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Abstract

Intracardiac flow hemodynamic patterns have been considered to be an early

sign of diastolic dysfunction. In this study we investigated right ventricular

(RV) diastolic dysfunction between patients with pulmonary arterial hyper-

tension (PAH) and pulmonary hypertension with chronic lung disease (PH‐
CLD) via 4D‐Flow cardiac MRI (CMR). Patients underwent prospective,

comprehensive CMR for function and size including 4D‐Flow CMR protocol

for intracardiac flow visualization and analysis. RV early filling phase and

peak atrial phase vorticity (E‐vorticity and A‐vorticity) values were calculated

in all patients. Patients further underwent comprehensive Doppler and tissue

Doppler evaluation for the RV diastolic dysfunction. In total 13 patients with

PAH, 15 patients with PH‐CLD, and 10 control subjects underwent the 4D‐
Flow CMR and echocardiography evaluation for RV diastolic dysfunction.

Reduced E‐vorticity differentiated PAH and PH‐CLD from healthy controls

(both p< 0.01) despite the same Doppler E values. E‐vorticity was further

decreased in PAH patients when compared to PH‐CLD group (p< 0.05) with

similar Doppler and tissue Doppler markers of diastolic dysfunction.

A‐vorticity was decreased in both PAH and PH‐CLD groups compared to

controls but with no difference between the disease groups. E‐vorticity
correlated with ejection fraction (R= 0.60, p< 0.001), end‐systolic volume

(R= 0.50, p= 0.001), stroke volume (R= 0.42, p= 0.007), and cardiac output

(R= 0.30, p= 0.027). Intracardiac flow analysis using 4D‐Flow CMR derived

vorticity is a sensitive method to differentiate diastolic dysfunction in patients

with different PH etiology and similar Doppler echocardiography profile.
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INTRODUCTION

Idiopathic pulmonary arterial hypertension (PAH or PH‐
Type I) and pulmonary hypertension due to chronic lung
disease or hypoxia (PH‐CLD or PH‐Type III) arise from
different pathophysiologic processes, yet they both
culminate in increased right ventricular (RV) afterload
and eventual RV failure.1,2 While the clinical presenta-
tion and history can substantially differ between the two
groups, the initial signs of right heart systolic and
diastolic dysfunction on screening echocardiography
can be indistinguishable.3,4 Furthermore, right heart
catheterization in both groups yields hemodynamic
profile resembling pre‐capillary pulmonary hypertension.
Cardiac MRI (CMR) is arguably the most comprehensive
method to assess accurate quantitative hemodynamics of
cardiopulmonary vascular unit.5 However, the initial
attempts to phenotype PH subgroups based on standard
CMR indices of bi‐ventricular size and function have
shown that CMR can only reliably hemodynamically
distinguish PAH from other subtypes.6

Intracardiac flow hemodynamic patterns have been
considered to be an early biomarker to characterize and
detect signs of diastolic dysfunction with the mechanistic
premise that changes in the ventricular flow domain
would be detectable sooner than early stage of myocar-
dial tissue remodeling resulting in loss of elastic recoil.7,8

Historically, 4D‐Flow CMR has shown great potential to
phenotype and differentiate biventricular pathologies
based on qualitative and quantitative intracardiac flow
patterns.9–11 Furthermore, multiple studies indicated that
4D‐Flow CMR outperforms Doppler and Tissue Doppler
indices in characterization of RV‐pulmonary axis and
ventricular function.12,13 Given the potential bias associ-
ated with qualitative flow grading schemes and complex-
ity of the RV geometry, 4D‐Flow CMR vorticity analysis
has emerged as a quantitative tool to characterize RV
systolic and diastolic flow patterns.10,14 Vorticity is
defined as a local spinning motion of an element of fluid
and has been hypothesized to be a sensitive measure of
vortex dynamics. As fluid dynamic marker vorticity is
determined by 3‐dimensional velocity vector field and
surface along which it has been formed. Therefore, it
interconnects flow hemodynamic parameters reflective
of preload and cardiac structural morphology.

We sought to investigate RV intracardiac flow
patterns in patients with PAH and PH‐CLD via 4D‐
Flow CMR. Specifically, we hypothesized that 4D‐Flow
CMR inflow diastolic vorticity will be different between
the PH groups. To address this hypothesis, we aimed to
evaluate RV inflow diastolic vorticity between these two
PH groups and a healthy control group. Considered
imaging markers included 4D‐Flow MRI derived

vorticity and standard Doppler and tissue‐Doppler
markers of diastolic dysfunction. We further sought to
correlate RV vorticity with standard right heart catheter-
ization hemodynamics and standard echocardiographic
markers of the RV diastolic dysfunction.

METHODS

This was a prospective, single‐institution, cohort study of
patients with previously diagnosed PH who underwent a
comprehensive CMR protocol including the 4D‐Flow
MRI evaluation. All enrolled patients have met the PH
criteria (mean pulmonary arterial pressure [mPAP] >20
mmHg) on prior right heart catheterization and were
categorized into PAH or PH‐CLD groups based on
clinical presentation, history, and additional imaging‐
based evaluation, including chest CT, and cardio‐
pulmonary exercise tests as clinically indicated individ-
ual basis. All patients underwent clinically indicated
echocardiography within 6 months of their CMRI study.
Exclusion criteria included age < 18 years, history of
cardiomyopathy, atrial fibrillation, coronary artery dis-
ease, moderate or greater valvular heart disease, or
advanced liver disease. The control groups consisted of
healthy volunteers whom underwent same‐day CMRI
and echocardiography as described in previous study.15

All control subjects had no known history of cardio‐
pulmonary disease. The study was approved by Institu-
tional Review Board approved protocol with the in-
formed consent obtained in all subjects.

CMRI

CMR protocol along with the 4D‐Flow MRI sequence
was conducted as described previously.15,16 Briefly, the
CMR acquisition was acquired using a 1.5‐T MRI
Siemens system (MAGNETOM; Avanto) with an
8‐channel phased array coil. A standard cine balanced
SSFP technique with retrospective gating using end‐
respiratory breath holds was applied to generate short‐
axis images along the long axis in 8‐mm increments as
well as 4‐chamber and 2‐chamber views. Ventricular
volumetric and functional analyses were performed
using a standard contour based post‐processing using
commercially available software (Circle CVI 42, Calgary).

4D‐Flow MRI sequence with prospective electrocar-
diogram gating, and respiratory navigators using bellows
was applied to yield the field of view covering the
entire mediastinum and great vessels. The typical
scanning parameters were as follows: spatial resolution,
2.4−2.6 × 2.4−2.6 × 3.0 mm; alpha angle = 14° to 15°;
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echo time/repetition time, 2.85/48.56 ms, velocity encod-
ing 100−150 cm.s−1 (adjusted per scouting images to
avoid aliasing artifact). This approach yielded 14−19
cardiac phases with the final temporal resolution
between 35 and 42. Resulting acquisition time varied
based on heart rate and respiratory gating efficiency from
20 to 25min.

Vorticity calculation

Intracardiac vorticity calculation protocol confined to the
RV cavity was applied as described previously.10,13,15 Raw
4D‐Flow MRI datasets were first pre‐processed using de‐
noising, anti‐aliasing, and eddy‐current corrections per
consensus protocol.17 The pre‐processed files were then
converted into case file for further quantitative analysis
and flow visualization using open‐source platform (Para-
view, 5.11.0 or higher, Kitware). The final calculation
steps are graphically depicted in Figure 1. Within the
software platform, vorticity was calculated as a spatial
derivative of the velocity vector field standardly as the
cross product of the del operator and velocity vector field.
Calculated vorticity magnitude was thereafter spatially
integrated over the delineated RV cavity defined by the
endocardial contours from 4D‐Flow MRI magnitude
images or superimposed SSFP images. Peak E (early
filling) and A (atrial systole) phase vorticity values were
then sampled from the vorticity waveform in each
patient.

Echocardiography

All subjects underwent standard Doppler and tissue
Doppler imaging using a Vivid 7 ultrasound system
(General Electric Medical Systems). The RV diastolic
dysfunction was assessed and graded per the American
Society of Echocardiography consensus‐based recom-
mendations.18 Standard early filling (E) and atrial phase
(A) Doppler velocities and their ratio (E/A) were
recorded in each patient. Diastolic e′ (early) and a′ (late)
velocities were obtained with pulsed tissue Doppler for
the lateral tricuspid valve annulus. RV isovolumic
relaxation time was also measured via Doppler tracings.

Statistical analysis

All statistical analyses and data presentation were
performed with Prism (version 9.0 or higher; GraphPad
Software Inc). Variables were checked for the Gaussian
distribution using normal plots and using D'Agostino

−Pearson, Shapiro−Wilk, and Kolmogorov−Smirnov
tests. Variables that were skewed were natural log
transformed, and skewed variables that included nega-
tive values were natural log‐modulus transformed for
correlative analyses. Baseline demographic and clinical
variables were reported as mean or median values with
corresponding standard deviation or interquartile range,
respectively, as dictated by the data distribution. Inter-
group comparisons were performed using unpaired
2‐tailed t‐test for normally distributed continuous vari-
ables or Mann–Whitney test for non‐normally distributed
variables, and χ2 or Fisher exact test for categorical
variables. The comparative analysis between the PAH,
CLD‐PH, and control groups was done using either 1‐one
way ANOVA or Kruskal‐Wallis as dictated by the
Gaussian distribution. Tukey's correction for multiple
comparison's was applied for intergroup comparisons.
The relationship between vorticity values and CMRI by
simple linear regression analysis using the Pearson R
value. Performed analyses were considered exploratory
and hypothesis generating and adjustments for multiple
comparisons were not employed. All performed tests
were 2‐sided and significance was based on an α‐level
of ≤0.05.

RESULTS

In total 13 patients with PAH, 15 patients with PH‐CLD,
and 10 control subjects underwent the 4D‐Flow MRI
protocol. Patient demographics, RHC hemodynamics,
and CMRI hemodynamics are summarized in Table 1.
The spectrum of lung diseases within PH‐CLD consisted
from chronic obstructive pulmonary disease (n= 9),
interstitial lung fibrosis (n= 3), and mixed emphysema-
tous disease with pulmonary fibrosis (n= 3). The median
time between RHC and 4D‐Flow MRI was 4 months
(range: 0–9 months) and the median time between
echocardiography and 4D‐Flow MRI was 2 months
(range: 0–5 months). Patients with PAH demonstrated
increased mPAP when compared to PH‐CLD (44 ± 14 vs.
32 ± 4mmHg, p= 0.012) and increased pulmonary vas-
cular resistance (13.3 ± 7.9 vs. 5.2 ± 1.8 Wood's units,
p= 0.007). There were no differences in pulmonary
arterial wedge pressure.

CMRI

RV end‐diastolic volume was increased in the PAH
group when compared to controls (PAH vs. control:
149 ± 33 vs. 113 ± 29 mL, p = 0.003). A similar rela-
tionship was observed between PH‐CLD and control
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groups (PH‐CLD vs. control: 155 ± 36 vs. 113 ± 29 mL,
p= 0.011). There was no difference in end‐diastolic
volume values between PAH and PH‐CLD groups
(p= 0.618). Similarly, when compared with the control
group, end‐systolic volumes were increased in both
PAH (PAH vs. control: 89 ± 39 vs. 46 ± 15 mL,
p < 0.001) and PH‐CLD groups (PAH vs. control:
84 ± 28 vs. 46 ± 15 mL, p < 0.001). There was no
difference in end‐systolic volume between PAH and

PH‐CLD groups (p = 0.692). When compared to the
control group, RV ejection fraction was reduced in
both PAH patients (PAH vs. control: 42 ± 14 vs.
60 ± 6 mL, p < 0.001) and PH‐CLD patients (PAH vs.
control: 46 ± 11 vs. 60 ± 6 mL, p < 0.001). There was no
difference in RV ejection fraction between PAH and
PH‐CLD groups (p= 0.515). Finally, no differences
were observed between the considered groups in stroke
volume, cardiac output, and heart rate.

FIGURE 1 The post‐processing workflow of the right ventricular diastolic vorticity. (a) From the 4‐chamber view and short‐axis view
perspectives, vector glyph represented velocity (v) and vorticity (ω) vector fields for both left and right ventricles are visualized during early
filling phase. (b) Calculated right ventricular vorticity throughout the cardiac cycle, with the corresponding tricuspid valve Doppler pattern.
Individual color‐coded data points represent a specific cardiac cycle phase: yellow = systole, green = rapid early filling phase, blue =
diastasis, red = atrial systole. (c) From the short‐axis view perspective, vorticity vector field segmented within the right ventricle during
diastole with the time steps corresponding to the cardiac phases depicted in the above vorticity waveform.
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RV diastolic dysfunction

Echocardiographic and 4D‐Flow MRI derived biomar-
kers of RV diastolic dysfunction are summarized in
Table 2 and intergroup comparison of the critical
imaging variables is graphically displayed in Figure 2.
Standard spectral Doppler E velocity was no different
between the considered groups, but Doppler A velocity
was increased in PAH group when compared to control
group (PAH vs. control: 42 ± 10 vs. 26 ± 8 cm.s−1,
p< 0.001) and also increased in PH‐CLD group (PH‐
CLD vs. control: 42 ± 8 vs. 26 ± 8 cm.s−1, p< 0.001).
There was no difference in Doppler A velocity between
the PAH and PH‐CLD group (p= 0.942). Correspond-
ingly, the E/A ratio was decreased in PAH (PAH vs.
control: 1.0 ± 0.3 vs. 1.8 ± 0.6, p< 0.001) and in PH‐CLD
(PH‐CLD vs. control: 1.0 ± 0.5 vs. 1.8 ± 0.6, p< 0.001).
However, there was no difference in E/A ratio between
the two PH groups (p= 0.884). Tissue Doppler e' velocity
was decreased in PAH when compared to controls (PAH
vs. control: 7 ± 2 vs. 14 ± 4 cm.s−1, p< 0.001) and
similarly in PH‐CLD (PH‐CLD vs. control: 6 ± 1 vs.
14 ± 4 cm.s−1, p< 0.001). No difference was observed in
e' velocity between PAH and PH‐CLD groups (p= 0.531).
The E/e' ratio was increased in PAH (PAH vs. control:
6.3 ± 1.8 vs. 3.4 ± 0.8, p< 0.001) and similarly in PH‐CLD

(PH‐CLD vs. control: 6.5 ± 2.3 vs. 3.4 ± 0.8, p< 0.001)
with no observed difference between PAH and PH‐CLD
groups (p= 0.788). Lastly, there were no intergroup
differences in tricuspid valve deceleration time.

Intergroup comparison of the 4D‐Flow MRI derived
vorticity values is summarized in Table 2. Considering
the early filling E‐vorticity, significance intergroup
differences were observed between each considered
group. Patients with PAH had the lowest E‐vorticity
observed when compared to both control group (PAH vs.
Control: 1954 ± 829 vs. 4507 ± 837 s−1, p< 0.001) and
PH‐CLD group (1954 ± 829 vs. 3110 ± 890 s−1, p= 0.045).
Furthermore, patients with PH‐CLD had lower E‐
vorticity compared to controls (3110 ± 890 vs.
4507 ± 837 s−1, p= 0.026). The control group had also
increased median atrial filling phase A‐vorticity when
compared to PAH (p= 0.012). Lastly, median value of the
vorticity‐based E/A ratio was increased in control group
when compared to both PAH (p< 0.001) and PH‐CLD
(p= 0.002) groups.

Representative examples of visualized vorticity vector
field from the short‐axis view perspective are portrayed
in Figure 3. The overall magnitude of the vorticity vector
field was observed to be higher throughout diastole in
control patients when compared to both PAH and PH‐
CLD group. In all groups vorticity is generated primary

TABLE 1 Patient characteristics and standard cardiac MRI hemodynamics.

PAH (N= 13) CLD‐PAH (N= 15) Control (N= 10) p Value

Age (years) 60.2 ± 7.6 63.3 ± 8.7 57.7 ± 9.2 0.296

Sex (Female) 2 (15%) 7 (47%) 3 (30%) 0.205

BSA (kg/m2) 1.74 ± 0.24 1.81 ± 0.27 1.87 ± 0.25 0.650

Catheterization hemodynamics

mPAP (mmHg) 44 ± 14 32 ± 4 0.014

PVR (WU) 13.3 ± 7.9 5.2 ± 1.8 0.007

PAWP (mmHg) 13 ± 5 11 ± 4 0.176

RAP (mmHg) 8 ± 4 7 ± 3 0.394

Cardiac MRI

RV EDV (mL) 149 ± 33* 155 ± 36* 113 ± 29 0.013

RV ESV (mL) 89 ± 39* 84 ± 28** 46 ± 15 0.002

RV SV (mL) 59 ± 13 71 ± 25 67 ± 17 0.299

RVEF (%) 42 ± 14** 46 ± 11** 60 ± 6 0.002

CO (L/min) 3.7 ± 1.3 3.5 ± 1.7 3.8 ± 0.8 0.408

Heart rate (bpm) 62 ± 19 50 ± 17 57 ± 7 0.230

Note: Data reported as mean ± SD. Reported p Value is either unpaired t‐test or one way ANOVA.

Abbreviations: BSA, body surface area; CO, cardiac output; EDV, end‐diastolic volume; EF, ejection fraction; ESV, end‐systolic volume; mPAP, mean
pulmonary arterial pressure; PAWP, pulmonary arterial wedge pressure; PVR, pulmonary vascular resistance; RV, right ventricle; SV, stroke volume.

*p< 0.05 from control group; **p< 0.01 from control group.
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along the RV cavity and most prominently close to the
tricuspid valve annulus where the velocity gradient is the
highest. In comparison to PH groups, control patients
additionally demonstrated a source of vorticity in the
centrally in the RV cavity and in the RV outflow tract.

Relationship between RV vorticity and
CMRI indices

To further explore the relationship between RV inflow
characteristics and RV size/function, we subjected the
RV E‐vorticity to linear regression with standard CMRI
hemodynamics and echocardiographic Doppler charac-
teristic. The summary of evaluated correlations is
depicted in Table 3 and strongest correlations are
graphically depicted in Figure 4. E‐vorticity correlated
with ejection fraction (R= 0.60, p< 0.001), end‐systolic
volume (R= 0.50, p= 0.001), stroke volume (R= 0.42,
p= 0.007), and cardiac output (R= 0.30, p= 0.027). No
correlations were observed between E‐vorticity and end‐
diastolic volume. RV‐vorticity was also associated with
the Doppler E/A ratio (R= 0.43, p= 0.006), e' velocity
(R= 0.53, p< 0.001), and E/e' ratio (R= 0.35, p= 0.027).
There was no association between E‐vorticity and
spectral Doppler E velocity.

DISCUSSION

RV diastolic dysfunction is a critical pathologic conse-
quence of RV remodeling during PH progression with
important clinical and functional predictive value.19–22

Signs of impaired RV filling measured by standard
echocardiography or RHC have been previously reported
across the entire PH spectrum.23–25 However, typical
spectral Doppler measurements of diastolic dysfunction
are influenced by heart rate and loading conditions,
introducing interpretation variability into this diagnostic
modality.26,27 Consequently, impaired filling and RV
diastolic stiffness needs to be interpreted in the context of
the RV afterload. The present study demonstrates that
4D‐Flow MRI derived vorticity can differentiate abnor-
mal RV filling hemodynamics between PAH and PH‐
CLD patients with (1) similar spectral Doppler and tissue
Doppler characteristics, (2) similar degree of geometric
RV remodeling, and (3) different loading condition. Our
results add to the increasing body of evidence suggesting
that intracardiac flow characterization might serve as
early and sensitive marker of diastolic dysfunction.7,28

Diastolic dysfunction is a multifactorial process mani-
fested by pathologic changes on the cardiomyocyte level
resulting in loss of restoration forces within the sarcomeric
apparatus and by the intrinsic remodeling of myocardial

TABLE 2 Right ventricular diastolic dysfunction—echocardiography and 4D‐Flow MRI.

PAH (N= 13)
CLD‐
PAH (N= 15)

Control
(N= 10) p Value

Echocardiography

E (cm.s−1) 42 ± 13 41 ± 14 43 ± 8 0.732

A (cm.s−1) 42 ± 10** 42 ± 8** 26 ± 8 <0.001

E/A 1.0 ± 0.3** 1.0 ± 0.5** 1.8 ± 0.6 0.001

e' (cm.s−1) 7 ± 2** 6 ± 1** 14 ± 4 <0.001

a' (cm.s−1) 14 ± 4 15 ± 4 13 ± 3 0.499

E/e' 6.3 ± 1.8** 6.5 ± 2.3** 3.4 ± 0.8 <0.001

TVDT (ms) 229 ± 46 305 ± 60 265 ± 92 0.108

4D‐Flow MRI

E‐wave vorticity (s−1) 1954 ± 829,**+ 3110 ± 890** 4507 ± 837 <0.001

A‐wave vorticity (s−1) 321 (245−1934) 177 (149−302)* 1073 (319−1693) 0.012

E/A vorticity 2.7 (1.8−10.6) 5.3 (0.7−9.0) 24.5 (17.4−28.3) <0.001

Note: Data reported as mean ± SD or median with corresponding IQR.

Abbreviations: A, atrial phase Doppler velocity; a', late phase right ventricular free wall tissue Doppler velocity; CLD‐PH, pulmonary hypertension associated
with chronic lung disease; E, early filling Doppler velocity, e', early right ventricular free wall tissue Doppler velocity, PAH, pulmonary arterial
hypertension; TVDT, tricuspid velocity deceleration time.

*p< 0.05 from Control;

**<0.01 from Control, +<0.05 from CLD‐PAH.
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extracellular matrix leading to mechanically impaired
ventricular relaxation.29 Cumulatively this results in
increased diastolic stiffness or reduced ventricular elastance
compromising preload generation. In PH, the intrinsic
structural changes in myocardial tissue have been demon-
strated by increased collagen deposition within the extra-
cellular matrix and at the level of cardiomyocyte level by
reduced titin phosphorylation leading to increased passive
tension of sarcomeric units.30 The ideal load‐independent
and current gold standard approach for accurate evaluation
of the RV diastolic stiffness in research is by means of
pressure‐volume loop analysis and calculation of the end‐
diastolic ventricular elastance and isovolumic relaxation
time constanttau.31 This approach is ideal for initial RHC
characterization but, as an invasive diagnostic, is less
optimal for screening and sequential follow‐up. Conse-
quently, noninvasive imaging methods have been employed

to characterize RV diastolic dysfunction and RV stiffness by
means of myocardial deformation analysis.32

Multiple CMRI tissue mapping studies have reported
on structural myocardial changes in PH patients
demonstrating increased extracellular volume and
fibrotic changes in RV myocardium but its association
to diastolic stiffness is yet to be detrmined.33–35 With
regard to 4D‐Flow MRI, RV diastolic dysfunction has
been interrogated previously using multiple parameters
including vorticity, 4‐flow component analysis, and
kinetic energy.25,36–39 With the goal to replace qualitative
vortex grading strategies, vorticity has emerged as an
ideal marker for inflow characterization in morphologi-
cally complex RV.15,40,41 In this study, early filling phase
E‐vorticity was the only variable distinguishing PAH and
PH‐CLD cohorts. Vorticity is primarily generated along
the endocardial surfaces where the spatial velocity

FIGURE 2 Comparison of the right ventricular diastolic dysfunction imaging biomarkers between pulmonary arterial hypertension
(PAH) and pulmonary hypertension due to chronic lung disease (PH‐CLD) and control groups. (a) 4D‐Flow MRI derived E‐vorticity was the
only discriminating biomarker differentiating all groups with the lowest E‐vorticity values noted in PAH patients. (b) Atrial phase
A‐vorticity was no different between the PAH and PH‐CLD groups yet both PH groups has increased A‐vorticity when compared to control
group. (c) Similar findings were observed for the E/A vorticity ratio. (d) There were no differences in Doppler E‐wave velocity between the
considered group. (e) Tissue Doppler e' velocity was decreased in both PH groups when compared to controls with no differences between
the specific PH groups. (f) Similarly, E/e' ratio was increased in both PH groups but there were no differences between specific PH groups.
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gradient reaches the maximum. Interestingly, E‐vorticity
values were not associated with RV end‐diastolic volume
and Doppler E wave velocities suggesting that additional
flow kinematic interactions beyond RV surface geometry
and velocity might play role in diastolic filling. Similar to
previous results, E‐vorticity was associated with RV
tissue Doppler e' values suggesting that the degree of RV
elastic recoil might play a critical role in vorticity
generation.10,15 Another distinguishing feature observed
in this study was a lack of vorticity generation in PH
groups in the RV outflow tract. Upon passing tricuspid
valve, a substantive portion of the RV inflow is redirected

toward the outflow tract where the conical geometry
creates an ideal substrate for vorticity generation. We
hypothesize that combination of compromised RV recoil
and RV dilation might disable high velocity flow to the
RV outflow tract.

Abnormal echocardiographic markers of RV diastolic
dysfunction have been previously reported in both PAH
and PH‐CLD patient groups but there is a lack
comparative studies between these groups.5,42 In this
study RV vorticity was different between the two groups
despite similar RV ejection fraction and the degree of RV
dilation. Expectedly, the primary distinguishing feature

FIGURE 3 Comparison of the right ventricular (RV) velocity and vorticity vector fields in representative patients with pulmonary
arterial hypertension (PAH), pulmonary hypertension due to chronic lung disease (PH‐CLD), and control subject. The most left column
depicts velocity vector field with the superimposed vorticity field oriented from the right long axis ‐ RV outflow tract view. Other columns
depicts intracardiac vorticity from the short‐axis view perspective during early diastolic filling phase. Vorticity is in each subject generated
primarily along the endocardial surfaces. One can appreciate higher density and magnitude of vorticity vector glyphs in the control subject
with additional source of vorticity generated within the RV outflow tract (**) and inside the RV cavity (*). Representative RV vorticity
waveforms through the cardiac cycle are depicted at the bottom of the figure.
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of the two groups was the severity of PH with
significantly higher mPAPs in PAH group. Whether the
cause of further reduction in vorticity in PAH patients is
primarily due to afterload and/or more severe diastolic
dysfunction is yet to be determined. However, compro-
mised RV diastolic dysfunction can contribute to
ventilatory and circulatory exercise limitation and
symptomatology in both patient groups.3,22 In future
studies we will consider combining pressure‐volume
analysis with the CMRI to study the end‐diastolic RV
elastance in the context of RV flow formations.

Limitations

We would like to acknowledge several limitations
pertinent to this study. Firstly, this was a single

institution study and therefore results are prone to
patient selection bias, particularly when selecting
patients with more severe grade of PH. Secondly,
echocardiography and RHC where not temporally
aligned with the 4D‐Flow MRI acquisition. In future
studies we plan on investigating pressure hemodynamic
derived variables to yield markers of RV diastolic
dysfunction (RV tau constant) and RV diastolic stiffness
(RV end‐diastolic elastance), and correlate these vari-
ables with 4D‐Flow MRI vorticity and 4‐flow component
data. Finally, the major limitation of 4D‐Flow MRI
remains to be a low temporal resolution which might
result in sampling error and potentially underestimation
of the peak diastolic vorticity values.

CONCLUSIONS

Here we present a single institution comparison of CMR
intracavitary RV flow characteristics and standard
echocardiographic assessment in the setting of PAH
and PH‐CLD. Importantly, we demonstrate increased
discrimination in imaging markers of RV diastolic
dysfunction between PH subtypes by 4D‐Flow MRI
compared with echocardiography in this adult cohort.
These data demonstrate that 4D‐Flow MRI may be
beneficial as a noninvasive diagnostic tool to differentiate
the disease phenotypes more accurately than standard
echocardiography. Further characterization of flow
patterns and detailed definition of unique flow char-
acteristics across all PH subtypes will be critical to better
define the role of 4D‐Flow MRI as clinically prognostic
tool in adult PH.
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FIGURE 4 Graphical representation of the most significant correlations showing the relationship between the 4D‐Flow MRI vorticity
and (a) right ventricular ejection fraction (RVEF) and (b) RV end‐systolic volume (RV‐ESV).
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