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C. Mandujano4, Enrique Martı́nez-Meyer2

1 Departamento de Ecologı́a y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma
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Abstract

Demographic analyses and ecological niche modeling (ENM) are two popular tools that

address species persistence in relation to environmental conditions. Classic demography

provides detailed information about the mechanisms that allow a population to grow or

remain stable at a local scale, while ENM infers distributions from conditions suitable for

species persistence at geographic scales by relating species’ occurrences with environmen-

tal variables. By integrating these two tools, we may better understand population processes

that determine species persistence at a geographic scale. To test this idea, we developed a

model that relates climate to demography of the cactus Opuntia rastrera using 15 years of

data from one locality. Using this model we determined the geographic area where popula-

tions would have positive growth rates given its climatic conditions. The climate-dependent

demographic model showed poor performance as a distribution model, but it was helpful in

defining some mechanisms that determine species’ distributions. For instance, high rainfall

had a negative impact on the population growth rate by increasing mortality. Rainy areas to

the west of the distribution of O. rastrera were identified as unsuitable both by our climate-

dependent demographic model and by a popular ENM algorithm (MaxEnt), suggesting that

distribution is constrained by excessive rains due to high mortality. Areas projected to be cli-

matically suitable by MaxEnt were not related with higher population growth rates. Instead,

we found a strong correlation between environmental distance to the niche centroid (center

of the niche hypervolume, where optimal conditions may occur) and population growth rate,

meaning that the niche centroid approach is helpful in finding high-fitness areas.
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Introduction

Demographic analyses and ecological niche modeling (ENM) are two ecological tools that

address species persistence in different ways. Demographic studies investigate how demo-

graphic processes (e.g., survival, growth and reproduction) affect population growth rate (λ) to

provide detailed information about the mechanisms that allow a population to grow or remain

stable given the conditions that occur at a local scale [1]. ENM identifies environmental condi-

tions related with species persistence and provides a measure of the likelihood that a species

will persist on a larger scale (species’ geographic ranges). While demographic analyses are lim-

ited by scale, ENM does not attempt to explain the biological mechanisms that determine spe-

cies performance. Thus the value of integrating these two tools has previously been identified

whereby studies have integrated population data with spatial analyses to understand species’

range-wide population processes, such as performance or spatially explicit extinction risk,

resulting in more effective conservation strategies [2,3,4,5,6]. Combining a detailed demo-

graphic analysis with ENMs is expected to increase our understanding of species’ biogeogra-

phy and give more informative results for species conservation.

Following Hutchinson [7], the ecological niche of a species is the hypervolume of environ-

mental conditions where the species can persist through time. Conditions close to the bound-

aries of the hypervolume are expected to be less favorable for species’ persistence, whereas

conditions more central in the hypervolume are expected to be closer to the species optimum

[8]. For instance, it has been found that population density diminishes with distance from the

niche centroid [4]. In demographic terms, niche can be envisaged as the environmental condi-

tions where λ� 1, (i.e., the conditions where population does not decline to extinction), and

in ENM, niche can be considered as the set of environmental conditions that are suitable

enough to permit species occurrence. Thus, we may expect suitablity and λ to be greater

toward the niche centroid.

Analysis of demographic processes has previously been integrated into ENM to gain insight

on extinction risk under climate change [2,4,9]. Potential reductions in distribution do not

translate directly into extinction probability and thus demographic population viability models

are required [2]. In 2015, a method was proposed to create distribution models based on

short-term demographic studies of Protea repens throughout its range [9]. In this method,

demographic processes of the populations were related to climatic variables to extrapolate pop-

ulation performance (population growth rate) across the species’ distribution.

We propose an alternative strategy: instead of having several localities studied over one-

year [5], we created a distribution model from one locality based on a 15-year-long demo-

graphic study. This procedure makes use of the climatic variability observed over time instead

of climate differences between sites. The basic idea is to relate demographic processes with cli-

matic conditions observed over 15 years and integrate this data into a climate-dependent

demographic model. We can then use this model to estimate the λ values under different con-

ditions and to determine the geographic range in which the species can persist given the cli-

mate of the range. We expect to capture enough climatic variability over a 15-year period to

project the dynamics of population onto species’ distribution areas. Desert systems are particu-

larly appropriate for this purpose because they experience a large interannual climatic variabil-

ity [10]. Opuntia rastrera is characteristically found in desert environments and climate has

previously been shown to play an important role in its population dynamics [11], making our

15-year dataset ideal for testing our new strategy.

Here, we construct a climate-dependent demographic model and an ENM to investigate

the benefits of integrating the two approaches to gain insights into the mechanisms that deter-

mine species distribution. This involved the following four steps: a) analyze the potential of
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climate-dependent demographic models to predict species’ distribution areas based on the cli-

matic characteristics of the landscape; b) assess the demographic processes that determine spe-

cies’ distributions; c) test for a relationship between suitability values estimated with a popular

ENM algorithm (MaxEnt) and values of λ obtained from the climate-dependent demographic

model; and d) test the concept that areas presenting higher λ are closer to the niche centroid.

Materials and methods

Species under study and fieldwork

The fieldwork took place in the natural protected area of Mapimı́, Durango, in northern

Mexico (26˚41’08 N, 103˚44’ W, altitude of 1160 m a.s.l.). This study was carried out in strict

accordance with SEMARNAT, the governmental authority for natural protected areas in

Mexico. No protected species were sampled. Data from the local weather station between 1975

and 2005 indicates a semi-arid climate with an annual precipitation of 465 ± 50 mm (mean ±
s.d.) and a mean annual temperature of 17 ± 4.5˚C.

The study species is O. rastrera F.A.C. Weber (Cactaceae), which grows as a prostrate

shrub. Cladodes (racquet like stems) are oval shaped and create long chains. It has sexual and

clonal reproduction, but in this study we only considered clonal reproduction. Clonality was

observed almost every year and seedlings were rarely observed, died shortly after germination,

and consequently make a negligible contribution to population dynamics in our data set [12].

Individuals clone by dropping one or more cladodes on the ground, which may produce roots

and become established. The population dynamics of the species was evaluated from 1991 to

2007 (15 annual transitions) spanning considerable climatic variation (see Table A in S1 File).

Four plots of 20 × 20 m were randomly established in a 4-ha area where O. rastrera domi-

nates. The population was surveyed yearly in early spring. The number of individuals studied

per year varied from 553 to 1138, while the number of clones identified varied from 30 to 72 as

indicated in S1 File. We established four plots because we expected that sampling more than

one area would include plants with different genotypes and thus more thoroughly represent

species diversity. Given the great complexity involved in estimating the growth functions, we

did not include plots when fitting kernel functions (i.e., when all individuals are assumed to be

independent). This assumption would potentially affect P values, which is not a problem as no

hypotheses were tested when fitting vital rates.

Plants were tagged and the following information was recorded for each: number of clad-

odes, flowers and fruits produced, seedling establishment, vegetative propagation by cladode

rooting and plant mortality. Seedlings produced sexually were readily distinguishable from

those produced clonally [12]. Cladodes were marked individually such that in the case that one

of them fell, it would be possible to identify which plant it came from.

Modeling distributions

We projected the O. rastrera ENM to a geographic area using existing records and terrestrial

ecorregions instead of political boundaries [13,14,15]. This area represents the regions where

the species has historically had access climatically and according to its dispersal and colonizing

abilities [13]. Within this area we used climate surfaces representing monthly mean values of

minimum and maximum temperature and precipitation for the period 1980–2009 (Cuervo-

Robayo et al., submitted) (1-km2 resolution, WGS84 geographic projection). From these cli-

mate surfaces, we derived 19 bioclimatic variables [16] that represent information about

annual, seasonal and extreme climatic trends. We used the R platform [17] to carry out the bio-
vars function of the dismo package [18] and generate the bioclimatic variables. To reduce col-

linearity, we conducted a Pearson’s correlation (cut-off Pearson’s 0.80 [18,19,20,21] and
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selected a final set of variables that were biologically relevant to the species: namely Bio1-mean

annual temperature, Bio10-mean temperature of the warmest quarter, Bio11-mean tempera-

ture of the coldest quarter, Bio12-annual precipitation, Bio13-precipitation of the wettest

month, Bio14-precipitation of the driest month, Bio16-precipitation of the wettest quarter and

Bio19-precipitation of the coldest quarter.

Climate-dependent demographic model

Integral projection models (IPMs) have become the standard tool for linking demography and

environmental variables. This is because vital rates are described by functions with few param-

eters, into which it is easy to incorporate environmental data as additional variables. In this

particular study, we measured the size of cacti as the number of cladodes in the individual (a

discrete variable); this created a transition matrix and not strictly an IPM. However, our

model was similar to integral projection models in two respects:

1. Vital rates were modeled as nonlinear functions of the exact size (number of cladodes) of

plants and not estimated from the observed fraction of individuals that change size catego-

ries as is usual in matrix projection models (MPM). This procedure avoids any loss of infor-

mation about the individuals’ heterogeneity [22], reduces the number of parameters to be

estimated, provides better estimates for poorly represented sizes than classic parameteriza-

tion of MPMs, and performs well despite small sample sizes [23]. In our case, these consid-

erations are particularly important because we set the interval of possible sizes between one

and 100 cladodes, and not enough data was available to reliably estimate each entry of the

resulting 100 × 100 matrix.

2. As in IPMs, we summarized survival, growth and fecundity in a complex function–or ker-

nel–from which the elements ky,x of the transition matrix K can be estimated. Previous

research [23] showed that this approach produces much better estimates of ky,x than tradi-

tional estimation procedures based on data from separate categories. The values of ky,x,

transitions of individuals from size x at time t to size y and at time t+1, were calculated as

follows:

ky;x ¼ sxgy;x þ fy;x ð1Þ

where sx is the survival probability of a plant having x cladodes; gy,x is the probability a plant

with x cladodes has of producing y cladodes after one year; and fy,x represents the fecundity as

the number of clones with y cladodes produced by a mother with a size x. These values were

calculated from a series of underlying functions: s(x) and g(x,y) for survival and growth,

respectively, plus M(m|y,x), C(c|m) and F(l|m,c) (see below) for fecundity. Here, we only pres-

ent the general structure of these functions. For further details on the model and fitting proce-

dures see S1 and S2 Files; the AIC values used for model selection can be found in Tables A-D

in S3 File.

Survival probability was modeled as a logistic function between 0 and 1. We used the two

functions b(x), the number of cladodes produced, and d(x), the number of cladodes dropped,

to model the final number of cladodes in an x-sized plant. The functions b(x) and d(x) repre-

sented negative-binomial distributions, which were exponential functions of x. Thus, the mean

number of cladodes of a plant with size x after one year was E(y|x) = x + E(b(x))–E(d(x)),

where E is the mathematical expectation. The sum in this formula implies that the distribution

of y was a convolution of two negative binomial distributions.

For fecundity we used three probability distributions: (1) M(m|y,x), the probability that m
cladodes were dropped by a mother plant with x cladodes that had y cladodes after one year
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and had established successfully; this function followed a zero-inflated negative binomial dis-

tribution. (2) C(c|m), the probability that the m cladodes are partitioned into c clones, which

followed a zero-truncated Poisson distribution. (3) F(l|m,c), a geometric distribution that

described the fraction of the m cladodes that end up in the lth clone (l = 1,2,. . .,c). From this

function, we calculated the size of each clone and used this figure to obtain fy,x from the theory

on mathematical expectation because M(m|y,x) and C(c|m) are probability distributions (see

S1 and S2 Files).

We estimated the kernel parameters for each study year and constructed the respective K

matrix (see Tables A and B in S4 File for parameter values). This set of annual matrices was

incorporated in a stochastic model, from which we obtained the long-term (geometric mean)

population growth rate λs and the stable size structure. The population growth rate was biolog-

ically reasonable (λs = 1.005), and the stable population structure resembled closely the

observed one, suggesting that our model captured the population dynamics accurately (see

Figure A in S1 File and S2 File).

To incorporate the effects of climate on vital rates, we analyzed the relationship between the

parameters of the functions g(x,y), s(x), M(m|y,x) and C(c|m) for each of the 15 study years

with the eight selected bioclimatic variables estimated for the respective year using data from

the local meteorological weather station via generalized linear models (S5 File) (Note that F(l|
m,c) was estimated using the pooled data for all years due to insufficient data and thus did not

change across years). Four bioclimatic variables (mean temperature of the warmest quarter,

annual precipitation, precipitation of the wettest month and precipitation of the coldest quar-

ter) had significant relationships with vital rates (S5 File).

Given that it was possible to relate climate with different vital rates, we projected the demo-

graphic dynamics over the study region. For this, we obtained the values of the four bioclimatic

variables for each 1-km2 cell in the study region and used them to calculate the values of the

kernel parameters. From this kernel, the matrix K was obtained and its dominant eigenvalue

was calculated as a measure of the deterministic λ, which is also a way to refer to the fitness of

the population. With this information, it was possible to produce a potential distribution map

created with the species population growth rate of species’ fitness (Stearns 2000), assuming

that higher λ values are related to higher presence probability.

It is important to note that our estimations of λ are based on the assumption of no interan-

nual variability because the climatic layers available are climatic averages (1980–2009). If vari-

ability is included in demographic models, it frequently reduces the long-term population

growth rate. Thus, it is likely that only populations with a deterministic λ greater than one can

remain viable in the presence of variability (i.e., their long-term growth rate is greater than one

despite the fact that λ decreases). Even when we had λ values higher than 1.05, we decided to

use the true skill statistic (TSS) metric [24] to evaluate the threshold in the distribution model

based on demography that minimized the omission and commission errors with several

thresholds (λ = 1, λ = 1.01, λ = 1.02, λ = 1.03, λ = 1.04 and λ = 1.05). We evaluated the discrim-

ination performance of predictive models with the “area under the receiving operating charac-

teristic curve” (AUC: [25]. AUC scores closer to 1 represent models that predict presence

correctly, and AUC scores closer to 0.5 represent models that do not differ significantly from

random.

We also analyzed the effect of different demographic processes on population growth by

calculating elasticities of λ. As usual, sensitivity was defined as @lnλ/@lnθ, where θ is any

parameter in the projection model [1,26]. The elasticity of individual parameters in the kernel

is relatively difficult to interpret, so here we calculated the elasticity of whole functions f in the

kernel. To do so, we defined θ to be a constant that multiplies the function f. If θ = 1 we had

the observed function, but if θ> 1, the demographic process that corresponds to f increased.

Demography and niche suitability
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We were able to estimate λ values for any θ and any function f. From the equation of the slope,

the elasticity sf of function f was calculated as

sf ¼ 0:5
lnlobs � lnl1:01f

� lnð1:01Þ
þ
lnlobs � lnl0:99f

� lnð0:99Þ

� �

;

where λobs is the population growth rate estimated for θ = 1, and λ0.99f and λ1.01f are λ estimated

after multiplying f by θ = 0.99 and θ = 1.01, respectively. The two slopes were averaged (hence

the sum and multiplication by 0.5) to obtain a better estimate of the derivative. To understand

what this procedure estimates consider, for example, survival: the elasticity of survival is the

proportional change in growth rate as a result from proportional changes in the survival of

individuals of every possible size.

Ecological niche modeling

Presence data of O. rastrera were obtained from the Mexican government biodiversity database

(Sistema Nacional de Información sobre Biodiversidad de México) (www.biodiversidad.gob.

mx) and validated with help from a taxonomic cacti expert (Dr. Salvador Arias). To reduce bias

in the modeling procedure with MaxEnt, we created an overlapping target background group

(TGB) with two sister species, O. engelmanni and O. lindhemeri (also validated by Dr. Arias),

and used presence records of all three species as background points. We included an overlap-

ping TGB to improve the discrimination capacity of MaxEnt between suitable and unsuitable

conditions [27]. The fact that a sister species was recorded in a place and O. rastrera was not

found increases the probability of true absence. MaxEnt develops the niche models, inferring

probabilities from presence and background information, meaning that it extracts the environ-

mental conditions where a species has been recorded and from a sample of the rest of the study

area (background). One important assumption in this process is that the sampling of the target

species and the background were random across the study area. When this is not the case, it is

recommended that the background sampling have the same bias as the target species record

sampling [28]. For example, it is common that species are recorded along roads; therefore, back-

ground sampling should be restricted along roads as well. Ultimately, we gathered 43 presence

records of O. rastrera and 225 background points of both O. engelmanni and O. lindheimeri.
To reduce bias in the records due to higher sampling effort in specific areas, we used the R

package spThin [29], which randomly eliminates some points that are separated by less than

10 km, with the aim of retaining the largest number of records. This process was repeated 50

times. Final data sets varied between 20 and 30 records and for each repetition we estimated

the AUC. The final AUC score was calculated as the mean of the 50 repetitions. We used the

ROCR R package to estimate AUC.

We chose the MaxEnt algorithm [27] to model the ecological niche and distribution of O.

rastrera because it has performed well for several species and is a widely used modeling algo-

rithm [20,30,31,32]. We carried out 100 repetitions with a 70:30 random training/testing data

partitioning and used the TSS (0.6) evaluation metric to build a mean weighted model ensem-

ble [33] because ensembles have proven to be an effective way to deal with uncertainty [34].

All analyses were carried out in the BIOMOD platform [33]. Although we are aware of the use

of ENMval to evaluate models with different settings of parameter combinations using crite-

rion such as the AICc (Akaike Information Criterion) [35], we kept the default parameteriza-

tion because its predictability performance was better (TSS = 0.629, AUC = 0.861) than the

model with the lowest AICc (TSS = O.418, AUC = 0.753).

Niche models were constructed with the four bioclimatic variables that were significant pre-

dictors to demographic rates to make it comparable with the climatic-dependent demographic
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model. Model validation was via the area under the curve (AUC) of the ROC plots [13,25] and

the TSS test of the 100 repetitions ensemble. We compared the suitability map resulting from

MaxEnt with the demographic model and analyzed the correlation between suitability and λ.

Finally, we calculated the distance to the niche centroid to compare these values with the

suitability values coming from MaxEnt and λs coming from the climate-dependent demo-

graphic model. We calculated the distance to the niche centroid by using the binary maps

coming from MaxEnt (probability maps were converted into a presence-absence map using a

probability threshold value that minimized both omission and commission errors) and

obtained the standardized mean (values that represent the center of the ecological niche) of

each of the bioclimatic variables from each pixel that represents presence of the species. Then,

we calculated the bioclimatic multidimensional Euclidian distance of each pixel in the study

region (with its specific bioclimatic profile) to the standardized mean [4]:

dðPi;NÞ ¼
X

j

ðPi;j � NjÞ
2

� �1
2
;

where Pi,j and Nj are the values of the j-th bioclimatic variable in pixel i and niche centroid,

respectively. The smaller the distance to the niche centroid the higher the growth rates

expected.

Results

Niche distribution modelling with two different approaches

MaxEnt predicted a core area of distribution in central Mexico, which encompasses the vast

majority of the records of O. rastrera, with the addition of some small satellite areas scattered

to the north. The demographic model with the best possible threshold value was λ = 1.03 TSS

(0.35) (Fig 1). This binary map and the MaxEnt model provided similar boundaries for the

core area, with the exception of the western limits. The demographic model produced a much

larger presence area than MaxEnt, and despite the climate-dependent demographic model giv-

ing better than random results (AUC = 0.68 when validating the continued map; TSS = 0.35

when validation a binary map), it performed poorly compared with the MaxEnt model

(AUC = 0.861, TSS = 0.63).

There was a significant relationship (P < 0.0001) (Spearman’s correlation) between λ-val-

ues and MaxEnt suitability values (Fig 2A). However, an rs = 0.389 indicates that the correla-

tion between λ and MaxEnt suitability values is not strong. Instead, the relationship between

λ-values and the distance to the niche centroid (central values of the ecological niche) was

highly significant (P< 0.0001) and very robust (Spearman = -0.706) (Fig 2B). Finally, no infor-

mative relationship between niche centroid distance and MaxEnt suitability was observed (Fig

2C).

Climate effects on demography

Survival was negatively related to annual rainfall (Bio12) (Fig 3A). Similarly, there was a nega-

tive relationship between the precipitation of the coldest quarter of the year (Bio19) and the

production of new cladodes (growth) (Fig 3B). Instead, the number of cladodes dropped was

positively related to the precipitation of the coldest quarter of the year (Bio19) (Fig 3C). Finally,

the number of clones into which the cladodes that were dropped and divided was significantly

influenced by two bioclimatic variables: (a) the number of clones was negatively related to the

precipitation of the wettest month (Bio13) and (b) positively related to the temperature of the

warmest quarter (Bio10) (See Fig 3C). For some kernel parameters, the model with the lowest
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AIC value had biologically unlikely behaviors (for instance, the appearance of immortal indi-

viduals) when extrapolated to the whole range of climatic conditions observed in M. In such

cases, we chose another model from the set of models with ΔAIC< 2 that resulted in biologi-

cally more meaningful results. In the cases were the null model had a ΔAIC< 2, we also

selected it, as it was more parsimonious. Also, when the AIC diminished in less than two units

when a variable was added, it was excluded [36] (S5 File).

To assess how climate determines the geographic variations in population growth, we plot-

ted the λ values and MaxEnt suitability obtained for each pixel in the study region with the

four informative bioclimatic variables. We also integrated the observed climatic variability in

the regular ecological niche approach and in the climatic dependent demographic model

approach to evaluate differences between them. The space approach (commonly used for eco-

logical niche modeling) had a larger range of climatic variability for variables Bio 10 (mean

temperature of warmest quarter) and Bio 12 (annual precipitation) (18-28ºC vs 23-26ºC and

254–1223 mm vs 122–374 mm for space and space-time, respectively). However, for variables

Bio 13 (precipitation of wettest month) and Bio19 (precipitation of coldest quarter), the time

for space range was greater (12–61 mm vs 14–124 mm and 33–70 mm vs 0–79 mm for space

and time, respectively).

Demographic and niche models indicate that the range of temperature where the species

could be distributed is wide (Fig 4). However, in the niche model, suitability values decreased

after 25˚C, which could not be identified by the demographic model that had a λ�1 in the

entire temperature range (10–30˚C) λ�1 (Fig 4). Meanwhile, annual precipitation strongly

determined λ, causing it to decrease (Fig 4). Similarly, suitability decreased importantly after

500 mm of precipitation. Both models reflect a limitation with an important increase of precip-

itation, but the demographic model failed to predict a limit in water scarcity that the MaxEnt

model identified around 250 mm. Because the only vital rate affected by annual precipitation

was survival, the observed reductions in λ with rainfall could only have been caused by reduced

survival. This result is also supported by an elasticity analysis, which showed that by far the

vital rate with greatest elasticity is survival (Table 1).

Precipitation in the wettest month and in the coldest quarter of the year, which influenced

growth and fecundity, respectively, also showed an influence on λ and suitability values. Pre-

cipitation in the wettest month caused an important decrease in suitability values after 38 mm

and after 45 mm in λ values. Precipitation in the coldest quarter (Fig 3) had a minimal effect

on growth rate, but high suitability values were clearly between 25–75 mm (Fig 3).

Discussion

Niche distribution modelling with two different approaches

The potential distribution map produced with the climatic-dependent demographic model

showed similarities with the MaxEnt model, but the former had a greater commission error.

Nevertheless, the climatic-dependent demographic model correctly predicted the presence of

O. rastrera in Mapimı́, where the demographic data were collected, whereas the MaxEnt

model did not. This may be due to a bias in sampling effort in the southeastern portion of the

Fig 1. Climate-dependent demographic model, MaxEnt and distance to niche centroid. A) Climate-dependent

demographic model. The threshold value λ = 1.03 represents the best distribution model from the models with a λ>1,

B) MaxEnt model. The greater the suitability value, the more appropriate that area is expected to be for the species, C)

Distance to niche centroid values. The smaller the distance to the niche centroid, the higher the fitness expected from

the species. In the three maps, the site of the demographic study is represented by a star. The sites where the species

was recorded are shown as red squares.

https://doi.org/10.1371/journal.pone.0201543.g001
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distribution area, despite efforts to correct for this. This is likely to bias the climate envelope of

O. rastrera generated by the ENM toward conditions prevalent in the intensively sampled area

and may also explain why the algorithm failed to assign a high suitability to Mapimı́ [27].

The basis of our model is the substitution of variation in the climatic variables across space

with variability over time, implying important differences compared with studies based purely

on spatial variation of climate [5] or ENM algorithms. ENMs indirectly incorporate the effects

of other variables that affect the performance of the focal species and that are also correlated

with climate [13]. For instance, consider the scenario where O. rastrera is absent from some

climatically appropriate areas but are occupied by some other Opuntia species, which are per-

haps outcompeting it. Data collected from these sites would suggest that the local conditions

Fig 2. Comparisons between population growth rates, suitability and niche centroid distance. A) Popolution

growth rate vs MaxEnt suitability values, B) Population growth rate vs distance to niche centroid values and C) MaxEnt

suitability values vs distance to niche centroid. Each circle in the plots corresponds to one of the pixels in the study

region.

https://doi.org/10.1371/journal.pone.0201543.g002

Fig 3. Relationship between vital rates and bioclimatic variables. A) Relationship between survival probability, plant size (in number of cladodes) and annual rainfall

(bioclimatic variable Bio12). B) Relationship between the numbers of cladodes produced annually (growth), plant size and the precipitation of the coldest quarter (Bio19).

C) Relationship between the numbers of cladodes dropped annually, plant size and the precipitation of the coldest quarter (Bio19). D) Relationship between the number of

cladodes that were dropped with rooting potential, plant size and mean temperature of the warmest quarter and precipitation of the wettest month (Bio10 and Bio13,

respectively).

https://doi.org/10.1371/journal.pone.0201543.g003
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are unfavorable for O. rastrera when in fact the underlying mechanism—competition with a

relative—is not apparent. Data from only one site could not be a result of competition because

the competing Opuntia were not present at the site in favorable years and disappeared during

adverse periods. Data collected at one site reflect physiological changes in the study species

with climatic conditions and perhaps only represent interactions with short-lived species

whose density responds immediately to climatic fluctuations. This can be seen either as a bene-

fit or as a drawback, depending on the aims of the study. If the sole purpose of the work is to

predict distribution area of a species, then data collected over different sites incorporating the

Fig 4. Effects of climate and population growth. Relationships between bioclimatic variables, habitat suitability and population growth rates (λ). Points in each graph

correspond to each pixel in the study region. Suitability values (blue) were obtained from MaxEnt, and λ values (red) from the demographic model. The bars below each

graph correspond to the intervals for which time-averaged climatic data were available throughout the region (blue), or the observed temporal variations at Mapimı́ (red).

The grey line corresponds to suitability = 350 and λ = 1; below these numbers, O. rastrera rarely occurred (see Fig 1).

https://doi.org/10.1371/journal.pone.0201543.g004
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effect of competitors or predators contains more information and may result in more accurate

geographic projections. In contrast, if the study seeks to determine how climatic and other

environmental changes influence specific vital rates, abundance or other ways of analyzing fit-

ness, then the follow-up of a single site through time may be more appropriate.

This analysis can also give more information about the fundamental niche of the studied

species. Thus, the comparison between models based on spatial and temporal data may be

especially informative. Our climate-dependent demographic model may correctly predict

the area where O. rastrera can occur given the local climate, while the MaxEnt model may

be cropping this “fundamental niche area” into its smaller areas of “potential realized

niche” by indirectly accounting for the presence of predators or competitors. The concur-

rent use of demography and ENM provides valuable insights into the factors and processes

limiting the distribution of O. rastrera. It is remarkable that the north, east and south

boundaries of the core of the potential distribution area predicted by both approaches are

almost identical. This strongly suggests that the process determining some of the bound-

aries of the area projected by ENM are fundamentally determined by a high mortality rate

due to excessive precipitation. Moreover, the fact that boundary populations accurately pre-

dicted such boundaries suggests that intolerance to high precipitation is a conserved niche

attribute in O. rastrera.

Recent work has proposed that ENM-derived metrics provide valuable information about

the underlying population attributes [4,37]. In our work, the relationship between high-suit-

ability areas estimated with MaxEnt and high λ values was weak. However, the distance to the

niche centroid was a much better approach for representing the spatial variation of population

growth rate, proving that it is a good method for estimating population densities or crop pro-

ductivity [38,39]. This fact has important implications for conservation, especially when time,

money and information are scarce. Consequently, rather than only using suitability values

from MaxEnt results or other ecological niche algorithms to calculate higher fitness, for exam-

ple abundance [37], we might calculate the values representing the ecological niche centroid

and calculate the environmental distance to it. As tested in this work, higher fitness is expected

the closer we are environmentally to these values.

Climate effects on demography

In deserts, water is the most important limiting factor for plant performance. However, cacti

have morphological and physiological traits to withstand water scarcity, such as succulence

and CAM photosynthetic metabolism [40]. In O. rastrera, it seems that high levels of ground

or surface water causes hydric stress and higher densities of pathogen fungi in the soil ([41]

and personal observation). An excessive intake of water in very rainy years also leads to the

Table 1. Elasticity values. We conducted an elasticity analysis by modifying by 10% (1.01), one by one, each of the

vital rates in the kernel to see how growth rate behaved with such modifications. Survival: survival probability of a

plant having the following: clone number: number of clones produced by a mother plant, growth: probability a plant of

producing cladodes after one year, number of cladodes: number of cladodes dropped by a mother plant that established

and loss of cladodes: probability of a plant to drop cladodes in one year.

Vital rate Elasticity

Survival 0.8674

Clone Number 0.1385

Growth 0.0657

Number of cladodes 0.0002

Loss od cladodes -0.0001

https://doi.org/10.1371/journal.pone.0201543.t001
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collapse of cladodes due to their increase in weight (personal observation). These phenomena

have also been seen in other cacti [42]. Furthermore, species of Opuntia species have a strong

heat resistance [43], tolerating higher temperatures than other species.

Annual precipitation was the determinant factor of λ, and the mechanism behind this rela-

tions is survival which is the only process affected by annual rainfall. Because the survival of

adult plants in most long-lived perennials has a strong influence on the population growth rate

[44], we were not surprised to find that survival determined λ. It seems that, when facing

changes in rainfall, O. rastrera follows a demographic buffering strategy, i.e., it has the ability

to buffer environmental changes by keeping key demographic components unchanged [45]. In

O. rastrera, the survival asymptote was very stable over time (coefficient of variation = 0.025)

in comparison with other vital rates that were also influenced by climate (range of coefficients

of variation 0.467–21.982). Survival was by far the vital rate with greatest elasticity, and the fact

that its response to environmental conditions was less labile than other vital rates suggests

demographic buffering. Nonetheless, other vital rates also affected λ values under different cli-

matic conditions. Growth, the loss of cladodes and clone numbers depended on timing of pre-

cipitation and temperature. However, these bioclimatic variables did not determine the

population growth rate as strongly as annual rainfall.

Extensive works have characterized how physiological traits change with drought in cacti

[40,46], but further efforts are needed to understand the physiological response to water that

may limit population growth. In addition, physiological experiments are needed to gain a bet-

ter understanding of how vital rates of O. rastrera are affected by changes in climatic variables.

Information obtained from such experiments would enrich demographic and ecological niche

models.

Model limitations

The most common ENM technique is to relate geographic records with environmental layers

and create an environmental profile although other approaches may be based on physiological

[47] or demographic [5] data. Undoubtedly, the assumptions behind the models are key

aspects for the differences among models. The use of temporal variation in vital rates to deter-

mine geographic ranges is based on a number of assumptions. First, the species’ vital rates

change with climate in the same way across the species range. This assumption may be justified

if niche is in fact conserved in related taxa [48] because we would then expect it to be quite

similar among populations of the same species. Nevertheless, adaptations to local climate [49]

would potentially cause our method to fail. A second assumption is that plants respond to

long-term climate in the same way as to short-term fluctuations. The capability of individuals

to buffer short-term conditions may cause this assumption to fail. For instance, some species

can survive a year without rainfall because they can store water (hence buffering drought), but

they would certainly die in a site with a long-term mean precipitation of zero. In contrast,

other events may have effects on the life cycle, even in the short term. This is the case of the

death of O. rastrera individuals that absorb too much water in rainy years. In such cases, a sin-

gle short-term event may accurately represent what would happen in a site with a high long-

term precipitation. Perhaps this is why our climate-dependent demographic model was able to

explain why O. rastrera is unable to colonize rainy areas but failed to identify the boundaries of

its distribution toward low-precipitation regions. A third assumption is that the time-averaged

population transition model (like the one that we estimated for the mean climatic conditions

in each pixel of M) accurately represents the growth rate of the population in a fluctuating

environment. Previous studies have shown that this is the case for O. ratrera [11]. However, a

common consequence of environmental fluctuations on population dynamics is a reduction
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in λ compared to that estimated assuming a constant environment. This may be the reason

why a threshold of λ = 1.03 produced a better estimate of O. rastrera’s distribution area than λ
= 1, which would suffice for population subsistence in the absence of fluctuations. The fourth

assumption is that factors, such as biological interactions that may affect population growth

rate, respond very rapidly to climatic fluctuations. This is unlikely to occur in many cases.

Consider the case where a natural predator limits the distribution of O. rastrera in warm

regions. If Mapimı́ is outside the distribution range of this predator, it will not appear suddenly

in Mapimı́ in warm years, and thus the demographic model would be unable to predict that O.

rastrera does not occur in areas with high temperatures. Another important limitation of our

model is that relationship between climatic variables and demographic parameters was not lin-

ear and extrapolation becomes difficult and dependent on the function form. This challenge

might be resolved by only extrapolating in pixels that are within the range of climatic variables.

Implications

Here, we have shown that detailed, long-term demographic studies, even at a small-scale,

might help to answer the mechanisms behind geographic distributions. ENM may be more

accurate when predicting the potential-realized niche distribution than models based on

demography, but demographic models give biological insights of why the species is being dis-

tributed as it is. Our results show a low correlation between climatically suitable areas pro-

jected by MaxEnt and higher population growth rates. This suggests that higher suitability not

necessarily reflects higher species fitness. Instead, we found a significant and robust correlation

between environmental distance to the niche centroid (center of the niche hypervolume) and

population growth rate. Consequently, the niche centroid approach might be helpful in finding

higher fitness areas in the geographic distribution of other species. Finally, we would like to

highlight that the development of hybrid methods may take advantage of the assets of both

approaches resulting in more accurate and meaningful results.

Supporting information

S1 File. Demographic model. Table A Number of individuals and clones. This table shows

the number of individuals and clones registered each year of the demographic study. Figure A

Comparison of the observed size distribution (black bars = and that projected by the

demographic model (red line).

(DOCX)

S2 File. “R” code.

(TXT)

S3 File. Model selection statistics. The best models are shown in red. The model with lowest

AIC is shown in bold characters, while the next best models (DAIC <2) are shown in italics.

The model that was selected for simulating population dynamics is shown with a yellow back-

ground. This model was selected based on two criteria: First, the sum of the AIC values of all

years (excluding years for which there were convergence problems or no data), generates the

AIC for any given model; this should be the lowest in the model set, or have a DAIC < 2. Sec-

ond, the model should be the best (or indistinguishable from the best) in the largest number of

years. Table A. AIC values for survival models The null model corresponds to a constant sur-

vival probability, whereas in the other models, survival was a function of the initial number of

cladodes x. Values shown correspond to different curves with an upper asymptote different

from one. We tested logistic and complementary log-log functions. In all cases the error was

binomial. No mortality was observed in 1992. Table B. AIC values for plant growth models
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In all cases, the final size of a plant is assumed to be equal to its initial size x, plus the number

of cladodes produced b(x) and minus the number of cladodes dead or dropped d(x). Two sets

of models were tested. In one of them, the numbers of cladodes produced or dead is a linear

function of size (e.g., b(x) = a0+a1x), and in the other, the function is nonlinear (exponential)

of size b(x) = exp(a0+a1x). Preliminary exploration of the data revealed that these two options

produced the best fits. In both cases, the null model corresponds to the case where the num-

bers of neither produced nor dead depend on x. The models indicated as d(x) and b(x) corre-

spond to the cases where only the number of dead or produced cladodes depended on x,

respectively. Finally, d(x) + b(x) indicate the models where both processes depend on the initial

size. Cladode death and production each have their own distribution and are summed to

obtain the final size of each plant. This is why the distribution of the latter is a convolution of

two distributions. In the table, the first distribution corresponds to cladode production and

the second to cladode death. Some distributions are truncated because at most x cladodes can

die. Models with convergence problems are shown as NA. Table C. AIC values for fecundity

(number of cladodes) models A large number of individuals did not reproduce; this is why

the appropriate distribution for the number of cladodes that were dropped and became estab-

lished was suspected to have a substantial inflation in zero. After exploring Poisson, negative

binomial and zero inflated Poisson, we chose a zero inflated negative binomial distribution

because of its substantially smaller AIC values. All models shown here assume such distribu-

tion. The model comprises two components: a model for the (uninflated) negative binomial

distribution’s mean, and a second model for the zero inflation factor. Both of these models

may be, respectively, exponential or logistic functions of different explanatory factors: the

number of cladodes in the mother plant at time t, x, and at time t + 1, y. Null models are those

where the mean or inflation factor do not depend on either of the explanatory variables. NA

indicates models in which convergence was doubtful. Table D. AIC values for fecundity

(number of clones) values Once a plant has dropped a number of cladodes that become estab-

lished, these may be arranged in one or more clones. Thus, the error distribution had to be

zero truncated. Exploratory analyses showed that a zero-truncated negative binomial produced

much larger AIC values than a zero-truncated Poisson model; thus, we chose the latter to

model the number of clones produced by a mother plant. We used the size of the mother plant

at times t and t + 1 (x and y, respectively) and m, the number of cladodes that are dropped and

become established, as explanatory variables.

(DOCX)

S4 File. Demographic parameters. Table A. Parameters for survival and growth functions.

Table B. Parameters for fecundity functions. No reproduction was recorded in the years for

which there are no parameters.

(DOCX)

S5 File. Data for the selection of the models that link demographic parameters to biocli-

matic variables. Three models were tested in every case: ID, a linear model relating the param-

eters with the climatic variables without any transformation; Log, as before, but log-

transforming the bioclimatic variable; and Inv, in which the reciprocal (multiplicative inverse)

of the bioclimatic variable was used. The model with the lowest AIC was selected and the func-

tion plotted over the whole range of climatic parameters observed in the study region. If the

function showed an unusual behavior when extrapolated to the whole region (e.g., it resulted

in biologically absurd parameters), we fitted two new models suggested by the form of the rela-

tionships observed: LogInv, in which the bioclimatic variables where log-transformed and

their inverse calculated; and InvLogInv, which was as LogInv, but with an inverse link func-

tion. This procedure was only performed for the bioclimatic variable with the lowest AIC. We
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selected the function that was most similar to the one with the lowest AIC over the observed

range of the bioclimatic variable but that produced biologically sensible estimates when extrap-

olated. In all the following tables we follow the next conventions: Numbers highlighted with yel-
low: Model used, Red numbers: Do not differ from the best model, Bold numbers in red: Best

model but not necessarily the model used depending on AIC differences and following parsi-

mony. For parameter θb, we kept the variable with greatest influence but used a different

model than the one with lowest AIC because it resulted in biologically more meaningful results

when extrapolating. For parameters αi, the model with the lowest AIC differ minimally from

the null model (ΔAIC< 2) and for parsimony, we kept the null model. In the case of βm, the

ΔAIC value between the null model and the best one was 2.03, but we still selected the null

model. This was because the best model for βm implied the inclusion of the bioclimatic vari-

able bio14 in the analyses thus increasing the computational time required to produce the ker-

nels for each pixel in the map by months. Table A. AIC values of the models that relate

survival parameters with the selected bioclimatic variables. Table B. AIC values of the models

that relate growth parameters with the selected bioclimatic variables. Table C. AIC values of

the models that relate number of cladodes dropped or established parameters with the selected

bioclimatic variables. Table D. AIC values of the models that relate parameters of clone pro-

duction with the selected bioclimatic variables.

(DOCX)

S6 File. Demographic data.

(XLSX)
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33. Thuiller W, Lafourcade B, Engler R, Araújo MB. BIOMOD–a platform for ensemble forecasting of spe-

cies distributions. Ecography. 2009; 32: 369–373.
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39. Ureta C, Martı́nez-Meyer E, González EJ, Álvarez-Buylla ER. Finding potential high-yield areas for

Mexican maize under current and climate change conditions. The Journal of Agricultural Science. 2015;

1–13.

40. Briones O, Montana C, Ezcurra E. Competition intensity as a function of resource availability in a semi-

arid ecosystem. Oecologia. 1998; 116: 365–372. https://doi.org/10.1007/s004420050599 PMID:

28308068

41. Nobel PS. Environmental biology of agaves and cacti: Cambridge University Press; 2003.

42. Martorell C, Garcillán PP, Casillas F. Ruderality in extreme-desert cacti? Population effects of chronic

anthropogenic disturbance on Echinocereus lindsayi. Population ecology. 2012; 54: 335–346.

43. Smith SD, Didden-Zopfy B, Nobel PS. High-temperature responses of North American cacti. Ecology.

1984; 643–651.

44. Silvertown J, Franco M, Pisanty I, Mendoza A. Comparative plant demography relative importance of

life cycle components to the finite rate of increase in woody and herbaceous perennials. Journal of Ecol-

ogy. 1993; 81: 465–476.

Demography and niche suitability

PLOS ONE | https://doi.org/10.1371/journal.pone.0201543 August 9, 2018 19 / 20

http://www.ncbi.nlm.nih.gov/pubmed/19323182
http://www.ncbi.nlm.nih.gov/pubmed/21563566
https://doi.org/10.1371/journal.pone.0187027
https://doi.org/10.1371/journal.pone.0187027
http://www.ncbi.nlm.nih.gov/pubmed/29121089
https://doi.org/10.1002/ece3.3036
http://www.ncbi.nlm.nih.gov/pubmed/28690819
https://doi.org/10.1016/j.tree.2006.09.010
http://www.ncbi.nlm.nih.gov/pubmed/17011070
https://doi.org/10.1371/journal.pone.0082066
https://doi.org/10.1371/journal.pone.0082066
http://www.ncbi.nlm.nih.gov/pubmed/24312402
https://doi.org/10.1371/journal.pone.0100957
http://www.ncbi.nlm.nih.gov/pubmed/24963989
https://doi.org/10.1007/s004420050599
http://www.ncbi.nlm.nih.gov/pubmed/28308068
https://doi.org/10.1371/journal.pone.0201543


45. Rotella JJ, Link WA, Chambert T, Stauffer GE, Garrott RA. Evaluating the demographic buffering

hypothesis with vital rates estimated for Weddell seals from 30 years of mark–recapture data. Journal

of Animal Ecology. 2012; 81: 162–173. https://doi.org/10.1111/j.1365-2656.2011.01902.x PMID:

21939440

46. Sandquist DR. Plants in Deserts. Ecology and the Environment: Springer; 2014.

47. Kearney M, Porter W. Mechanistic niche modelling: combining physiological and spatial data to predict

species’ ranges. Ecology Letters. 2009; 12: 334–350. https://doi.org/10.1111/j.1461-0248.2008.01277.

x PMID: 19292794

48. Martı́nez-Meyer E, Peterson AT. Conservatism of ecological niche characteristics in North American

plant species over the Pleistocene-to-Recent transition. Journal of Biogeography. 2006; 33: 1779–

1789.

49. Joshi J, Schmid B, Caldeira M, Dimitrakopoulos P, Good J, Harris R, et al. Local adaptation enhances

performance of common plant species. Ecology Letters. 2001; 4: 536–544.

Demography and niche suitability

PLOS ONE | https://doi.org/10.1371/journal.pone.0201543 August 9, 2018 20 / 20

https://doi.org/10.1111/j.1365-2656.2011.01902.x
http://www.ncbi.nlm.nih.gov/pubmed/21939440
https://doi.org/10.1111/j.1461-0248.2008.01277.x
https://doi.org/10.1111/j.1461-0248.2008.01277.x
http://www.ncbi.nlm.nih.gov/pubmed/19292794
https://doi.org/10.1371/journal.pone.0201543

