prior on m. Larger values of mij give connection (i, j)

higher probability to be selected a priori. For example, if G0 ¼ ðV;E0Þ is a

reference network whose connections we want to give higher prior probabilities, we

can define a prior distribution on qij ¼ emij=ð1þ emijÞ, the logistic transformation of

mij, such that

qij ¼
Betað1þ c; 1Þ if ði; jÞ 2 E0

Betað1; 1þ cÞ if ði; jÞ 62 E0;

�

ð5Þ

where c[ 0. The corresponding prior on mij can be written as

pðmijÞ ¼
1

Bða; bÞ �
eamij

ð1þ emijÞaþb
; ð6Þ

where Bð�Þ represents the beta function. If no such prior knowledge is available,

sparsity can be induced setting qij�Betað1; 4Þ for all edges (i, j); a discussion of

other relevant prior settings can be found in Peterson et al. (2015).
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Completing the model and computational aspects. A conjugate multivariate

normal prior on the vector lk is usually the default choice (Peterson et al. 2015).

The prior on the precision matrices Xk has important implications in terms of

computation and then scalability. Two relevant options are available. Peterson et al.

(2015) choose a G-Wishart distribution XkjGk �WGðb;DÞ (Dobra et al. 2011); this

prior gives positive density to the cone of symmetric positive definite matrices Mþ,

with xk;ij exactly equal to zero for any edge ði; jÞ 62 Ek. This is a good modeling

property; unfortunately, both the prior and posterior normalizing constants, needed

to calculate the transition kernel of the companion MCMC algorithm, are

intractable, and consequently this method does not scale well with the number of

observed variables p (Peterson et al. 2015). Alternatively, Shaddox et al. (2018)

formulate a method based on the continuous shrinkage prior for precision matrices

proposed by Wang (2015). This continuous prior is defined by the product of

pðp� 1Þ=2 spike-and-slab mixture densities, corresponding to the off-diagonal

elements, and p exponential densities, corresponding to the diagonal elements:

pðXkjGkÞ /
Y

i\j

Nðxijj0; t2
gij
Þ
Y

i

Exp xiij
k
2

� �

;

where t2
gij
¼ t2

1 if gk;ij ¼ 1 , and t2
gij
¼ t2

0 if gk;ij ¼ 0; hyperparameters can be set

such that only one component of the mixture is concentrated around zero (Wang

2015; Shaddox et al. 2018). The companion MCMC algorithm ensures that the

sampled precision matrix belong to Mþ, and can be used for the analysis of rela-

tively large networks.

3.2 Application of multiple graphical models to multiple myeloma genomics
data

We apply the multiple graphical model (Shaddox et al. 2018) to multiple myeloma

gene expression data collected by the Multiple Myeloma Research Consortium

(Chapman et al. 2011). Multiple myeloma is a late-stage malignancy of B cells in

the bone marrow. We focus on the genes that are the core members of the five

critical signaling pathways identified by previous multiple myeloma studies (Boyd

et al. 2011): (1) Ras/Raf/MEK/MAPK pathway, (2) JAK/STAT3 pathway, (3)

PI3K/AKT/mTOR pathway, (4) NF-jB pathway and (5) WNT/b-catenin pathway.

After removing samples with missing values, we have n ¼ 154 samples and p ¼ 48

genes. Alternatively, the missing data could have been imputed within the Bayesian

framework using posterior predictive distribution if they are missing completely at

random. According to the International Staging System (Greipp et al. 2005),

multiple myeloma is classified into three stages by two important prognostic factors,

serum beta-2 microglobulin (Sb2M) and serum albumin: stage I, Sb2M \3:5 mg/L

and serum albumin 	 3:5 g/dL; stage II, neither stage I nor III; and stage III, Sb2M

	 5:5 mg/L. This application aims to construct stage-specific multiple myeloma

gene co-expression networks. We run MCMC for 10,000 iterations with 5000 burn-

in, which takes 0.6 hour. The hyperparameters are fixed at t2
0 ¼ 0:0004, t2

1 ¼ 1,

k ¼ 1, a ¼ 4, b ¼ 5, w ¼ :9, a ¼ 1, and b ¼ 4. In large scale inference, graph
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structure reconstruction is critical and challenging, particularly due to large number

of parameters to be estimated (on the order of Oðp2Þ). Furthermore, fully Bayesian

approaches have the advantage of providing a clear measure of graph uncertainty.

As shown in Fig. 1, we can learn the edge posterior probability of inclusion (PPI) for

each group; we can identify which edges are supported by the data, and we can

quantify our confidence in the inclusion of each edge into the selected graph.

Alternatively, we could have selected the graph with the highest posterior

probability; many graphs may have a similar posterior probability, making this

second option for model selection less used in practice.

We used the posterior expected FDR to choose the probability cutoff for posterior

probability of inclusion. Specifically, the posterior expected FDR of the multiple

graphical model is defined as

E½ FDRcj data� ¼
P

k

P
i\jð1� pk;i;jÞ1ðpk;i;j [ cÞ

P
k

P
i\j 1ðpk;i;j [ cÞ ;

where pk;i;j ¼ pðgk;i;j ¼ 1jY1; . . .;YKÞ is the posterior probability of edge inclusion.

And the cutoff c is chosen to be minfcjE½ FDRcj data� � 0:01g. A similar procedure

is used for graphical regression estimation in Sect. 4.2.

The estimated stage-specific networks are shown in Fig. 2a–c with FDR

controlled at 1%. They have 89, 136, and 119 edges. The estimated association

across stages is bH ¼
1:00 0:30 0:39

0:30 1:00 0:68

0:39 0:68 1:00

2

4

3

5, which shows stages II and III have the

greatest similarity in gene network structure. In addition, for comparison, we

compute the network similarities based on two ad hoc metrics. The first metric is the

Hamming distance Dhðk; k0Þ ¼
P

i;j Iðĝk;i;j 6¼ ĝk0;i;jÞ of estimated graphs between

stages k and k0 where ĝk;i;j ¼ Iðpðgk;i;j ¼ 1jY1; . . .;YKÞ[ cÞ for some probability

cutoff c (c is chosen to control FDR at 1% in this application). The pairwise

hamming distances between stages are Dhð1; 2Þ ¼ 177;Dhð1; 3Þ ¼ 174, and

Dhð2; 3Þ ¼ 217. Here, stages II and III have the largest distance. Note that the

metric Dh is based on marginal edge inclusion ĝk;i;j whereas bH provides an overall/

joint network similarity measure. Moreover, Dh depends on the probability cutoff c

0.
2

0.
4

0.
6

0.
8

1.
0

Pairs of Variables

P
P

I

1 1128

0.
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0.
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0.
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P
P
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1 1128

(b) Stage2
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0

Pairs of Variables

P
P

I

1 1128

(a) Stage1 (c) Stage3

Fig. 1 Posterior probability of inclusion (PPI)
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used to obtain ĝk;i;j. The second metric is the ‘1 distance D1ðk; k0Þ ¼
P

i;j jpk;i;j �
pk0;i;jj of posterior edge inclusion probabilities pk;i;j ¼ pðgk;i;j ¼ 1jY1; . . .;YKÞ
between stages k and k0. The pairwise ‘1 distances between stages are

D1ð1; 2Þ ¼ 310:45;D1ð1; 3Þ ¼ 319:22, and D1ð2; 3Þ ¼ 298:03. Not relying on the

probability cutoff (although still based on marginal, rather than joint, edge inclusion

probabilities), D1 agrees with bH that stages II and III have the greatest similarity.

(a) Stage1 (b) Stage2

(c) Stage3 (d) Graphicalregression

Fig. 2 Multiple myeloma network analyses. Panels (a)-(c). The estimated stage-specific gene co-
expression networks. The solid lines indicate positive partial correlations and the dashed lines indicate
negative partial correlations. Panel (d). The estimated gene regulatory network from graphical regression
integrating the prognostic factors: Sb2M and serum albumin. The solid lines with arrowheads indicate
positive constant effects; solid lines with flat heads indicate negative constant effects; dashed lines
indicate linearly varying effects; dotted lines indicate nonlinearly varying effects; the width of the solid
line is proportional to the posterior probability of inclusion
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3.3 Extensions to dynamic graphical models for estimation of brain
connectivity

Warnick et al. (2018) extended the work of Peterson et al. (2015) to a framework

for the estimation of dynamic graphical models, with the specific purpose of

studying dynamic brain connectivity based on fMRI data. Brain connectivity is

defined as the set of correlations or causal relationships between brain regions that

share similar temporal characteristics (Friston et al. 1994). Traditionally, brain

network studies have assumed connectivity as spatially and temporally stationary,

i.e. connectivity patterns are assumed not to change throughout the scan period.

However, in practice, the interactions among brain regions may vary during an

experiment. For example, different tasks, or fatigue, may trigger varying patterns of

interactions among different brain regions. More recent approaches have regarded

brain connectivity as dynamic over time. For example, Cribben et al. (2012)

investigated greedy approaches that recursively estimate precision matrices using

the graphical LASSO on finer partitions of the time course of the experiment and

select the best resulting model based on BIC. The approach proposed by Warnick

et al. (2018) directly estimates change points in the connectivity dynamics through a

hidden Markov model (HMM) on the graphical network structures, therefore

avoiding arbitrary partitions of the data into sliding windows.

Let Yt ¼ ðYt1; . . .; YtpÞ> be the vector of fMRI responses measured on a subject at

p regions of interest (henceforth ROIs) at time t, for t ¼ 1; . . .; T . In the following,

we will refer to ROIs as macro-areas of the brain which comprise multiple voxels

that covary in time. We start by assuming that the observed measurements can be

modeled using a linear time invariant system as the convolution of the neural signals

with the evoked hemodynamic response as

Yt ¼ ðx 
 hÞðtÞ þ et; ð7Þ

where xðtÞ indicates a p� 1 vector of neuronal activation levels and hðtÞ is the

p� 1 vector containing the values assumed by the hemodynamic response function

(HRF) in each ROI. In task-based fMRI data, x(t) corresponds to the stimulus

function, and thus (7) coincides with the general linear model (GLM) formulation of

an experimental design with K stimuli, first introduced by Friston et al. (1994),

Yt ¼
PK

k¼1 X
k
t � bk þ et;, where � represents the element-wise product of two vec-

tors and bk is a p-dimensional vector of regression coefficients, representing the

change in signal as a response to the k-th stimulus. In resting-state fMRI data, where

no explicit task is being performed, the function x(t) represents latent unmeasured

neural signal, to take into account the confounding effect that cardiac pulsation,

respiration and the vascular architecture of the brain may induce on temporal cor-

relations. The HRF is either assumed to take a fixed canonical shape or modeled

nonparametrically as a smooth combination of basis functions. In practical settings,

one can assume that the mean response signal, ðx 
 hÞðtÞ, in (7) has been estimated

and regressed out as a pre-processing step, so to focus on the estimation of the

dynamics of the graph structures, as explained below.
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In order to estimate the connectivity networks that characterize a subject under

different conditions, Warnick et al. (2018) model the noise term et in (7) as a p-

dimensional multivariate time-series with non-null cross-correlations. More specif-

ically, they assume et as normally distributed with mean zero and variance

covariance structure specified by means of a precision matrix encoding a conditional

dependence structure (Lauritzen 1996b). The non-zero elements of the precision

matrix correspond to edges in the connectivity network, whereas the zero elements

denote conditional independence relationships between two ROIs at time t. To

characterize possibly distinct connectivity states, i.e., network structures, within

different time blocks, Warnick et al. (2018) further assume that at each time

t ¼ 1; . . .; T , the subject’s connectivities are described by one of S[ 0 possible

states. For example, in task-based fMRI data the different states may corresponds to

specific network connections activated by a stimulus, so it may be appropriate to set

S ¼ K. Let us introduce a collection of auxiliary latent variables

st 2 S � f1; . . .; Sg, to represent the connectivity state active at time t ¼ 1; . . .; T .

Then, conditionally upon st, the variance covariance structure of the p brain regions

is described by a Gaussian graphical model by assuming

ðetjst ¼ sÞ�Npð0;XsÞ; ð8Þ

where Xs 2 Rp � Rp indicates a symmetric positive definite precision matrix whose

zero elements encode conditional independences between the p components for

each condition s, s 2 S. Those conditional independences can be represented by the

absence of edges in the underlying connectivity graphs, Gs, s 2 S, which represent

the brain networks. The model is completed by specifying a prior on the state-

specific precision matrices Xs, according to the conditional dependences encoded by

the underlying graphs Gs. For that, Warnick et al. (2018) employ the joint graphical

modeling approach of Peterson et al. (2015), linking the estimation of the graph

structures via a Markov random field (MRF) prior which allows, whenever appro-

priate, to share information across the individual brain connectivity networks in the

estimation of the graph edges. Thus, the estimation of the active networks between

two change points is obtained by borrowing strength across related networks over

the entire time course of the experiment, also avoiding the use of post-hoc clustering

algorithms for estimating shared covariance structures.

3.4 Discussion of alternative approaches

Model frameworks based on MRF priors have two main advantages: firstly, the

model learns which groups have a shared graph structure, secondly, the model

exploit network similarity in the estimation of the graph for each group. These two

features translate in an improved accuracy of network estimation (Peterson et al.

2015).

These approaches have been extend in several directions. For example, Shaddox

et al. (2020) developed a graphical modeling framework which enables the joint

inference of network structures when there is heterogeneity among both subsets of

subjects (disease stage, in the motivating example) and sets of variables defined by
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which platform was used for measurements (gene expression and metabolite

abundances, in the motivating example). The approach proposed by Shaddox et al.

(2020) learns a network for each subgroup-platform combination, encourages

network similarity within each platform using an MRF prior, and then links the

measures of cross-group similarity across platforms.

Alternative methods for multiple graphical models, not based on MRF priors,

have been proposed in the statistical literature. In the context of Gaussian DAGs,

Yajima et al. (2014) propose a Bayesian method for the case of two sample groups;

one group is considered the baseline group and is represented by the baseline DAG,

and the DAG for the differential group is defined by a differential parameter for

each possible connection. In the same context, Mitra et al. (2016) propose an

alternative approach for two group structures, that allows the model to capture both

network heterogeneity and to borrow strength between groups when supported by

the data. A rather different approach to the Bayesian inference of multiple DAGs

was proposed by Oates et al. (2016), that performed exact estimation of DAGs using

integer linear programming.

Castelletti et al. (2020) develop an approach for multiple DAGs that does not rely

on a fixed ordering of the nodes, and directly deals with Markov-equivalent classes.

Each equivalent class is represented by an essential graph, and a novel prior on these

graphs’ skeletons is used to model dependencies between groups.

In Ni et al. (2018b), they extend multiple DAGs to multiple directed cyclic
graphs for which information is shared across multiple groups with Bayesian

hierarchical formulation.

For time series data, multivariate vector autoregressive (VAR) models are used to

regress current values on lagged measurements, i.e. yt  ðyt�1; . . .; yt�sÞ. These

models can be represented as graphical models via a one-to-one representation

between the coefficients of the VAR model and a DAG, i.e. yjt�s ! yit () bs;ij 6¼ 0.

In Bayesian approaches, variable selection priors can be used to select the non-zero

coefficients. For example, Chiang et al. (2017) employed a VAR model formulation

to infer multiple brain connectivity networks based on resting-state functional MRI

data measured on groups of subjects (healthy vs diseased). The variable selection

approach designed by the authors allows for simultaneous inference on networks at

both the subject- and group-level, while also accounting for external structural

information on the brain.

In the context of multiple undirected graphs, Tan et al. (2017) consider a model

based on a multiplicative prior on graph structures (Chung-Lu random graph) that

links the probability of edge inclusion through logistic regression. Williams et al.

(2019) propose a model for multiple graph aimed at the detection of network

differences. This goal was achieved using two alternative methods for network

comparison: one measured network discrepancy as the Kullback-Leibler divergence

of posterior predictive distributions, whereas the second approach uses Bayes

factors. Peterson et al. (2020) propose an approach which define similarity in terms

of the elements of the precision matrices across groups, rather than on the binary

indicators of presence of those edges; this approach is based on a novel prior on

multiple dependent precision matrices.
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Alternatively, approaches based on penalized likelihood that encourage either

common edge selection or precision matrix similarity by penalty term on the cross-

group differences were proposed by Guo et al. (2011), Zhu et al. (2014), and Cai

et al. (2015). The method proposed by Danaher et al. (2014) is based on convex

penalization terms that encourage similar edge values (the fused graphical lasso) or

shared structure (the group graphical lasso). An underlying assumption of these

methods is that all groups are related. While penalization-based methods usually

scale better than their Bayesian counterpart, uncertainty in network selection is not

directly assessed.

4 Covariate-dependent graphs

In many applications of graphical models such as genomics and economics,

covariates (say X) are often available in addition to the variables (Y) of main

interest (termed response variables hereafter). For example, in cancer genomic

studies, Y represent a set of genes/proteins of which the regulatory and associative

relationships are of interest and X are clinically relevant biomarkers which could

include metrics of disease severity e.g. cancer stage, subtype of cancer, or

prognostic information. These biomarkers can help explain the heterogeneity among

the cancer patients, that is manifested through their genomic networks. Let xl and yl
denote the realizations of X and Y for subjects l ¼ 1; . . .; n. Traditional graphical

model approaches would ignore the covariates xl and treat yl as iid random

variables, yl �
iid

pðyljGÞ. However, the iid assumption is violated when the

population is heterogeneous. To explicitly account for sampling heterogeneity, a

more appropriate approach would be to introduce subject-specific graphs Gl and

assume yl� pðyljGlÞ follows a subject-level graphical model, for each subject l.
However, since the graph is subject-specific, without additional modeling assump-

tions, Gl cannot be estimated with sample size one.

There are a few existing approaches that aim to solve this ‘‘sample size one’’

graph estimation problem. Among them, the most general framework is the

graphical regression (GR) model (Ni et al. 2019). GR leverages covariates xl in

modeling subject-level DAGs Gl. Because of its generality, we will first discuss the

details of GR in Sect. 4.1 and then review alternative methods in Sect. 4.3, which

are conceptually special cases of GR.

4.1 Graphical regression

The main idea of GR is to formulate the inestimable subject-level parameters as

functions of covariates. The functions are parameterized by population-level

parameters that are shared across all subjects, thus borrowing strength and are

therefore estimable. We discuss this in the context of directed graphical models

(DAG) here, however, similar principles can be adapted to the undirected case as

well. Specifically, GR assumes that the response variables yl follow a DAG model

with graph Gl and parameters hl. Let y ¼ fylgnl¼1 and x ¼ fxlgnl¼1 respectively
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denote the collection of yl and xl across n subjects. Let palðjÞ be the parent set of

node j in graph Gl and let ylpalðjÞ ¼ fylkjk 2 palðjÞg . Given the DAG Gl, the joint

distribution admits a convenient factorization pðyÞ ¼
Qn

l¼1

Qp
j¼1 pðyljjylpalðjÞ; hlÞ.

Assuming a linear DAG, the conditional distribution pðyljjylpalðjÞ; hlÞ can be

expressed as a linear regression model following Sect. 2.3,

ylj ¼
X

k2palðjÞ
ylkhljk þ �j;

where hljk is the strength of edge k! j in Gl and �j�Nð0; r2
j Þ. The factorization

implies all directed Markov properties encoded in Gl. It also indicates that hljk 6¼ 0 if

and only if k! j and therefore learning graph Gl is equivalent to finding which

hljk’s are zeros or non-zeros. Again, it is clear from the regression model that the

subject-level parameter hljk cannot be estimated without further assumptions.

To address this issue, GR assumes the edge strength hljk ¼ hjkðxlÞ to be a function

of covariates xl. The function hjkð�Þ is called conditional independence function
(CIF) because IfhjkðxlÞ ¼ 0g determines the DAG structure Gl which in turn

encodes the Markov properties (i.e., conditional independence relationships) of yl as

a function of xl. In essence, GR generalizes the (scalar) precision parameters in

regular graphical models to functionals (of covariates) to model subject-specific

graphs.

The specification of the functional form of hjkð�Þ is crucial for inference of the

subject-level graph Gl. Three properties are desired for hjkð�Þ: (i) smoothness -

similar covariates should lead to similar edge strength, (ii) sparsity - the resulting

graphs Gl should be sparse for all l, and (iii) asymptotic justification - the graph

(structural) recovery performance should improve as sample size increases. To

equip hjkð�Þ with these three properties, GR makes the following specific choice by

decomposing hjkð�Þ into two components,

hjkðxÞ ¼ fjkðxÞIðjfjkðxÞj[ tjkÞ; ð9Þ

with (i) a smooth function fjkð�Þ of x to allow for both linear and nonlinear covariate

effects and (ii) a hard thresholding function with a thresholding parameter tjk to

induce sparsity in the resulting graph structures. By construction, hjkð�Þ is (piece-

wise) smooth and sparse. The asymptotic justification will be discussed after we

introduced the prior distributions. GR is a fairly flexible class of models and has at

least five special cases:

(1) If x is empty, then GR reduces to the case of the ordinary Gaussian DAG

model (as defined in Sects. 2.3 and 2.4).

(2) If x is discrete (e.g., binary/categorical group indicator), then hjkðxÞ is group-

specific and GR is a multiple-DAG model (as defined in Sect. 3).

(3) If x is taken to be one of the nodes in the graphs, then GR can be interpreted

as a context-specific DAG (Geiger and Heckerman 1996).
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(4) If the distribution of hjkðxÞ is absolutely continuous with respect to Lebesgue

measure, then GR is a conditional DAG model in which the strength of the

graph varies continuously with the covariates but the structure is constant.

(5) If x is univariate time points, then GR can be used for modeling time-varying

DAGs.

A variety of approaches (parametric or non-parametric) are available to model the

smooth function fjkð�Þ in a flexible manner. One attractive parameterization that is

tractable both interpretationally and computationally is using penalized splines (p-

splines) with orthogonal basis expansions. Specifically, suppose x ¼ ðx1; . . .; xQÞ is

Q-dimensional. They first expand fjkðxÞ using additive cubic b-splines fjkðxÞ ¼
PQ

q¼1 fjkqðxqÞ with fjkqðxqÞ ¼ exTqbjkq where exq are the b-spline bases of xq and bjkq
are the spline coefficients. A relatively large number B of bases are chosen so that

local features can be captured and a roughness penalty is imposed to prevent overly

complex curve fitting. In the Bayesian paradigm, the penalty is implemented

through a Gaussian random walk prior on the spline coefficients, bjkq�Nð0; sK�Þ
where K is obtained from the second order differences of adjacent spline

coefficients and the superscript ‘‘-’’ denotes psuedo-inverse. In order to differen-

tiate linear covariate effects from nonlinear effects, the b-spline bases exq are

orthogonalized into a ‘‘purely’’ nonlinear bases exHq that is orthogonal to the linear

term xq. As a result, fjkqðxqÞ is decomposed as

fjkqðxqÞ ¼ fHjkqðxqÞ þ f 0
jkqðxqÞ ¼ exHT

q bHjkq þ xqbjkq. To select important covariates,

spike-and-slab priors are imposed on bHjkq and bjkq. Let v0 be a fixed small number.

The linear effect bjkq follows,

bjkq� cjkqNð0; vjkqÞ þ ð1� cjkqÞNð0; v0vjkqÞ;
cjkq� Beta-Bernoulli ðac; bcÞ; vjkq� IGðav; bvÞ;

where the binary indicator cjkq indicates the significance of linear effect of covariate

xq on edge j k. For the nonlinear effects, a parameter-expansion technique is

used, bHjkq ¼ gHjkqnjkq where gHjkq is a scalar and has the same prior as bjkq,

gHjkq� cHjkqNð0; vHjkqÞ þ ð1� cHjkqÞNð0; v0v
H

jkqÞ;
cHjkq� Beta-Bernoulli ðac; bcÞ; vHjkq� IGðav; bvÞ;

and

njkq�Nðmjkq; IqÞ;mjkqb� 0:5d1 þ 0:5d�1;

where mjkq ¼ ðmjkqbÞBb¼1. Similarly to linear effects, the binary indicator cHjkq indi-

cates the significance of nonlinear effect of covariate xq on edge j k (through the

magnitude of gHjkq). The vector njkq distributes gHjkq across the entries of b
jkq. The

model is completed by assigning a conjugate inverse-gamma r2
j � IGðar; brÞ and a
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standard MCMC algorithm is used to sample all the model parameters from the

posterior distribution.

While the spike-and-slab priors induce sparsity in the covariate effects, they do

not necessarily give rise to a sparse DAG Gl. The hard thresholding function in (9)

is crucial in introducing extra sparsity in DAGs. The thresholding parameter tjk
controls the sparsity and can be interpreted as the minimum effect size of the CIF. In

principle, tjk can be fixed or assigned a prior distribution. The latter is preferred

because (i) the minimum effect size is rarely known in practice, and (ii) a wide

range of priors on tjk induce a non-local prior on hjk which in turn leads to selection

consistency under several regularity conditions – see (Ni et al. 2019) for further

details.

Graph prediction Another novel feature of GR is that it can be used to predict

graph structure for new data points. It is achieved through the posterior predictive

distribution of the CIF hjkðxnewÞ which can be approximated by MCMC samples

(indexed by superscript ‘‘(s)’’),

PrfhjkðxnewÞ 6¼ 0jy; xg 
 1

S

XS

s¼1

IfhðsÞjk ðxnewÞ 6¼ 0g: ð10Þ

Notice that equation (10) does not depend on ynew, and therefore structure prediction

requires new covariates xnew only. In practice, this is a desirable property. For

example, one can predict the gene network for new patients without sequencing the

whole genome; the measurement of external covariates (e.g, prognostic factors) will

suffice.

4.2 Application of graphical regression to multiple myeloma genomics data

To illustrate the utility and versatility of GR we use the same dataset in Sect. 3.2

with the goal of constructing a subject-specific graph by incorporating prognostic

factors Sb2M and serum albumin. We run two independent Markov chains, each for

500,000 iterations ( 47 hours), discard the first 50% as burn-in, and thin the chain by

taking every 25th sample.

The inferred network is shown in Fig. 2d. We find (i) 38 positive constant edges

(solid lines with arrowheads), (ii) 20 negative constant edges (solid lines with flat

heads), (iii) 2 edges linearly varied with covariates (dashed lines), and (iv) 9 edges

nonlinearly varied with covariates (dotted lines). The width of the solid lines

(constant edges) is proportional to its posterior probability. Some regulatory

relationships are consistent with those reported in the existing biological literature.

For example, NRAS/HRAS activating MAP2K2 is part of the well-known MAPK

cascade, which participates in the regulation of fundamental cellular functions,

including proliferation, survival and differentiation. Mutated regulation is a

necessary step in the development of many cancers (Roberts and Der 2007). We

also observe that IL6R activates PIK3R1, which together with its induced PI3K/

AKT pathway plays a key role in protection against apoptosis and the proliferation

of multiple myeloma cells (Hideshima et al. 2001). Moreover, we find two driver/

hub genes, FLT4 and MAP2K3 with degrees 9 and 8, both of which play important
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roles in multiple myeloma. FLT4, also known as VEGFR3, is responsible for

angiogenesis for multiple myeloma (Kumar et al. 2003) and MAP2K3 contributes

to the development of multiple myeloma through MAPK cascades (Leow et al.

2013).

Varying gene regulations. A unique output of graphical regression analysis

compared to multiple graphical model is the inference of continuously varying gene

regulation as functions of external covariates. In Fig. 3, we present two nonlinearly

varying and two linearly varying effects. There is an interesting nonlinear

relationship between HRAS and AKT1 as a function of Sb2M. Prior work indicates

that RAS may activate the AKT pathway in multiple myeloma (Hu et al. 2003). We

find that HRAS upregulates AKT1 when Sb2M\2.64 or Sb2M[5.70 but the
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Fig. 3 Nonlinearly (top) and linearly (bottom) varying effects for the multiple myeloma dataset analyzed
by the graphical regression model. For each plot, the estimated conditional independence functions (solid)
with 95% credible bands (dotted) are shown in the top portion and marginal posterior inclusion
probabilities are shown in the bottom portion. Red horizontal line is the 0.5 probability cutoff. Blue (grey)
lines and curves indicate (in)significant coefficients
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regulatory relationship becomes insignificant when 2.64\Sb2M\5:70 (i.e.,

primarily the stage II multiple myeloma patients). The linear relationship between

TNFRSF13B and NFKBIA is also interesting. Many multiple myeloma studies

(Silke and Brink 2010) have revealed the importance of NF-jB activation, the

inhibitor of which, NFKBIA, is degraded by TNFRSF (TNFRSF13B is a member of

TNFRSF). We find that the sign of the regulation switches at around 3.5 g/dL of

serum albumin that distinguishes between stages I and II. As expected, when serum

albumin concentrations become higher, which suggests more advanced multiple

myeloma, the inactivation becomes stronger.

4.3 Discussion of alternative covariate-dependent graphs

We now discuss several alternative approaches (Liu et al. 2010; Kolar et al. 2010a;

Zhou et al. 2010; Kolar et al. 2010b; Cheng et al. 2014) that also account for

heterogeneity by utilizing the covariates X.

In Liu et al. (2010), they proposed to partition the covariate space X 2 X into

disjoint subspaces X ¼ [Kk¼1X k using decision tree and then fit a Gaussian graphical

model independently to each subspace,
QK

k¼1

Q
i:xi2X k

pðyijGkÞ where Gk denotes an

undirected graph specific to subspace k. Compared to the graphical regression

framework, this approach may lead to very different graphs for similar covariates

due to the independent graph estimation.

Kolar et al. (2010a) proposed a penalized kernel smoothing approach for

conditional Gaussian graphical models in which the precision matrix varies with the

continuous covariates. Cheng et al. (2014) developed a conditional Ising model for

binary data where the dependencies are linear functions of additional covariates.

Although these two methods allow the edge strength to vary with the covariates,

their graph structures stay constant. Zhou et al. (2010) and Kolar et al. (2010b)

proposed time-varying undirected graph algorithms for time series data. The graph

structure is allowed to change over time by borrowing strength from ‘‘neighboring’’

time points via kernel smoothing. The graph estimation problem is essentially

broken down to separate estimation for each time point. Because of the reliance on

kernel smoothing, extension to a large number of covariates requires careful

redesign of the models to mitigate the curse of dimensionality.

Additionally, there are graphical models that incorporate covariates not

necessarily for the purpose of accounting for heterogeneity. In Ni et al. (2018a),

they exploit the prior biological knowledge and covariates (DNA methylation and

DNA copy number) to identify cyclic causal gene regulatory relationships. Note that

covariate-dependent graphs differ fundamentally from chain graphs; the latter type

is discussed in the next section.

5 Other complex networks

In this section we discuss a range of techniques for the analysis of networks for

scenarios that go beyond what discussed in the previous sections. More specifically,

we focus on robust graphical models, array/matrix-variate graphical models, and
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chain graphs. In the last part of this section, we also discuss how to integrate

graphical and regression models.

5.1 Robust graphical models

Some robust graphical models exist in the literature for the analysis of data that

show departure from Gaussianity due to the presence of outliers or spikes in the data

that can lead to inaccurate estimation of the graphs. For example, Pitt et al. (2006)

used copula models and Bhadra et al. (2018) used Gaussian scale mixtures. Here,

we briefly describe the approach of Finegold and Drton (2011, 2014), who employ

positive latent contamination parameters (divisors) to regulate the departure of the

data from Gaussianity. The approach assumes multivariate-t distributions for the

data. Let y follow a classical multivariate-t distribution tpðl;X�1; mÞ with m degrees

of freedom, mean l, and a p� p matrix X�1. This distribution is equivalent to

ðyljslÞ�Npð0;X�1=slÞ;

ðsljmÞ�iid Gammaðm=2; m=2Þ; l ¼ 1; :::; n;
ð11Þ

with scaling parameters sl that downweight the extreme values in the data. In the

classical-t graphical model of Finegold and Drton (2011), a graph G is determined

by the zeros in X, similarly to the Gaussian case. A disadvantage of the classical-t

distribution model is that it reweights all p dimensions of yl by the same scale

parameter. In Finegold and Drton (2014) the authors address this problem by

employing subject-specific vectors sl ¼ ðsl1; sl2; :::; slpÞ that scale each of the p

dimension of yl separately. In order to increase model flexibility and avoid over-

parameterization, Dirichlet Process (DP) priors are imposed on sl to enforce clus-

tering when suggested by the data. This results in the Dirichlet-t graphical model

ðyljslÞ�Npð0; diagð1= ffiffiffiffi
sl
p Þ �X�1 � diagð1= ffiffiffiffi

sl
p ÞÞ;

slj�
iid
Pl; j ¼ 1; :::; p;

Pl�iid DPða;P0Þ; l ¼ 1; :::; n;

P0 ¼ Gammaðm=2; m=2Þ;

a�Gammaðaa; baÞ:

ð12Þ

This model formulation, however, does not allow the exchange of information

among the vectors of observed data, since independent Dirichlet process priors are

used for each of the n samples. Cremaschi et al. (2019) improve on this model by

using a hierarchical construction based on a more flexible class of nonparametric

prior distributions, known as normalized completely random measures

(NormCRMs), first introduced by Regazzini et al. (2003). Furthermore, Bhadra

et al. (2018) allow extensions to mixtures of continuous and discrete-valued (binary

or ordinal) nodes through a latent variable framework for inferring conditional

independence structures.
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5.2 Matrix and tensor graphical models

There are many other settings where random variables/responses are measured

along multiple axes or dimensions (e.g. space, time). The resulting observed data

can be then construed as a matrix or a tensor. For example, consider an experiment

in which a set of cell lines, the statistical units, is exposed to a set of K treatments;

the expression of p genes is measured from all cell lines. This is the typical case of a

multi-dimensional structure that encodes dependencies among observed variables

that are not interchangeable across dimensions and require new methodological

developments.

Ni et al. (2017) developed a multi-dimensional graphical model for tensor data

Y 2 Rp1�p2�����pK which allows for simultaneous construction of graphs along all

dimensions. The graphs can be directed, undirected, or arbitrary combinations of the

two. To introduce the model, let us first consider a centered array-variate normal

distribution, Y�Nð0;X�1
1 ; . . .;X�1

K Þ where Xk is the precision matrix of dimension

k ¼ 1; . . .;K. Let Z ¼ vecðYÞ be the vector obtained by stacking the elements of Y
in the order of its dimensions. The array-variate normal distribution of Y is

equivalent to a multivariate normal of Z with a separable precision matrix with

respect to Kronecker product, Z�Nð0;X�1
K � � � � � X�1

1 Þ. Then they define an

array-variate DAG model by a tensor structural equation model,

ðBK � � � � � B1ÞY ¼ E with E�Nð0; TK � � � � � T1Þ; ð13Þ

where Bk is an upper triangular matrix with unit diagonal entries and Tk is a diagonal

matrix with positive entries. It is not difficult to see that Xk ¼ BT
k T
�1
k Bk which is the

modified Cholesky decomposition of Xk. To ensure identifiability the last element of

Tk is fixed to 1 for all k. Importantly, the sparsity of Bk corresponds to the graph

structure Gk of dimension k. More precisely, Bkij 6¼ 0 if and only if i! j in graph

Gk. The array-variate DAG model in (13) encodes the conditional independence

relationships among the variables along each dimension which can be read off from

graph Gk using the notion of d-separation.

Model (13) can be also used for constructing undirected (decomposable) graphs

due to the equivalence between decomposable graphs and perfect DAGs. A set R
denote of pairs of indices is said to be reducible if 8ði; jÞ 2 R with i\j, either

ðh; iÞ 2 R or ðh; jÞ 2 R, 8h ¼ 1; . . .; i� 1. The null set R with respect to a matrix M
is defined as R ¼ fði; jÞjMij ¼ 0g. Then an undirected graph Gk is decomposable if

and only if there exists an ordering of Xk such that Bk has the same reducible null set

as Xk ¼ BT
k T
�1
k Bk. Since (13) also implies Xk ¼ BT

k T
�1
k Bk, the array-variate

decomposable Gaussian graphical models can also be represented by (13) with a

proper chosen ordering of Gk which can be obtained by maximum cardinality search

algorithm. Because (13) provides a unified framework for modeling both directed

and undirected graphs through directed graphs, no additional treatment is required

for a hybrid array-variate graphs where some of Gk’s are directed and others are

undirected.

In order to make posterior inference of the graph structures, spike-and-slab priors

are used, Bkij� ckijNð0; skTkÞ þ ð1� ckijÞd0 with ckij� beta-Bernoulli ðaq; bqÞ. The
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binary parameter ckij indicates whether i! j or i� j is present in graph Gk. The

model is completed with independent inverse-gamma priors on the entries of Tk.
Partially collapsed Gibbs sampler (Van Dyk and Park 2008) is adopted to efficiently

explore the posterior graph space.

5.3 Chain graphical models

Chain graphs are another popular type of graphs; variables are grouped in chain

components that follow a given ordering. Within a chain component, variables are

connected by undirected edges, and arrows connect variables in a parent component

to variables in a child component. In recent years, methods for the analysis of high-

dimensional chain graphs have been proposed, many of which focused on two-

component graphs. For example, in Rothman et al. (2010); Yin and Li (2011);

Bhadra and Mallick (2013), they propose conditional Gaussian graphical models

that are in essence multivariate linear regression models with the error terms

following an iid undirected Gaussian graphical model. However, note that while the

graph estimation is conditional on the covariates, they only enter the model via the

mean structure, a fundamental difference with respect to the models presented in

Sect. 4.1. As a consequence, the graph topology and the precision matrix stay the

same across observations. Motivated by the analysis of multi-platform genomics

data, Ha et al. (2020) proposed a Bayesian approach for chain graph selection based

on node-wise likelihoods that converts the chain graph into a more tractable multiple

regression model, accounting for both with and between chain component

dependencies. In a chain graph, the probability distribution of the observed random

variables Y can be factorized as PðYÞ ¼
Q

s2T PðYsjYpas
Þ, where s represent chain

components belonging to the ordered partitioning T (Lauritzen 1996a). Under the

normality assumption Y �Nð0;X�1Þ, a chain graph G ¼ ðV;EÞ, and the AMP

Markov properties (Andersson et al. 2001), we have

Y ¼ BY þ �, ��Nð0;K�1Þ; ð14Þ

where B ¼ ðbvuÞ is a p� p matrix for which the zero pattern encodes the directed

edges between chain components, and the precision matrix of K is a matrix for

which the nonzero off-diagonal elements represent the undirected edges within a

chain component after taking into account the effects from the directed edges.

Ha et al. (2020) derived a node-wise likelihood that, for a given node v, can be

written as

Yv ¼ YT
Pv
bv þ YT

Cvav � YT
Pv
BT
Cv;Pv

av þ ev;

where av ¼ �KCv;v=jvv, Cv and Pv are defined by the set of all other vertices in the

same layer as v and all the preceding vertices, CtðvÞ�1, respectively, and

ev�Nð0; 1=jvvÞ is independent of all other random variables; see Ha et al. (2020)

for technical details. Within this framework, the undirected and directed edges of

the chain graph can be selected using zero restrictions on the regression parameters,

B and a. Standard selection priors, such as spike-and-slab, and companion algorithm
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can be implemented for inference and model selection. This approach results in a

computationally efficient algorithm that can be used for the analysis of large graphs.

5.4 Integrative analysis of graphical and regression models

Regression models are often used when it is required to predict a response variable,

either univariate or multivariate, given a potentially large set of covariates.

Regression models with fixed covariates are typically used; this is equivalent to

estimate the distribution of the response variable conditionally upon the observed

values of the covariates. In many scientific areas, such as genomics and imaging,

models that account for the dependence structure among the covariates have been

shown to provide a deeper understanding of the data generating mechanisms as well

as to have improved prediction performances. The dependence structure of the

covariates can be learned from the data and represented by a graphical model. In the

context of cancer integrative genomics, Chekouo et al. (2015) developed a model

for the analysis of time to event responses that uses gene and microRNA expression

as predictors; the dependence structure between gene and microRNA is represented

by a DAG, inferred from the data, and this DAG is used to drive the selection of

covariates relevant for the prediction of the response variable. Interestingly,

covariates connected in the DAG are more likely to be selected.

Peterson et al. (2016) proposed a general Bayesian framework for the selection

of covariates that are connected within a undirected graph; the graph itself is

estimated from the data. The flexibility of this model is particularly useful in

genomics applications, since the estimated network among the covariates can

encourage the joint selection of functionally related genes (or proteins).

A similar approach can be very effective for the analysis of imaging genetics

data. Chekouo et al. (2016) investigated genetic variants and imaging biomarkers

that can predict a given clinical condition, such as schizophrenia. The proposed

predictive model discriminates between subjects affected by the disease and healthy

controls based on a subset of the imaging and genetic markers accounting for the

dependence structure between these two sets of covariates. In this case the model

learns and accounts for both directed and undirected associations. Accounting for

the dependence structure of the covariates results in better predictions of the disease

status.

6 Discussion

The availability of complex-structured data from modern biomedical technologies

such as genomic and neuroimaging data, has spawned many analytical frameworks

that go beyond the traditional graphical modeling approaches – to better understand

and characterize the dependency structures encoded in these rich datasets. In this

article, we have reviewed some state-of-the-art Bayesian approaches for a variety of

inferential tasks: analysis of multiple networks, network regression with covariates

and other recent graphical model methods that are suited for non-standard settings.

Specifically, we focused on scenarios where the number of observed units/subjects
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is smaller than the number of observed random variables, and for which a single

network is not representative of the (global) dependency structures of the targeted

population.

Inference for the discussed methods is performed via MCMC algorithms. These

algorithms are used to calculate the joint posterior distribution of all parameters, a

key quantity to quantify uncertainty associated to graph selection. Usually these

algorithms do not scale as well as optimization approaches based on penalized

likelihood; the maximum graph size that can be analyzed depends on many factors,

including type of graph, statistical model and the specific dataset on hand. In the

context of multiple graphs models, alternative computational strategies have been

developed and relevant instances include the EM algorithm proposed by Li et al.

(2020), that results in a point estimate of the graphs and can scale better to lager

dimensions, and a sequential Monte Carlo (SMC) algorithm proposed by Tan et al.

(2017), that has similar computational performances than its MCMC counterparts.

We have focused our article on the key methodological aspects, modeling

assumptions and ensuing advantages of these approaches. We also illustrate the

practical utility of some of these methods using examples in cancer genomics and

neuroimaging. The companion software of the methods discussed in this review

paper is available at the authors’ website or in publicly accessible repositories (links

are provided in Sect. 1). Our hope is that these methods will engender future

investigators in this exciting area.

Admittedly, there are several other issues and areas that we have not covered in

this review. While these models are rich and flexible, we also acknowledge their

limitations, including computational complexity of MCMC-based sampling algo-

rithms and the need to specify prior distributions and hyperparameters; although the

latter may be advantageous in some settings e.g. where a priori biological

information needs to be incorporated. Finally, our focus in this article is on

probabilistic graphical models, where networks reconstruction is the key objective,

as opposed to inference on observed network data (Hoff et al. 2002).
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Meinshausen N, Bühlmann P (2006) High-dimensional graphs and variable selection with the lasso. The

Ann Stat pp 1436–1462

Mitra R, Müller P, Ji Y (2016) Bayesian graphical models for differential pathways. Bayesian Anal

11(1):99–124

123

Bayesian Graphical models for modern biological applications 223

http://papers.nips.cc/paper/3916-graph-valued-regression.pdf
http://papers.nips.cc/paper/3916-graph-valued-regression.pdf


Mohammadi A, Wit E (2015) Bayesian structure learning in sparse gaussian graphical models. Bayesian

Anal 10(1):109–138

Mohammadi A, Wit E (2019) Bdgraph: an r package for Bayesian structure learning in graphical models.

J Stat Softw 89(3):1–29

Møller J, Pettitt A, Reeves R, Berthelsen K (2006) An efficient markov chain monte carlo method for

distributions with intractable normalising constants. Biometrika 92(2):451–458

Mukherjee S, Speed T (2008) Network inference using informative priors. PNAS 105(38):14313–14318

Ni Y, Stingo FC, Baladandayuthapani V (2015) Bayesian nonlinear model selection for gene regulatory

networks. Biometrics 71(3):585–595

Ni Y, Stingo FC, Baladandayuthapani V (2017) Sparse multi-dimensional graphical models: a unified

bayesian framework. J Am Stat Assoc 112(518):779–793

Ni Y, Ji Y, Müller P (2018a) Reciprocal graphical models for integrative gene regulatory network

analysis. Bayesian Anal 13(4):1095–1110. https://doi.org/10.1214/17-BA1087

Ni Y, Müller P, Zhu Y, Ji Y (2018b) Heterogeneous reciprocal graphical models. Biometrics

74(2):606–615

Ni Y, Stingo FC, Baladandayuthapani V (2019) Bayesian graphical regression. J Am Stat Assoc

114(525):184–197

Oates C, Smith J, Mukherjee S, Cussens J (2016) Exact estimation of multiple directed acyclic graphs.

Stat Comput 26(4):797–811

Peterson C, Osborne N, Stingo F, Bourgeat P, Doecke J, Vannucci M (2020) Bayesian modeling of

multiple structural connectivity networks during the progression of alzheimer’s disease. Biometrics

Peterson CB, Stingo F, Vannucci M (2015) Bayesian inference of multiple Gaussian graphical models.

J Am Stat Assoc 110(509):159–174

Peterson CB, Stingo F, Vannucci M (2016) Joint Bayesian variable and graph selection for regression

models with network-structured predictors. Stat Med 35(7):1017–1031

Pierson E, Consortium G, Koller D, Battle A, Mostafavi S (2015) Sharing and specificity of co-expression

networks across 35 human tissues. PLOS Comput Biol 11(5)

Pitt M, Chan D, Kohn R (2006) Efficient bayesian inference for gaussian copula regression models.

Biometrika 93(3):537–554

Regazzini E, Lijoi A, Prünster I (2003) Distributional results for means of random measures with

independent increments. The Ann Stat 31:560–585

Roberts P, Der C (2007) Targeting the raf-mek-erk mitogen-activated protein kinase cascade for the

treatment of cancer. Oncogene 26(22):3291–3310

Rothman AJ, Levina E, Zhu J (2010) Sparse multivariate regression with covariance estimation.

J Comput Graph Stat 19(4):947–962

Roverato A (2000) Cholesky decomposition of a hyper-inverse Wishart matrix. Biometrika 87:99–112

Saegusa T, Shojaie A (2016) Joint estimation of precision matrices in heterogeneous populations.

Electron J Stat 10(1):1341–1392

Scott J, Berger J (2010) Bayes and empirical-Bayes mutliplicity adjustment in the variable-selection

problem. Ann Stat 38(5):2587–2619

Scott J, Carvalho C (2008) Feature-inclusion stochastic search for gaussian graphical models. J Comput

Graph Stat 17:790–808

Shaddox E, Stingo FC, Peterson CB, Jacobson S, Cruickshank-Quinn C, Kechris K, et al. (2018) A

Bayesian approach for learning gene networks underlying disease severity in COPD. Statistics in

Biosciences pp 1–27

Shaddox E, Peterson CB, Stingo FC, Hanania NA, Cruickshank-Quinn C, Kechris K, Bowler R, Vannucci

M (2020) Bayesian inference of networks across multiple sample groups and data types.

Biostatistics 21(3):561–576

Shojaie A, Michailidis G (2010) Penalized principal component regression on graphs for analysis of

subnetworks. In: Advances in Neural Information Processing Systems, pp 2155–2163

Silke J, Brink R (2010) Regulation of tnfrsf and innate immune signalling complexes by trafs and ciaps.

Cell Death Diff 17(1):35–45

Spirtes P, Glymour C, Scheines R (2000) Causation, prediction, and search, vol 81. The MIT Press

Stingo F, Marchetti GM (2015) Efficient local updates for undirected graphical models. Stat Comput

1(25):159–171

Stingo F, Chen Y, Vannucci M, Barrier M, Mirkes P (2010) A Bayesian graphical modeling approach to

microrna regulatory network inference. Ann Appl Stat 4(4):2024–2048

123

224 Y. Ni et al.

https://doi.org/10.1214/17-BA1087


Stingo F, Chen Y, Tadesse M, Vannucci M (2011) Incorporating biological information into linear

models: a Bayesian approach to the selection of pathways and genes. Ann Appl Stat 5(3):1978–2002

Tan L, Jasra A, De Iorio M, Ebbels T (2017) Bayesian inference for multiple Gaussian graphical models

with application to metabolic association networks. The Ann Appl Stat 11(4):2222–2251

Telesca D, Mueller P, Kornblau S, Suchard M, Ji Y (2012) Modeling protein expression and protein

signaling pathways. J Am Stat Assoc 107(500):1372–1384

Van Dyk D, Park T (2008) Partially collapsed gibbs samplers: theory and methods. J Am Stat Associ

103(482):790–796

Wang H (2012) Bayesian graphical lasso models and efficient posterior computation. Bayesian Anal

7(4):867–886

Wang H (2015) Scaling it up: stochastic search structure learning in graphical models. Bayesian Anal

10(2):351–377

Wang H, Li Z (2012) Efficient gaussian graphical model determination under G-Wishart prior

distributions. Electron J Stat 6:168–198

Warnick R, Guindani M, Erhardt EB, Allen EA, Calhoun VD, Vannucci M (2018) A Bayesian approach

for estimating dynamic functional network connectivity in fMRI data. J Am Stat Assoc

113(521):134–151

Williams DR, Rast P, Pericchi L, Mulder J (2019) Comparing gaussian graphical models with the

posterior predictive distribution and bayesian model selection

Yajima M, Telesca D, Ji Y, Müller P (2014) Detecting differential patterns of interaction in molecular

pathways. Biostatistics 16(2):240–251

Yin J, Li H (2011) A sparse conditional Gaussian graphical model for analysis of genetical genomics

data. The Ann Appl Stat 5(4):2630

Yuan M, Lin Y (2007) Model selection and estimation in the Gaussian graphical model. Biometrika

94(1):19–35

Zhou S, Lafferty J, Wasserman L (2010) Time varying undirected graphs. Mach Learn 80(2–3):295–319

Zhu Y, Shen X, Pan W (2014) Structural pursuit over multiple undirected graphs. J Am Stat Assoc

109(508):1683–1696

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

Authors and Affiliations

Yang Ni1 • Veerabhadran Baladandayuthapani2 • Marina Vannucci3 •

Francesco C. Stingo4

& Francesco C. Stingo

francescoclaudio.stingo@unifi.it

Yang Ni

yni@stat.tamu.edu

Veerabhadran Baladandayuthapani

veerab@umich.edu

Marina Vannucci

marina@rice.edu

1 Department of Statistics, Texas A&M University, College Station, USA

2 Department of Biostatistics, University of Michigan, Ann Arbor, USA

3 Department of Statistics, Rice University, Houston, USA

4 Department of Statistics, Computer Science, Applications ‘‘G. Parenti’’, The University of

Florence, Florence, Italy

123

Bayesian Graphical models for modern biological applications 225

http://orcid.org/0000-0001-9150-8552

	Bayesian graphical models for modern biological applications
	Abstract
	Introduction
	Basic concepts in graphical modeling
	Undirected Gaussian graphical models
	Bayesian inference of undirected GGMs
	Directed acyclic graphs
	Bayesian inference of directed acyclic graphs

	Bayesian multiple graphs
	Approaches based on Markov random field priors
	Application of multiple graphical models to multiple myeloma genomics data
	Extensions to dynamic graphical models for estimation of brain connectivity
	Discussion of alternative approaches

	Covariate-dependent graphs
	Graphical regression
	Application of graphical regression to multiple myeloma genomics data
	Discussion of alternative covariate-dependent graphs

	Other complex networks
	Robust graphical models
	Matrix and tensor graphical models
	Chain graphical models
	Integrative analysis of graphical and regression models

	Discussion
	Funding
	References




