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Neuronal avalanches measured as consecutive bouts of thresholded field potentials
represent a statistical signature that the brain operates near a critical point. In
theory, criticality optimizes stimulus sensitivity, information transmission, computational
capability and mnemonic repertoires size. Field potential avalanches recorded via
multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity
patterns. It remains unclear whether avalanches of action potentials observed in forebrain
regions of freely-behaving rats also form recursive repertoires, and whether these
have any behavioral relevance. Here, we show that spike avalanches, recorded from
hippocampus (HP) and sensory neocortex of freely-behaving rats, constitute distinct
families of recursive spatiotemporal patterns. A significant number of those patterns
were specific to a behavioral state. Although avalanches produced during sleep were
mostly similar to others that occurred during waking, the repertoire of patterns recruited
during sleep differed significantly from that of waking. More importantly, exposure to
novel objects increased the rate at which new patterns arose, also leading to changes
in post-exposure repertoires, which were significantly different from those before the
exposure. A significant number of families occurred exclusively during periods of whisker
contact with objects, but few were associated with specific objects. Altogether, the
results provide original evidence linking behavior and criticality at the spike level: spike
avalanches form repertoires that emerge in waking, recur during sleep, are diversified by
novelty and contribute to object representation.
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INTRODUCTION

Neuronal avalanches are spatiotemporal bouts of electrical activity that were first described
at the level of local field potentials (LFP) as clusters of peak-valley oscillations with highly
variable sizes and durations in cortical slices (Beggs and Plenz, 2003). Since its initial
conception, neuronal avalanches have been demonstrated to permeate a striking number of
highly different systems: from anesthetized rats (Gireesh and Plenz, 2008) and cats (Hahn
et al., 2010), and awake monkeys (Petermann et al., 2009) using LFP or, more recently,
in mice using voltage imaging (Scott et al., 2014) and two-photon imaging (Bellay et al.,
2015), and in humans using electrocorticogram (Solovey et al., 2012), functional magnetic
resonance imaging (Fraiman and Chialvo, 2012; Tagliazucchi et al., 2012; Haimovici
et al., 2013), electroencephalogram (Meisel et al., 2013) and magnetoencephalogram (Palva
et al., 2013; Shriki et al., 2013). The characteristic high variability of neuronal avalanches,
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reflected in power-law distributions of both sizes and durations,
is held as evidence that they represent a link between brain
activity and criticality. It has been shown that a critical brain
would have desirable advantages such as optimal computational
capabilities (Bertschinger and Natschläger, 2004), information
transmission (Beggs and Plenz, 2003; Rämö et al., 2007) and
diversity (Nykter et al., 2008), size of memory repertoires (Beggs
and Plenz, 2004; Haldeman and Beggs, 2005) and sensitivity to
stimuli (Kinouchi and Copelli, 2006; Shew et al., 2009; Gautam
et al., 2015). For detailed reviews, see Chialvo (2010), Shew and
Plenz (2013) and Hesse and Gross (2014).

These results raised great interest in this particular
organization of neuronal activity. However, most of the
work in the field still consists of detecting neuronal avalanches
under resting conditions or from ongoing activity data,
and only recently avalanches started to be studied under
stimulus conditions (Shew et al., 2015). The question that
naturally follows is whether these scale-free spatiotemporal
activity cascades take part on information transmission and
storage. That is to say, while neuronal avalanches represent
a link between criticality and brain dynamics, their large
variation in size and duration could imply a lack of reliability
necessary for information storage. Yet, Scarpetta and de
Candia (2013) have shown through computational analysis
that neuronal avalanches are at the critical point between
replay and non-replay of spatiotemporal activity patterns.
Thus, if neuronal avalanches indeed constitute a fundamental
unit of representation in the brain, they should conform
to distinct and stable patterns of in vivo activity. In fact,
Beggs and Plenz (2004) showed that LFP avalanches in
vitro are diverse and precise activity patterns, repeatable for
many hours in slice cultures. This finding strengthened the
possibility that neuronal avalanches provide a spatiotemporal
support for spike patterns that may subserve information
encoding. Surprisingly, however, no further studies were
performed to show that these results hold true for in vivo
conditions.

Although recurring spike patterns have been subject of
research for a long time (Abeles et al., 1993; Wilson and
McNaughton, 1994; Nádasdy et al., 1999; Dave and Margoliash,
2000; Hoffman and McNaughton, 2002; Hahnloser et al., 2003;
Luczak et al., 2007; Madhavan et al., 2007; Rolston et al.,
2007; Pastalkova et al., 2008), similar investigations are absent
for spike avalanches, characterized by uninterrupted activity
over consecutive temporal bins (see ‘‘Materials and Methods’’
Section). Those avalanches were observed in dissociated neurons
(Mazzoni et al., 2007; Pasquale et al., 2008), cell cultures
(Tetzlaff et al., 2010; Vincent et al., 2012), forebrain regions
of freely-behaving rats (Ribeiro et al., 2010), hippocampal
cells of rats performing an open-field task, neurons of the
primary visual cortex (V1) of anesthetized cats, and neurons
from the prefrontal cortex of monkeys performing a visual
short memory task (Priesemann et al., 2014). Statistical
signatures of criticality were obtained in all those scenarios.
While LFP avalanches represent the propagation of regionally
synchronized activity, spike avalanches derive from individual
spiking neurons. Therefore, regarding pattern repetition and

information encoding, it is possible that these two types of
avalanche propagation in the brain may play different roles.
Finding repeating spike avalanches would also provide a missing
link between those studies of recurring spiking activity and
criticality, since work in this direction has been so far restricted
to simulations (Haldeman and Beggs, 2005; Chen et al., 2010;
Scarpetta and de Candia, 2013) or reduced preparations using
LFP (Beggs and Plenz, 2004; Stewart and Plenz, 2006; Chen
et al., 2010). Therefore, it remains to be determined whether
spike avalanches form stable and repeatable repertoires in
freely-behaving animals. Also unclear is the extent to which
these putative repertoires reflect behavior and are modifiable
by novel experience. To address these issues, we used the
methods described by Beggs and Plenz (2004) to assess pattern
repetition in 12 sets of ∼40,000 spike avalanches recorded
from the hippocampus (HP), primary somatosensory cortex
(S1) or V1 of six freely-behaving rats spontaneously cycling
between waking (WK), slow-wave sleep (SWS) and rapid-
eye-movement sleep (REM). Recordings of action potentials
(spikes) with chronically implanted multielectrode arrays were
performed before (PRE), during (EXP) and after (POST) a
∼20 min exposure to novel objects: ball, brush, urchin and food
(Ribeiro et al., 2010) (see ‘‘Materials and Methods’’ Section).
Avalanches were obtained separately for each brain region
(HP, S1 or V1) across the experiment, and were classified
according to the behavioral state (WK, SWS or REM) and
stage of the experiment (PRE, EXP or POST). We refer to
the set of avalanches obtained from one brain region of one
animal as a sample. The statistics of the avalanches analyzed
here were previously shown to be consistent to what is
found in self-organized critical systems (Ribeiro et al., 2010).
For example, after rescaling the waiting-time distributions for
different avalanche sizes by the average waiting-time for each
case, the distributions collapse together in a double power law
function similar to what is found for earthquakes (Christensen
et al., 2002). Moreover, the system displayed universality,
with a single scaling function applying to the three different
behavioral states, brain regions and stages of the experiment.
Here, we focus on the repetitive nature of those avalanches,
the relation to behavior, and the consequences for information
encoding.

MATERIALS AND METHODS

Multielectrode Recordings and
Experimental Design
The experimental data analyzed here came from a previous study
(Ribeiro et al., 2004). In brief, the animals were exposed to
four novel objects (ball, brush, urchin and food), which were
introduced at the corners of the recording box and left for
about 20 min for free exploration. Recordings were performed
before, during and after exposure. Visible lights were kept
off throughout the experiment. Detailed information regarding
neuronal recordings and LFP-based classification of major
behavioral states can be found in the original study (Ribeiro et al.,
2004).
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All animal work including housing, surgical and recording
procedures were conducted in strict accordance with the
National Institutes of Health (NIH) guidelines, and the Duke
University Institutional Animal Care and Use Committee, and
was approved by the Edmond and Lily Safra International
Institute of Neuroscience of Natal Committee for Ethics in
Animal Experimentation (permit #04/2009).

Spike Avalanches
In order to define a spike avalanche, the spike time series
from all neurons were divided in bins of duration ∆t (frames).
The beginning of a neuronal avalanche is formally defined
by the occurrence of a frame without any spikes (in any
neuron) followed by a frame with at least one spike (in
at least one neuron). The end of the avalanche is reached
when another empty frame occurs (Beggs and Plenz, 2003).
To rule out a systematic bias owing to the choice of time
bin, we employed the same heuristic prescription as that
of Beggs and Plenz (2003), namely to create a pooled time
series with spikes from all neurons, and to use as time bin
∆t the average inter-event interval, i.e., the time between
consecutive spikes (whether or not from the same neuron).
These rate-normalized time bins were therefore independently
determined by the data, being specifically calculated for
different samples, corresponding to a certain brain region
(HP, primary somatosensory (S1) or visual (V1) cortices)
of a given animal. Table 1 shows ∆t values for each
sample.

We followed the methods introduced by Beggs and Plenz
(2004) for avalanche pattern analysis. In the following sections
we briefly describe the main steps of the procedure.

Avalanche Comparison
In order to compare avalanches we converted them into one-
dimensional vectors. This was done by turning each frame into a
vector with dimension equal to the number of recorded neurons
and then concatenating those vectors (see Figures 1A,E).

Therefore, each avalanche was coded as a sequence of 0s (when
said neuron did not fire in said frame) and 1s (when the
neuron did fire). This allowed us to compare avalanches of
the same duration (number of frames) by a Boolean similarity
measure: Sim(A,B) = |A ∩ B|

/
|A ∪ B|, whose value ranged from

0 (least similar) to 1 (identical avalanches). In other words,
this measures the summed number of spikes from the same
neuron and frame divided by the total number of unique
spikes in both avalanches (e.g., the first pair of avalanches in
Figure 1A had 14 coincident firings and a total of 19 unique
activations, leading to a similarity value of 14/19 = 0.74). To
avoid temporal misalignment we employed a shift procedure.
We compared each pair of avalanches in two additional ways:
matching the n-th frame of avalanche A to the (n − 1)-th frame
of avalanche B (the first frame of avalanche A is compared to
a blank frame) and matching the n-th frame of avalanche A
with the (n + 1)-th frame of avalanche B (the last frame of
avalanche A is compared to a blank frame). In this case the
similarity between A and B was the maximum value when all
possible shifts were considered (−1, 0 and +1). Employing this
procedure has not led to a significant change in the results
found.

With this method we could then compute a similarity
matrix by comparing all pairs of avalanches available (note
that Sim(A, B) = Sim(B, A) and Sim(A, A) = 1). The
produced matrix tells us how similar any two avalanches
from the set are (see Figure 1B). Note that we have a
similarity matrix for each avalanche duration analyzed,
since we only compared pairs of avalanches of the same
duration. A minimum duration of three frames was
imposed, to avoid comparison between overly simplified
patterns.

Due to the computational cost involved in calculating and
storing the similarity matrices, we also discarded avalanches of
a given duration from the analysis when more than 15,000 of
them were observed. Table 1 shows the minimum avalanche
duration used for each sample. No qualitative differences

TABLE 1 | Avalanche and family data per sample.

Sample Temporal Minimum Number Number Number Maximum Estimate
(Animal/ bin ∆t avalanche of of of p value of false
Brain (ms) duration families significant setlists (significant positives
region) families (WK/SWS) families)

GE1/HP 5.45 3 13771 1865 36/14 0.013 185
GE5/HP 5.94 3 16390 858 48/10 0.005 86
GE6/HP 3.26 5 12016 1322 42/8 0.011 132
GE17/HP 7.13 3 14321 375 50/11 0.0026 37
GE3/S1 3.89 4 14193 361 40/18 0.0025 35
GE4/S1 9.35 3 10051 0 Ø Ø Ø
GE5/S1 4.83 4 13282 246 48/10 0.0018 24
GE6/S1 1.98 6 17532 0 Ø Ø Ø
GE3/V1 2.86 5 16434 0 Ø Ø Ø
GE4/V1 4.03 5 12924 81 44/5 0.0006 8
GE5/V1 3.57 5 13374 208 48/10 0.0015 20
GE17/V1 2.28 6 10976 1874 50/11 0.017 186

Note. The samples are ordered as in Figures 2, 3, 4, 5.
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FIGURE 1 | Avalanches in freely-behaving animals comprise families
and recur above chance. (A) Avalanches represented as binary vectors in
which colors indicate spike activity. Depicted are representative examples from
four different samples of similar avalanche pairs separated by several minutes
(interval of recurrence indicated on the right). (B) Similarity matrix for
200 representative avalanches from one sample, before and after clustering
(left and right panels, respectively). Black lines indicate 10 families formed by
similar avalanches. (C) Contrast function for one sample (colors represent
different avalanche durations), with the maximum for one duration indicated by
the dashed line. (D) Number of families of each size for one sample. Gray
indicates all families detected (left Y axis); black indicates significant families
(right Y axis). Note that the Y axes are scaled by a factor of 1000. (E) The
recurrence over time of highly similar avalanches defines avalanche families.
For the two representative families shown, the occurrence time is relative to
the first observed avalanche.

between samples with and without discarded avalanches were
observed.

Clustering Algorithm
We implemented a greedy paired clustering algorithm in order
to sort the similarity matrices. The method consisted of pairing

the most similar avalanches in each step of the algorithm,
until all avalanches grouped into a single cluster. The optimum
clustering point was obtained through a contrast function,
defined as: C = (Sin − Sout)/(Sin + Sout), where Sin is the
average among clusters of the mean similarity within the clusters
(measuring the average similarity inside clusters) and Sout is
the average among pairs of clusters of the mean similarity
between the clusters (measuring the average similarity outside
clusters). This contrast function was calculated for every step
of the algorithm, and its peak gives the most distinct grouping
of clusters that is possible to assemble from the data set (see
Figure 1C; note that different durations have different contrast
functions, leading to different peaks). We refer to these optimum
clusters as families of avalanches (see Figure 1E). Note that
all avalanches that group into a family must have the same
duration, since each duration produces a separate similarity
matrix and therefore a separate set of clusters. For the subsequent
analysis, families of different durations were pooled together. We
did not observe any dependency of the results with avalanche
durations.

Family Significance
To measure the statistical significance of each family, we
compared its size (number of members) and average similarity
(between its members) with what would be expected by chance.
In order to achieve that, we created a shuffled dataset by
randomly permuting the order of active frames and then
permuting the active neurons in each active frame. This shuffling
method was implemented to obtain a chance estimate of both
the spatial and temporal structure. Note that this procedure
preserves the total number of spikes (and hence the average firing
rates) as well as the avalanche durations.

For each of the 100 shuffled datasets consideredwe applied the
same procedure employed in the original data to obtain families
of (shuffled) avalanches. We then calculated the probability
of obtaining a shuffled family with a given size and average
similarity. This probability defined a p value for each original
family separately. In other words, the p value for a family of size
N and average similarity S is given by the probability of finding
a shuffled family with size N and average similarity not smaller
than S.

Since we had to assess the significance of thousands of
families, we needed amultiple comparisons correction.We chose
to implement the Benjamini-Hochberg procedure (Benjamini
and Hochberg, 1995) to avoid an excessive loss of true positive
cases in exchange for no false positives. In brief, the method
consists of comparing each p value to the Benjamini-Hochberg
critical value, r

nQ, where r is the rank of the p value (1 meaning
the smallest value), n is the number of values (or in our case
families) and Q is the false discovery rate desired. The largest
p value that is below the Benjamini-Hochberg critical value
is considered significant, and so are all the p values smaller
than this one. We set Q = 0.1 which means that the estimate
fraction of families considered significant by chance is around
10%. Note that 3 out of 12 samples did not yield any significant
families with the false discovery rate employed, and were
excluded from the analysis (see Table 1). By further reducing
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the Q value more samples are excluded. In order to achieve a
good compromise between a more rigorous statistical test and
a larger number of samples we chose Q = 0.1. No qualitative
changes in the results were observed when employing Q values
from 5% to 25%. Table 1 shows the number of significant
families and the maximum p value that is considered significant,
together with the estimated number of false positives, for each
sample.

Significance of the Relation Between
Avalanche Patterns and Behavior
In order to calculate the statistical significance of the results
relating families to behavior, we implemented a different
type of shuffling. By reassigning each avalanche to a random
family, while preserving family sizes and the behavioral state
associated to each avalanche, we create a data set in which
families and behavior are decorrelated. We called this procedure
label-shuffling, since the only property of the avalanches that
changed was the family label. Label-shuffling was used to
assess the significance of the results shown in Figures 2, 3,
4, 5. The associated p values were obtained by calculating the
probability that a label-shuffled set presents the same (or better)
characteristics compared to the original data. For example, to
assess the significance of the number of waking-specific families
in the original set, this number was computed for each label-
shuffled set. The fraction of those sets whose number of waking-
specific families was equal or higher than the one obtained from
the original data is the p value. Significance was defined at a
p = 0.05 level (or p = 0.025 for two-sided tests). Note that in
this case we do not have a problem of multiple comparisons since
each sample is compared only once.

To assess the significance of the results for the entire set
of experiments, by considering the p values of all samples
analyzed, we employed Fisher’s (1950) method, which consists
in evaluating the odds of obtaining a set of p values by chance
in independent tests with the same null hypothesis. If the null
hypothesis is true, one should obtain a uniform distribution of p
values in a series of independent tests. By taking the logarithm of
each p value, that supposedly uniform distribution is transformed
into an exponential distribution. After scaling that value by
a factor of 2, a chi-squared distribution with two degrees of
freedom is obtained. Adding k independent chi-squared values,
each with two degrees of freedom, results in a chi-squared
distribution with 2k degrees of freedom, which can then be tested
using chi-squared statistics: χ2

2k =
∑k

i=1 ln(pi), where in our case
k is the number of samples being tested and pi is the p value of the
sample i.

Avalanche Patterns Repertoire
To evaluate how the repertoire of avalanche patterns evolve with
time we defined what we called setlists: the subset of patterns
that were recruited during 1 min windows, represented by one-
dimensional vectors containing 1 for significant families that
were present during that window and 0 for those that were not.
Setlists were defined separately for each behavioral state (WK
and SWS) and stage of the experiment (PRE, EXP and POST).

FIGURE 2 | A significant fraction of the avalanche repertoire occurs
exclusively during waking. (A) To assess the significance of the results,
significant families were subjected to the shuffling of family labels. This
procedure preserves the distribution of family sizes (see Figure 1D), the
number of avalanches in each behavioral state, and the times of occurrence of
each avalanche. (B) Fraction of avalanches occurring during waking (WK),
slow-wave sleep (SWS) and rapid-eye-movement sleep (REM) for each of the
361 significant families of one sample (ranked by WK and then SWS
prevalence). The dashed line indicates the boundary that separates
waking-specific families from other families. (C) Same as in (B), but for families
obtained from one single label-shuffled set. Note that many shuffled families
comprising multiple states fall to the left of the dashed line, indicating that the
number of the non-shuffled families that are waking-specific is larger. (D) For
each data sample (animal/brain region), the fraction of state-specific families is
compared to 1000 shuffled sets. Asterisk indicates significant results
(p = 0.05). While the state specificity of families that occur during sleep is
limited (3/9 samples in SWS and 2/9 in REM), waking-specific families occur
significantly in 8/9 samples.

These windows are not necessarily contiguous: one setlist could
be composed of the final 30 s of a SWS episode plus the first
30 s of the next SWS episode. The reason for this is that there
are not enough contiguous 1 min windows of SWS for good
statistics, and if we decrease the window length there are not
enough significant families recruited for good statistics. Even in
this case, REM was not included because its total amount did
not yield enough setlists for a relevant statistical comparison.
The number of setlists obtained for each condition is showed in
Table 1.
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FIGURE 3 | Family repertoire is behavior-dependent. (A) Setlists are
defined as binary vectors composed of 1s (or 0s) for each significant family
observed (or absent) in a given 1 min time window. (B) Mean similarity
between WK and SWS setlists (label-shuffled data shown in black). Significant
cases (p = 0.025) are indicated by asterisks on top (similar setlists) or bottom
(dissimilar setlists) of the plot. All data samples represented; symbols indicate
brain region, colors indicate condition. (C) Same as in (B), now comparing WK
setlists through different experiment stages (PRE, EXP and POST). Gray areas
indicate comparisons within the same stage.

The same measure employed to compare avalanches was
used to calculate how similar each pair of setlists are (note
that both avalanches and setlists are represented by one-
dimensional binary vectors). Label-shuffling was used to assess
the significance of the results. In the case of setlists comparison
two conditions can be either significantly similar or dissimilar (or
not significantly different).

RESULTS

Spike Avalanches in Freely-Behaving Rats
Constitute Spatiotemporal Activity
Patterns
In order to investigate whether spike avalanches are grouped into
distinct spatiotemporal patterns we represented them as binary
vectors of concatenated time bins of duration ∆t (frames) in

FIGURE 4 | Objects exploration affects repertoire growth. (A) Rate of
new significant families observed as function of time. Original data for one
sample (blue) as well as the threshold for significance obtained through 1000
label-shuffled sets (black) are shown, with PRE, EXP and POST periods
indicated. Red areas represent periods of significant generation rate
(p = 0.05). (B) Total number of families that appeared first in each experiment
stage, for each data sample (same order as in Figures 2, 3; open symbols:
original data, solid circles: label-shuffled sets). Significant cases (p = 0.025) are
indicated by asterisks on top (high rate) or bottom (low rate) of the plot.

which every slot indicates the state of one neuron (in Figure 1A
colored slots indicate spike occurrence). We defined avalanche
similarity as Beggs and Plenz (2004): the number of coincident
activations shared by two given spike avalanches (of the same
duration) for each bin, normalized by the total number of co-
activations. The left panel in Figure 1B shows a similarity matrix
for 200 spike avalanches. The right panel in Figure 1B shows
the same data after hierarchical grouping by a paired clustering
algorithm. Similar avalanches are grouped along the matrix
diagonal, indicating that in vivo spike avalanches assemble as
distinct groups whose members are more similar to each other
than to those outside the group.

Inspection reveals that some spike avalanches recorded many
minutes apart from each other in fact show great similarity
(Figure 1A). To determine the best partitioning of the avalanche
set, we calculated a contrast function that measures how distinct
the groups are from each other at every step of the algorithm.
Groups obtained at the maximal contrast (see Figure 1C) defined
families of avalanches that were stable and repeatable throughout
the 4–5 h recordings (Figure 1E). To check whether spike
avalanche families could occur by chance, we calculated the
probability (or p value) of obtaining a family with a given
size and average similarity by comparing them with families
obtained from 100 datasets with shuffled spikes (Stewart and
Plenz, 2006). We then implemented the Benjamini-Hochberg
procedure (Benjamini and Hochberg, 1995) and set the false
discovery rate as 10% in order to determine which families
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FIGURE 5 | Contact specificity is observed in avalanche patterns.
(A) Fraction of avalanches during EXP that occurred while the animal was in
contact with each object (coded by colors). Note that the original data (top)
and the label-shuffled dataset (bottom) profiles are similar, but the total
number of families differs. Dashed lines and colored arrows emphasize
families that are specific to a particular object. (B) Time occurrence of
avalanches from families which are specific to one object. In detail above, the
color-coded bar shows contact windows for each object. (C) Number of
object-specific families observed (see “Results” Section). All samples are
shown (same order as in previous figures, in colors), together with 1000
label-shuffled sets (in black). Significant cases (p = 0.025) are marked by
asterisks on top (high number) or bottom (low number) of the plot. (D) Same
as in (C), but for contact families or, in other words, families exclusively
composed of avalanches that occurred during contact with any object.

are significant (see ‘‘Materials and Methods’’ Section). In
each sample (animal/brain region), thousands of families were
detected (13,772 ± 2130), of which hundreds were significant
(599 ± 680, Table 1), with an average of ∼8 avalanches per
significant family (Figure 1D). We therefore conclude that spike
avalanches recorded in behaving rats recur over time in a highly
stereotyped manner, similarly to what was observed in reduced
preparations (Beggs and Plenz, 2004).

Spike Avalanche Patterns are Related to
Behavioral States
We investigated the behavioral specificity of such repeatable
patterns by calculating for each family the fraction of avalanches
that occurred withinWK, SWS and REM (Gervasoni et al., 2004).
A substantial proportion of significant families (∼40–90%)

were exclusively comprised of avalanches that occurred during
WK. In contrast, spike avalanches observed during SWS or
REM typically belonged to families that were also represented
during WK. Given the prevalence of WK across the sleep-
wake cycle (Gervasoni et al., 2004), one could argue that it is
not surprising that WK harbors more patterns. To control for
this imbalance, we shuffled the family labels of the avalanches
(Figure 2A).

The label-shuffling procedure preserves family sizes and the
behavioral state associated with each avalanche, but destroys
the correlation between families and behavior by randomizing
the identity of the members of each family. For example,
consider family B in Figure 2A (top). Avalanches 2 and 7,
which comprise family B, both occurred while the animal was
awake (at times t2 and t7, respectively). That makes family B
WK-specific. However, after label-shuffling, avalanche 2 was
assigned to family A, and avalanche 7 to family C. Avalanches 3
and 6 were assigned to family B, but since avalanche 6 occurred
while the animal was in REM, family B is no longer WK-
specific. On the other hand, family C became WK-specific after
label-shuffling. Note that the number of avalanches in each
family is the same before and after shuffling. Furthermore,
since only family labels are being shuffled, the number of
avalanches in each behavioral state (the avalanche identity) is also
conserved.

Therefore, this method allows asking whether there is a
correlation between avalanche patterns and behavior. As can
be seen by comparing Figure 2B (original data, one sample)
and Figure 2C (label-shuffled data, one set), this procedure led
to a smaller number of WK-specific patterns in the shuffled
dataset. For each data sample, Figure 2D shows the fraction
of significant families that were state-specific, in comparison
with 1000 label-shuffled sets. A statistically significant number
of waking-specific patterns (p = 0.05) was detected in eight
out of nine samples, which leads to a significant result for
the entire set of experiments (p < 10−5; see ‘‘Materials
and Methods’’ Section). Although SWS-specific patterns were
marginally observed (3/9 samples), the results for the entire
set of experiments were significant (p = 0.01). In contrast,
REM-specific patterns did not occur in a significant number
(2/9 significant samples). Interestingly, when we sorted the
samples by brain region, a different picture arose: for the HP,
all states provided a significant number of specific patterns
(WK: p < 10−5; SWS: p < 10−3; REM: p = 0.002), while for
the neocortical areas only waking did so (S1: p = 0.001; V1:
p< 10−5).

The hundreds of significant families found in an entire
recording compose a repertoire of avalanche types. However,
only a subset of this repertoire, hereby named setlist, can be
observed within a limited time window. Typically, ∼20% of the
families of a repertoire were observed within the setlist of any
1 min window. Let a 1 min setlist be represented by the binary
vector containing 1 for every present family and 0 otherwise
(Figure 3A). We calculated the average similarity among all
pairwise setlist combinations, classifying each setlist according
to behavioral state (WK and SWS) and stage of experiment
(PRE, EXP and POST). REM data was not included because
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its total amount did not yield enough setlists for a relevant
statistical comparison (see ‘‘Materials and Methods’’ Section).
The results were then compared to those obtained with label-
shuffled datasets.

Figure 3 shows the average similarity between setlists of
different types, with label-shuffled datasets in black. Note
that a setlist similarity value above/below the ones obtained
from the shuffled sets indicates that the setlists compared are
more/less similar than expected by chance. Significant cases
(p = 0.025) are indicated by asterisks. In Figure 3B, WK
setlists are compared to SWS ones. The significant dissimilarities
observed (5/9 samples; p < 10−5) indicate that although the
SWS repertoire of avalanche families typically overlaps with that
of WK (Figure 2B) the actual recruitment of patterns within
restricted periods of time is much more dissimilar than what
chance would predict.

Contact with Novel Objects Gives Rise to
Specific Spike Avalanche Patterns
Comparing WK repertoires from different experiment stages
reveals an influence of the exposure to novel objects. There is
a reasonable amount of homogeneity in the pattern repertoire
within PRE (3/9 significantly similar samples, bottom-left
box in Figure 3C; p = 0.002) and POST (3/9 significantly
similar samples, top-right box in Figure 3C; p < 10−3).
However, PRE and POST setlists tend to be dissimilar (3/9
significantly dissimilar samples, bottom-right box in Figure 3C;
p < 10−3), which suggests that EXP changes the regime
of avalanche repertoires. Moreover, PRE/EXP and EXP/POST
setlist matches are less similar than expected by chance
(4/9 and 3/9 significantly dissimilar samples, respectively;
p < 10−5, both cases), raising the question: is there an
exclusive set of patterns being recruited during objects
exploration?

To tackle this issue, we assessed the effect of novel experience
on the rate of emergence of new avalanche patterns. The
avalanche repertoire in a given data sample grows at a highly
variable rate (Figure 4A). When the objects were presented
for free exploration by the animal, the rate of emergence of
new patterns was affected: significantly more patterns were
generated during EXP than was expected by chance. If avalanche
patterns were uncorrelated to novel objects exploration, a lower
pattern generation rate during EXP should have been observed
(Figure 4A) for most data samples (6/9 samples with significantly
higher rate during EXP, Figure 4B; p < 10−5). Furthermore, a
higher rate was expected during PRE (6/9 samples with lower
rate; p < 10−5), and although the results seem confusing for
POST (2/9 samples with significantly higher and lower rate) it
becomes once again clear after the brain regions are separated
for the analyses of significance: the pattern generation rate in
HP was significantly higher than expected by chance (p< 10−3),
while in V1 it was significantly lower than expected by chance
(p = 0.02). The results for S1 were not significant either
way.

In order to investigate whether the new families that emerge
during EXP specifically relate to individual objects, a mix of

objects, or to no objects at all, we defined two types of avalanche
families: (1) contact families are those whose members occurred
while the animal was in contact with any object (Figure 5A);
and (2) object-specific families are the ones whose members
occurred while the animal was in contact with a given object
(families represented by one color only in Figure 5A). Given
the short windows of contact with the objects (Figure 5B, top)
and the fact that they were novel to the animals, many of
these object-related families may not have had enough time
to consolidate into patterns. For that reason, we considered
all families observed (including non-significant ones) for this
analysis.

The times of occurrence of avalanches from object-specific
families are shown in Figure 5B. Note that although the animal
spends considerable EXP time exploring the four objects, very
few object-specific families are observed with the exception of
food, to which the animals typically dedicated more attention. In
order to discover whether these few object-specific families can
be expected by chance, once again we used 1000 label-shuffled
datasets. Figure 5C shows that the number of ball-, brush-
and urchin-specific families observed were not significantly high
(2 significant cases in 27 possible). In fact, both neocortical areas
recorded presented fewer object-specific families than expected
by chance (S1: pball = 0.007, pbrush < 10−3, purchin < 10−3; V1:
pball = 0.02, pbrush = 0.004, purchin = 0.02). The HP, however,
displayed a significantly high number of urchin-specific families
(p = 0.008), and although the number for the other two objects
was not significant, they followed the same trend (pball = 0.11 and
pbrush = 0.15). A significant number of food-specific families was
observed for all areas (6/9 significant samples, p< 10−5).

Moreover, contact families, which indicate avalanche families
being shared by more than one object, are present in a significant
number for all areas (8/9 samples, Figure 5D; p < 10−5),
suggesting that the new patterns arising during EXP are
specifically related to contact with novel objects.

DISCUSSION

Previous work has shown that LFP avalanches in cortical slice
cultures form patterns that are stable for many hours (Beggs and
Plenz, 2004). These results, together with the statistical signatures
linking the absence of characteristic sizes and durations with
a putatively critical brain (Beggs and Plenz, 2003), gave rise to
the promising conjecture that neuronal avalanches could play an
important role in information processing. Although a number
of theoretical works ensued (Bertschinger and Natschläger,
2004; Haldeman and Beggs, 2005; Kinouchi and Copelli, 2006;
Rämö et al., 2007; Nykter et al., 2008), no further experimental
evidence has been provided to support that hypothesis in non-
reduced preparations. To fill this gap, we recorded spiking
activity from the HP, as well as primary somatosensory and
visual cortices of freely-behaving rats exposed to novel objects,
to assess to what extent spike avalanches are influenced by
behavior.

Using the same tools that were previously employed to assess
recursivity in spatiotemporal patterns of LFP activity in vitro
(Beggs and Plenz, 2004; Stewart and Plenz, 2006), we confirmed
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that spike avalanches in freely-behaving rats indeed recur over
time, and are grouped in statistically significant families. It is
interesting to note that we found important differences between
the brain regions recorded in this study, although the number of
samples for each area was limited. We found on average 1105
significant families in HP, 152 in S1 (with 2 out of 4 samples
contributing no significant families) and 541 in V1 (with 2
out of 4 samples contributing no significant families). More
importantly, specific patterns were obtained in a significant
number more often for HP than in other areas. This would be
in agreement with the hypothesis that these patterns have a role
in memory formation, since HP is more strongly associated with
it than the other areas.

While we acknowledge the substantial differences between the
in vitro LFP preparation and our experimental preparation, it is
nonetheless interesting to compare some basic numbers. With
about four times fewer avalanches analyzed (∼10,000) Beggs
and Plenz (2004) found on average 30 ± 14 significant families,
whereas we have found a number 20 times higher (599± 680). It
remains to be investigated to which extent the larger number of
families we observed results from a richer dynamical structure of
the intact brain (in contrast with a slice culture), and to which
extent it is a result of intrinsic differences between LFP and
spike recordings. It is also interesting to note that the average
size of significant families is about three times smaller in our
case (∼23 vs. ∼8), which means that in the in vitro preparation
the patterns repeat more. It is not clear whether this difference
could be explained by spatial (number of neurons, distance
between neurons) and/or temporal (total time of recording)
sampling limitations, or once again is a consequence of the
intrinsic differences between the experimental preparations. It
is important to note that none of our results depends on the
number of avalanches within a family, and therefore the small
size of the families did not have any implications for the analysis.

Previous analysis of this data has shown that the size of
spike avalanches in freely-behaving rats has remarkably similar
statistical properties across brain regions (HP, S1 and V1),
behavioral states (WK, SWS and REM) and stages of the
experiment (PRE, EXP and POST). This universal statistical
behavior holds not only for size distributions, but also for
the temporal structure of avalanche recurrence, whose interval
distributions for all possible cases could be described by a
single scaling function (Ribeiro et al., 2010). Although the
results can be slightly different for other preparations, with
small deviations among vigilance states using LFP (Priesemann
et al., 2013) or EEG (Meisel et al., 2013), the same kind of
universality was observed in other studies in the context of
spike avalanches (Friedman et al., 2012; Priesemann et al.,
2014).

Despite following the same dynamical rules, what we have
shown here is that the identities of the avalanches giving rise
to that universality are anything but universal, with important
differences among behavioral states. For instance, a significant
number of avalanche patterns are specific to WK, whereas
avalanches occurring during sleep states typically also occur
during WK, although sleep-specific patterns did occur in a
significant number in the HP. The lower number of significant

cases observed within the sleep states may be explained by the
lower amount of time spent in these states, or perhaps this
is indeed an intrinsic difference between waking and sleep for
the neocortical areas. In any case, the large amount of sleep-
state avalanches sharing families with waking avalanches can be
interpreted as evidence of reverberation, during sleep, of a subset
of the avalanches that occur during WK (Pavlides and Winson,
1989; Wilson and McNaughton, 1994; Ribeiro et al., 2004).
This also suggests that, while the rules that govern recruitment
of avalanches during sleep preserve most of their statistical
properties observed during waking, there should be also some
reorganization of these rules to account for the differences in
the composition of the avalanche repertoire recruited. The stark
differences in neuromodulatory milieu across the sleep-wake
cycle (Gottesmann, 2002; Luppi and Fort, 2011) most likely
account for such reorganization.

The repertoire of avalanche patterns is homogeneous before
novel experience, but changes significantly once novel objects are
presented to the rats. Furthermore, the rate at which new patterns
are generated during object exposure is significantly higher than
what would be expected if avalanches did not contribute to
information processing. Moreover, we found evidence of object
encoding by shared avalanche patterns.

It is important to assess to which extent the results obtained
can be explained by changes in firing rates. Not only those are
higher during WK than in the sleep states, but also they are
significantly increased when the novel objects are introduced.
This non-stationarity could, in principle, lead to different activity
patterns, possibly explaining the significant differences found
between WK and SWS families or the high pattern generation
rate during EXP. A generalized increase in firing rate can affect
avalanches in three ways: (1) making them larger; (2) making
them longer; (3) making them occur more often. The first two
are related to size and duration distributions, respectively. The
third is related to the waiting time distribution. The method
employed to determine the significance of our results, i.e.,
the label-shuffling procedure, conserves the duration of the
avalanches, as well as their rate of occurrence, but shuffles sizes
in a non-trivial way. However, the cross-correlation between
the firing rate and the family generation time series is quite
weak (0.17 ± 0.12, averaged across all samples). Moreover, the
original and shuffled pattern generation time series are strongly
correlated (0.89 ± 0.15). Taken together, those results suggest
that only a small fraction of the results can be explained by
changes in firing rate, and most of those changes are already
captured by our shuffling procedure.

The lack of object specificity in S1 and V1, with exception of
food (to which the animals dedicated considerably more time), is
perhaps not surprising. Instead of encoding specific objects, the
avalanche patterns in those areas could be representing features
of the objects. This hypothesis is corroborated by the fact that
most samples showed a significant number of patterns shared
between the different objects. This is also compatible with food
being the exception since it is the only object associated with
a reward. If such is indeed the case, one could expect that a
new object introduced to the animal could be represented by a
set of existing patterns related to features that familiar objects
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share with the new one. Another possible explanation for this
lack of specificity may be the very fine temporal scale (up to
hundreds of milliseconds) of the avalanches. Vasconcelos et al.
(2011) showed that decoding of specific objects is achieved
with the same dataset for a much different time scale, one
order of magnitude higher. Most likely, avalanches comprise
mixtures of underlying assemblies of synchronized neurons
(Hebb, 1949) at an even finer time scale (Plenz and Thiagarajan,
2007). Our results are compatible with the notion that the
representation of specific objects is not likely to be found at
the temporal scale of avalanches, but rather at the scale of their
sequences.

In the HP, on the other hand, there is strong evidence in
the opposite direction: we found patterns that occur specifically
during the contact with one object. It remains to be investigated
whether those patterns would resurface in subsequent contacts
with now familiar objects. The results so far suggest that those
avalanches could represent a substrate of the memory of the
objects.
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