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Abstract: In this paper, a theoretical simulation based on a finite-difference time-domain method
(FDTD) shows that the solar absorber can reach ultra-broadband and high-efficiency by refractory
metals titanium (Ti) and titanium nitride (TiN). In the absorption spectrum of double-size cross-shaped
absorber, the absorption bandwidth of more than 90% is 1182 nm (415.648–1597.39 nm). Through
the analysis of the field distribution, we know the physical mechanism is the combined action of
propagating plasmon resonance and local surface plasmon resonance. After that, the paper has a
discussion about the influence of different structure parameters, polarization angle and angle of
incident light on the absorptivity of the absorber. At last, the absorption spectrum of the absorber
under the standard spectrum of solar radiance Air Mass 1.5 (AM1.5) is studied. The absorber we
proposed can be used in solar energy absorber, thermal photovoltaics, hot-electron devices and so on.

Keywords: solar energy absorber; refractory metal; propagating plasmon resonance; broadband
absorption; FDTD

1. Introduction

Electromagnetic metamaterials, a kind of composite material, is composed of the periodic
arrangement of structural elements designed and manufactured manually. Since the electromagnetic
metamaterials absorber can effectively absorb the light energy, and convert it into heat energy or
other forms of energy, which has attracted great attention of scientists. Since Landy firstly proposed a
narrow band perfect absorber, which was based on a metal-insulator-metal (MIM) in 2008 [1]. After
that, more and more absorbers with high efficiency are proposed [2,3]. To date, there are many
methods such as photovoltaic, solar cells, photothermal and hot spot generators can convert solar
energy to other energy and application forms [4–10]. Hence, it is very important to utilize solar energy
effectively. In subsequent studies, the metamaterials based on MIM are always designed to achieve
the goal of single-band or multiband absorption [11–15]. However, in recent years, more and more
researchers keep fixating on how to realize broadband absorption [16–19]. At present, some ways have
been proposed and proved that they can be used to broaden the spectrum of the absorber by metal
nanostructure. One of more classical methods is introducing two or more different nanoresonators
into one unit of metamaterial at the same time [20–25]. The reason why it can broaden the absorption
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spectrum of the whole structure is that these different resonators are able to provide absorption peak at
a different frequency. Another popular one is to stack metal-insular films to achieve broadband [26–29].

Compared with noble metals, refractory metals are more suitable for designing broadband
absorption absorbers [30–33]. The reasons are listed in the following: Firstly, the reserves of refractory
metals are larger than noble metals, and the price is more favorable than noble metals. Secondly,
both noble and refractory metals have complex permittivity. In addition, their real parts are negative,
which indicates they have the ability to maintain surface plasmon resonance (SPR). As we all know,
the imaginary part of permittivity of metal determines the loss of light. That is to say, the larger the
imaginary part of permittivity is, the greater the loss of light is. However, noble metals just can arouse
very narrow absorption peaks owing to its small imaginary part of permittivity [34]. On the contrary,
refractory metals can cause higher light absorption within broadband because of its large imaginary
part of permittivity [35–37]. Thirdly, the melting point of refractory metal is high, which makes it
withstand the high temperature produced by the absorber when it works. Since under the irradiation
of strong incident light, the temperature of the absorber will be so high that the metal with lower
melting point is easy to melt or even volatilize.

In our work, we choose refractory metal titanium (Ti) and titanium nitride (TiN) as metal materials
of the absorber to make its plasma response be used better. In addition, we use SiO2 as the insulator of
absorber. In addition, the method we choose is to introduce two or more different nanoresonators into
one unit of metamaterial at the same time. The absorber we proposed can realize that the absorption is
more than 90% in a spectrum of approximately 1182 nm wide. Besides, its supreme absorption is about
96%. In order to understand the physical mechanism, we simulate the electric field and magnetic field
distributions. Then we study the effects of structure parameters, incident light angle and polarization
angle on the absorber. Finally, we discuss the absorption effect of the absorber under the standard
spectrum of solar radiance Air Mass 1.5 (AM1.5).

2. Structure Design and Numerical Model

Figure 1 shows the structure of the absorber we designed. The bottom metal is Ti. The insulator
material in the middle is SiO2 (refractive index is 1.45) [38,39]. The top was composed of two
cross-shaped nanostructures with different sizes. The cross-shaped material consisted of a layer of TiN
and a layer of TiN. Then we defined the long and short axis of the big and small cross as L1, L2, W1 and
W2, separately. Besides, the thickness of each layer of material from top to bottom was set to t1 (TiN),
t2 (Ti), t3 (SiO2) and t4 (Ti). Additionally, the units of the absorber were arranged periodically with a
period P. Later we named this absorber as a double-size cross-shaped absorber. The research method
in this paper was the finite difference time domain (FDTD) [40,41]. Then we used the software FDTD
Solutions (Lumerical Inc., Vancouver, BC, Canada) to model and simulate. The boundary conditions
in the x and y directions of the structure were set to periodic boundary conditions. Additionally, the
perfect matching layer is in the z direction. In addition, we set the mesh accuracy to 40 nm. This
value can ensure that the calculated results were convergent and reliable. The incident light was set
as a plane wave along the z direction. Moreover, the frequency-domain field and power monitors
were used to collect the reflected and transmitted waves. Then we could get the reflection R from the
monitor directly above the absorber and the transmission T from another monitor directly below the
absorber. Besides, the absorption A would be obtained by the formula A = 1 − R − T [42–46]. What is
more, we calculated the electric and magnetic field distributions by the frequency-domain field profile
monitor. In this paper, we only considered transverse magnetic wave (TM wave). The permittivity of
Ti and TiN were obtained from Palik’s experimental data [47]. In the experiment, the Si substrate was
used to support the whole absorber. First of all, the Si substrate could be cleaned by ultrasonic with
acetone and deionized water. After that, the Ti film of 190 nm, SiO2 film of 70 nm, Ti film of 20 nm and
TiN film of 20 nm were respectively plated on the Si surface through magnetron sputtering. At last, the
cross shape could be gained by standard photolithography [48].
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the absorption bandwidth of more than 90% was 1182 nm. When the wavelength was 1276.83 nm, 
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Figure 1. Three-dimensional stereogram of the double-size cross absorber.

3. Simulations Results and Discussions

Firstly, by exploring several parameters of the double-size cross-shaped absorber, we obtained a
set of parameters. This could make the absorber achieve that its absorption was more than 90% in
nearly an 1182 nm wide spectrum. This set of parameters was L1 = 270 nm, W1 = 100 nm, L2 = 180 nm,
W2 = 80 nm, t1 = 20 nm, t2 = 20 nm, t3 = 70 nm, t4 = 190 nm and P = 400 nm. Among them, the bottom
Ti was thick enough to prevent light from passing through the absorber. As shown in Figure 2, we
could see the absorption, reflectivity and transmittance spectra of the absorber under these structural
parameters. Through formula A = 1 − R − T, we would obtain absorption A. The transmission of the
absorber is almost zero because the transmission of light was hindered by the substrate Ti. Lower
reflection and almost zero transmission lead to higher absorptivity. From 415.648 to 1597.39 nm in
the spectrum, the absorptivity of the absorber was more than 90%. That is, the absorption bandwidth
of more than 90% was 1182 nm. When the wavelength was 1276.83 nm, the absorption rate reached
the highest, which was about 96%. In Table 1, we cited some examples of broadband high absorption
using refractory metals in the past [49–53]. By comparison, we could conclude that the absorption
effect of our absorber was better.
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Table 1. Comparison between the different absorber designs proposed in previous studies [49–53].

Reference Metallic Materials Metal Patterning Bandwidth with Absorptivity
Greater than 90%

[49] Cr Closed-ring 660 nm

[50] Cr Without 1000 nm

[51] TiN Nanoellipsoid 400 nm

[52] Ti Square 712 nm

[53] W Meander-ring 459.22 nm

Present Ti, TiN Double-cross 1182 nm

Then we simulated the absorption of two single-size cross-shaped absorbers, which is shown in
Figure 3. The black line displays the absorption of the small cross with a long axis of 180 nm and a
short axis of 80 nm. Additionally, the red line displays the absorption of the big cross with a long
axis of 270 nm and a short axis of 100 nm. The inserts are three-dimensional image of two absorbers,
respectively. From Figure 3, we can see that the absorption of big cross was more than 90% in the
range of 500 nm. In addition, for the small cross, the absorption of more than 90% was concentrated in
the short-wave band with a wave width of 850 nm. Here, it was easy to conclude that a single-size
cross-shaped absorber could not achieve good results. However, we could broaden the absorption
band by introducing two cross-shaped resonators with different sizes in the same cell. Next, we will
discuss the physical mechanism behind it.
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Figure 3. The absorption of two single-size cross-shaped absorbers and the inserts are three-dimensional
image of two absorbers.

In order to comprehend the physical mechanisms of the above two single-size cross-shaped
absorbers, we calculated the electric and magnetic field distributions of them in λ1, λ2, λ3 and λ4,
separately. Here, λ1 = 512.864 nm, λ2 = 911.585 nm, λ3 = 463.326 nm and λ4 = 1708.57 nm. Figure 4a
is the electric field distribution of the small cross-shaped absorber. It can be seen that the electric
field was localized at both ends of the horizontal axis and on both sides of the vertical axis. From
Figure 4b, it is clear that the magnetic field was mainly distributed in the SiO2 buffer layer. These
electric and magnetic field distributions indicate the existence of propagated plasmon resonance of
the cross-shaped absorber. Propagated plasma resonance is generated by a lattice resonance, which
is excited by periodic arrays [54]. At λ2, the electric field was strongly confined to both ends of the
horizontal axis of the small cross-shaped absorber, which can be seen from Figure 4c. What is more,
Figure 4d shows that the magnetic field was mainly confined between the cross-shaped Ti resonator
and the substrate Ti. It also proves the existence of the local surface plasmon resonance excited by
the cross resonator. Thus, the existence of the local surface plasmon resonance and plasmonic lattice
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resonance are the reasons for the broadband absorption of the small cross-shaped absorber [54]. The
electric and magnetic field distribution of the big cross-shaped absorber at λ3 and λ4 are displayed
in Figure 4e–h. Similarly, the cohesion of the local surface plasmon resonance and plasmonic lattice
resonance caused two absorption peaks of the big cross-shaped absorber. The plasmon resonance
stimulated by a cross resonator is closely related to the size of the resonator [55,56]. Therefore, the
absorption spectra of these two cross-shaped absorbers with different sizes were different.
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Figure 4. (a–d) are the distribution of electric fields (Ex) and magnetic fields (Hy) of the small
cross-shaped absorber at λ1 and λ2. (e–h) are the distribution of electric fields (Ex) and magnetic fields
(Hy) of the big cross-shaped absorber at λ3 and λ4.

Then we show the electric and magnetic field distributions of the double-size cross-shaped
absorber at 492.11 nm, 697.78 nm and 1276.83 nm in Figure 5. This set of parameters was L1 = 270 nm,
W1 = 100 nm, L2 = 180 nm, W2 = 80 nm, t1 = 20 nm, t2 = 20 nm, t3 =7 0 nm, t4 = 190 nm and P = 400 nm.
When the resonant wavelength is 491.372 nm, Figure 5a,d are the distributions of electric and magnetic
field, separately. We can see clearly that the electric field was mainly distributed at the top corner
of the cross. In addition, the magnetic field was mainly confined to the SiO2. In addition, part of
the magnetic field was confined to the TiN because the material itself absorbs light [57]. These field
distributions in Figure 5 indicate the existence of propagated plasmon resonance and local surface
plasmon resonance. Hence, we could say, local surface plasmon resonance and propagating plasmon
resonance stimulated by cross-shaped resonators were the main reasons for the wide absorption band
of double-size cross-shaped optical absorbers.
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Figure 5. The electric field (Ex) and magnetic field (Hy) distributions of the double-size cross-shaped
absorber at 492.11 nm (a,d), 697.78 nm (b,e) and 1276.83 nm (c,f), respectively.

Moreover, we calculated the absorption of a single layer of metal (one layer of Ti or one layer
of TiN) on SiO2, which are shown in Figure 6. Additionally, the insertion diagrams are the electric
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field distributions at the absorption peaks of the absorbers. This set of parameters was L1 = 270 nm,
W1 = 100 nm, L2 = 180 nm, W2 = 80 nm, t1 = 20 nm, t2 = 20 nm, t3 = 70 nm, t4 = 190 nm and P = 400 nm.
In Figure 6a, it is the absorption spectrum of the absorber with a single layer Ti on SiO2. Its absorption
bandwidth of more than 90% was 661nm. There were two peaks in a short wavelength. At the first
absorption peak (λ = 510.384 nm), the electric field was distributed at the top of the cross and at both
ends of the cross, suggesting that local surface plasmons were responsible for the high absorption rate.
At the second peak (λ = 771.613 nm), we could also see that the electric field was confined to the both
ends of the cross. Figure 6b is the absorption spectrum of the absorber with a single layer TiN on SiO2.
Its absorption bandwidth of more than 90% was 322 nm. In addition, the absorption peak appeared at
510.384 nm. Through Figure 6, we can know that when there was only one layer of metal Ti or TiN
on the SiO2, the broadband and high absorption effect of the absorber was not as good as shown in
Figure 2.
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their electric field distributions (Ex) at absorption peaks.

What is more, we discussed the absorption of the double-size cross-shaped absorber with different
structural parameters in Figure 7. Here we only changed L1, L2, W1 and W2 while with t1 = 20 nm,
t2 = 20 nm, t3 = 70 nm, t4 = 190 nm and P = 400 nm. When the length of the long axis L1 of the big
cross resonator varies from 240 to 300 nm at intervals of 10 nm, its change of absorption is shown in
Figure 7a. In addition, other parameters were set to W1 = 100 nm, L2 = 180 nm and W2 = 80 nm. As
L1 = 240 nm, the two absorption peaks reached the maximum. With the increase of L1, the peak at a
short wavelength dropped from 96.5% to 93.3%. Additionally, the peak at long wavelength fell by
5.5% (97.6–92.1%). In Figure 7b, we tuned L2 from 160 to 220 nm with L1 = 270 nm, W1 = 100 nm
and W2 = 80 nm. The peak at short wavelength changed from 95.4% to 93.7%. In addition, the peak
at a long wavelength had little change. With L1 = 270 nm, L2 = 180 nm and W2 = 80 nm, Figure 7c
shows the peak at a short wavelength reduced from 98.6% to 93.5% and the peak at a long wavelength
fluctuated between 95.1% and 97.7% as W1 increased from 60 to 120 nm. Last in Figure 7d, we adjusted
W2 from 60 to 120nm with L1 = 270 nm, L2 = 180 nm and W1 = 100 nm. It can be seen that the
peak at a short wavelength descended from 96.7% to 93.6% while the peak at a long wavelength had
ascended by 1% (94.6–95.6%). These phenomena indicate that the plasmon resonance between the
cross-shaped resonators was weakened. Thus, we could adjust the absorption spectrum by changing
these parameters.
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In addition, we studied the effects of the different polarization angle and incident angle on the
double-size cross-shaped absorber in Figure 8. The set of parameters was L1 = 270 nm, W1 = 100 nm,
L2 = 180 nm, W2 = 80 nm, t1 = 20 nm, t2 = 20 nm, t3 = 70 nm, t4 = 190 nm and P = 400 nm. We can
see from Figure 8a that the absorber still kept the same absorption spectrum when the polarization
angle rose from 0 (the direction of electric field along x axis) to 90◦ (the direction of electric field
along x axis). The reason for this phenomenon is the symmetry of the unit of the absorber. Figure 8b
shows how the incidence influences the absorption under TM polarization. It can be seen that the
absorption band was broadening and the peaks were increasing with an additive incident angle, which
was caused by the effective coupling between the oblique incidence and cross-shaped resonators.
Consequently, the double-size cross-shaped absorber will maintain broadband and efficient absorption
in the environment of variable polarization and incident angles.
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At the last, we learnt the absorption effect of the absorber under the standard spectrum of solar
radiance AM1.5. As is shown in Figure 9a, the green, black and red line are the absorber’s absorption
between 280 and 4000 nm, the standard spectrum of solar radiance AM1.5 and the absorption spectrum
of absorber under AM1.5, respectively [58–61]. It is clearly that the absorber had a high absorptivity in
the band where the solar spectrum energy was concentrated, so its absorption spectrum under AM1.5
had a high fitting degree with AM1.5. For the sake of knowing more clearly the energy absorbed by the
absorber in AM1.5, we show the energy that absorber absorbed (red part) and missed (grey part) under
the AM1.5. Therefore, there is still a part of the energy that cannot be absorbed by the double-size
cross-shaped absorber and lost.
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4. Conclusions

In summary, we proposed a double-size cross-shaped absorber based on refractory metals Ti and
TiN. Through adjusting several parameters, the absorber achieved that its absorption was more than
90% in a nearly 1182 nm wide spectrum. Then we obtained the main reason of its high broadband
absorption through the analysis of the field distribution. It is the combined action of propagating
plasmon resonance and local surface plasmon resonance. Moreover, we learnt a method of adjusting
absorption spectra by changing structural parameters. What is more, the absorber was able to maintain
broadband and efficient absorption in the environment of varying polarization and incident angles.
In the end, we found that the absorber could absorb most of the solar energy, even if some of it was
lost. Hence, the double-size cross-shaped absorber can be applied to solar energy absorber, thermal
photovoltaics, hot-electron devices and so on.
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