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The purpose of this study is to assess the feasibility of astaxanthin-rich Oedocladium
carolinianum as an immunostimulant in the diet for Trachinotus ovatus. Three
experimental diets containing 0% (OC0), 1% (OC1), and 5% (OC5) O. carolinianum
powder were formulated for 6-week feeding trials. The results indicated that the OC5 diet
boosted the growth performance through decreasing the feed conversion ratio and
increasing digestive enzyme activities and intestinal villus length. Meanwhile, fish fed with
the OC5 diet promoted antioxidant ability via stimulating the Nrf2-ARE signal pathway and
enhancing antioxidant enzyme activities. Furthermore, the OC5 diet exerted
hepatoprotective effects by suppressing the lipid deposition and inflammation response
and enhancing the transport capacity of cholesterol. Besides, the OC5 diet improved the
non-specific immunity by activating the lysozyme and complement system and increasing
the nitric oxide content and total nitric oxide synthase activity. Dietary O. carolinianum
supplementation promoted the deposition of astaxanthin in the whole body. Therefore, a
diet supplemented with 5% O. carolinianum is recommended to boost the growth,
antioxidant capacity, immune response, and flesh quality of T. ovatus.

Keywords: Trachinotus ovatus, Oedocladium carolinanum, antioxidant status, growth performance,
immunity, histomorphology
INTRODUCTION

Astaxanthin, a xanthophyll carotenoid with superior antioxidative property, has been found in
aquatic animals (lobster, crab, shrimp, fish), yeast Phaffia rhodozyma, bacterium Paracoccus
carotinifaciens, and some microalgae (Haematococcus pluvialis, Chromochloris zofingiensis
(former name: Chlorella zofingiensis), Scenedesmus obliquus) (1, 2). The antioxidant activity of
org July 2022 | Volume 13 | Article 9409291

https://www.frontiersin.org/articles/10.3389/fimmu.2022.940929/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.940929/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.940929/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.940929/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.940929/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.940929/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:tzhangcw@jnu.edu.cn
mailto:niuj3@mail.sysu.edu.cn
mailto:gzniujin2003@163.com
https://doi.org/10.3389/fimmu.2022.940929
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.940929
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.940929&domain=pdf&date_stamp=2022-07-04


Zhao et al. Dietary Oedocladium carolinanum Beneficial to T. ovatus
astaxanthin was significantly stronger than that of zeaxanthin,
lutein, lycopene, canthaxanthin, b-carotene, and a-tocopherol
(3). Astaxanthin with its anti-inflammatory, antioxidative,
antidiabetic, anticancer, antiaging, and immunomodulation
effects has been widely used in the healthcare products, foods,
feeds, pharmaceuticals, and cosmetics (4, 5). Over the past
decade, astaxanthin has also attracted great interest as a novel
aquafeed additive. Dietary astaxanthin or astaxanthin-rich
microalgae supplementation had positive effects on weight
gain, antioxidant capacity, pigmentation, stress resistance, and
immune regulation of aquatic animals (6–9). The application of
astaxanthin in aquatic feed is considered to be a feasible pathway
for the sustainable development of aquaculture, since it can
reduce the use of antibiotics.

Up to now, commercial astaxanthin mainly comes from P.
rhodozyma, H. pluvialis, and chemical synthesis. Synthetic
astaxanthin dominates the market with its cost-effective
advantages, covering 95% of the global astaxanthin market (10).
However, astaxanthin from H. pluvialis is 50 times and 20 times
stronger than synthetic astaxanthin in singlet oxygen quenching
and free radical elimination (11). Besides, Su etal. (12) suggested
that H. pluvialis powder could be better to improve the
astaxanthin accumulation and nutritive quality of Eriocheir
sinensis than synthetic astaxanthin. Similarly, dietary H.
pluvialis supplementation can improve the growth and
antioxidant capacity of Pseudosciaena crocea more than
synthetic astaxanthin (9). The different biological efficacy of
synthetic astaxanthin and astaxanthin from H. pluvialis is
mainly due to the difference in existing form and molecular
structure. Firstly, astaxanthin from H. pluvialis is a mostly
esterified form while synthetic astaxanthin is an unesterified
form (5). The stability and bioavailability of esterified
astaxanthin are better than those of unesterified astaxanthin.
Secondly, the primary stereoisomer of astaxanthin from H.
pluvialis is (3S,3′S), whereas synthetic astaxanthin comprises
three stereoisomers, namely, (3S,3′S), (3R,3′S), and (3R,3′R), in
a ratio of 1:2:1 (11, 12). Astaxanthin in the form of (3S,3′S)
showed higher antioxidant and antiaging activities than that in
the form of (3R,3′R) and (3R,3′S) in vivo and in vitro (13).
Therefore, the dosage level for synthetic astaxanthin is greater
than that for astaxanthin from H. pluvialis in order to achieve a
similar antioxidant activity. In general, as an aquafeed additive,
astaxanthin from H. pluvialis has advantages over synthetic
astaxanthin. In practical application, it is a better choice to use
astaxanthin-rich H. pluvialis powder as an aquafeed additive due
to the high cost of astaxanthin extraction from H. pluvialis.
However, as a unicellular microalga, H. pluvialis is susceptible
to microbial contamination during the cultivation process,
resulting in a reduction in biomass yield or even a complete
loss of biomass yield (14). Additionally, harvesting and
dewatering of the H. pluvialis cells is expensive and requires the
use of centrifuges or plate-and-frame filter press (4). Therefore,
this largely limits the application scale of H. pluvialis powder in
aquafeed due to the high production cost and sales price.

Oedocladium carolinianum is a filamentous greenmicroalga that
can produce esterified astaxanthin under stress conditions (4, 15).
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We previously reported that O. carolinianum can produce
1.62% (dry weight) astaxanthin under stress conditions (16).
Wang etal. (4) suggested that O. carolinianum produced up to
3.91% (dry weight) astaxanthin under nitrogen starvation and
salinity stress. More importantly, filamentous microalgae can
be harvested by gravity sedimentation and filtration and are not
easily preyed by protozoa and bacterial contamination during
the cultivation process. These advantages of filamentous
microalgae during cultivation and harvesting are important
for reducing the production cost of microalgae. Therefore, O.
carolinianum is a promising microalga for a sustainable large-
scale production of astaxanthin. Previous studies reported that
dietary O. carolinianum supplementation significantly
improved the antioxidant capacity and flesh quality of
Carassius auratus gibelio (15). Therefore, O. carolinianum has
the potential to replace H. pluvialis as another important source
of astaxanthin in aquafeed.

Golden pompano (Trachinotus ovatus) is a commercially
important fish widely distributed in tropical and subtropical areas,
such as China, Japan, Australia, and Southeast Asia (17). In recent
years, sea cage culture of T. ovatus has been getting hotter in
southern China, Malaysia, and Singapore because of its fast growth,
delicious meat, high nutrition value, and increasingmarket demand.
However, owing to intensive aquaculture, water environment
pollution, and extreme weather, the immunity and disease
resistance of T. ovatus cultured in sea cages are declining and
thus are more susceptible to various environmental stressors and
infectious diseases. The chemical drugs used against such infectious
diseases have not produced satisfactory effects, and even threatened
food safety. Therefore, dietary immunostimulant supplementation
to increase the immunity and disease resistance is the key strategy
for the successful cultivation of T. ovatus.

The present study evaluated the feasibility of astaxanthin-rich
O. carolinianum powder as an immunostimulant in the diet for
T. ovatus. Accordingly, a nutritional feeding test was performed
to assess the effects of dietary O. carolinianum powder on the
growth, antioxidant status, immune response, hepatic health,
and flesh quality of T. ovatus. The results of the study can enrich
the types of application of microalgae and the source of
astaxanthin in aquafeed.
MATERIALS AND METHODS

Microalgae Culture and
Diet Preparation
The stock culture of O. carolinianum was carried out in a flat
glass photobioreactor (light path: 6 cm; length: 240 cm; height:
120 cm) with a two-step batch culture strategy. In the stage of
green cell vegetative culture, O. carolinianum cultures were
grown in mBBM medium (18) containing 9.0 mM NaNO3 for
12 days. The flat glass photobioreactor was maintained at 25°C
with continuous unilateral lighting at 100 mmol photons m-2 s-1

and aerated with 1.0% CO2 (v/v). Then, O. carolinianum was
transferred into nitrogen-free mBBM medium for 12-day
astaxanthin accumulation cultivation (red cell stage).
July 2022 | Volume 13 | Article 940929
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Continuous bilateral illumination of 300 mmol photons m-2 s-1

was maintained during the red cell stage. Other culture
conditions were consistent with the green cell stage. At the end
of culture, microalgal cells were harvested by gauze filtration and
then freeze-dried by a freezing dryer to obtain microalgal
powder. The O. carolinianum powder contained 0.62%
astaxanthin, 5.33% linoleic acid, and 3.79% linolenic
acid (Figure 1).

Three isonitrogenous and isolipidic diets containing 0% (OC0),
1% (OC1), and 5% (OC5) O. carolinianum were formulated. The
formula and proximate composition analysis of experimental diets
is shown in Table 1. According to the procedure described by Zhao
etal. (17), experimental diets were manufactured into 1.2-mm-
diameter puffed pellets and stored at -20°C.

Fish Management
Juvenile T. ovatus were obtained from a commercial company in
Lingshui, Hainan, China. The feeding trial was conducted at
Lingshui bay (Lingshui, Hainan, China). Before the feeding trail,
T. ovatus juveniles were acclimated to the laboratory conditions
and fed two times daily with a control diet for 14 days. Then, 180
fish were selected (initial body weight 7.05 ± 0.12 g) and
randomly assigned into nine sea cages (1.5 m × 1.5 m × 2.0 m,
three cages per diet) at a density of 20 fish per cage. Fish were fed
slowly by hand to apparent satiation two times a day (08:30 and
17:30) for 42 days. Feed consumption and the number and
weight of dead fish were recorded every day. During the
feeding trial, the water temperature and salinity ranged from
28°C to 31°C and from 30 to 32 g/l, respectively. The dissolved
oxygen content was above 6 mg/l, and fish were cultured under a
natural light–dark cycle.
Frontiers in Immunology | www.frontiersin.org 3
Sampling Collection
The animal use protocol listed below has been reviewed and
approved by the Institution Animal Care and Use Committee,
Sun Yat-Sen University. At the end of the feeding trial, all fish
were fasted for 24 h and then anesthetized with 20 mg l-1 of
tricaine methanesulfonate (Sigma, St. Louis, MO, USA). All fish
in each cage were counted and individually weighed to evaluate
growth performance. Blood, from six fish per cage, were collected
from the caudal vein. Blood samples were stored overnight at 4°C
and centrifuged (4°C, 4,000 r/min, 10 min) to collect the serum.
Then, serum samples were stored at -80°C for analysis of
hematological parameters and antioxidant enzyme activities.
The liver and midgut of the aforementioned six fish were
rapidly removed and frozen in liquid nitrogen and then stored
at -80°C for analysis of digestive enzyme, antioxidant enzyme,
and gene expression, respectively. Besides, three fish in each cage
were collected and frozen in liquid nitrogen and then conserved
at -80°C for analysis of fatty acid composition and astaxanthin
content of the whole body. Finally, the liver and midgut samples,
from three fish per cage, were removed and fixed in 4%
paraformaldehyde for histological analysis.

Biochemical Analysis of Microalgae,
Experimental Diets, and Whole Body
The total lipids in the O. carolinianum powder were measured
with the gravimetric method following the procedure described
by Gao etal. (19). The fatty acid profiles of O. carolinianum
powder were determined using a gas chromatograph (6890 N
GC, Agilent Technologies, USA) according to the protocol
designed by Zhang etal. (20). The total carbohydrate of O.
carolinianum powder was quantified with the phenol-sulfuric
A

B D

C

FIGURE 1 | Cell morphology (A), green cell stage; (B), red cell stage), fatty acid profiles (C), % total fatty acids), and proximal composition (D), % dry matter) of
Oedocladium carolinianum.
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acid method following the procedure of Wang etal. (21). The
total protein of O. carolinianum powder was determined by the
Lowry method using commercial assay kits (Sangon Biotech,
Shanghai, China).

Crude protein, crude lipid, moisture and ash contents in
experimental diets were measured following the method
described by Zhao etal. (22).

The astaxanthin contents of O. carolinianum powder,
experimental diets, and whole body were measured by
spectrophotometry using the procedure described by Wang
et al. (23).

The fatty acid profiles of whole body were quantified using a
gas chromatograph (6890 N GC, Agilent Technologies, USA)
according to the method described by (24).

Histological Observation
Midgut and liver samples were fixed in 4% paraformaldehyde
and then dehydrated in a graded ethanol series (75%, 4 h; 85%,
2 h; 90%, 2 h; 95%, 1 h; 100%, 1 h) and embedded in paraffin.
Sections (5 mm thick) of the midgut and liver were obtained with
a rotary microtome and stained with hematoxylin and eosin.
Finally, the sections were observed and photographed using an
optical microscope (Leica DMLB, Germany).
Frontiers in Immunology | www.frontiersin.org 4
Enzyme Activity Assays
Themidgut and liver samples were homogenized in ice-cold normal
saline (1:10 dilution) and centrifuged at 3,000 r/min (4°C) for 20min
to obtain the supernatant. The enzyme activities in the supernatant
and serum were determined by utilizing commercial kits (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China) based on the
manufacturer’s instructions. The absorbance value was detected by
microplate spectrophotometer Epoch (BioTek, Winooski, USA).

The activities of superoxide dismutase (SOD), glutathione
peroxidase (GSH-PX), catalase (CAT), malondialdehyde (MDA)
content, and total antioxidant capacity (T-AOC) in the liver were
detected by the relevant kits (Cat. No. A001-1, A005, A007-1,
A003-1, and A015-2-1, respectively).

The activities of superoxide dismutase (SOD) and glutathione
peroxidase (GSH-PX), and malondialdehyde (MDA) content in
the serum were measured by the relevant kits (Cat. No. A001-1,
A005, and A003-1, respectively).

The activities of amylase (AMS), pepsin (PEP), and lipase
(LPS) in the midgut were determined by the relevant kits (Cat.
No. C016, A080-1-1, and A054-2, respectively).

Immune-Related Parameter Assays
Immune-related parameters in the liver and serum were assayed
using commercial kits (Nanjing Jiancheng Bioengineering
Institute, Nanjing, China) following the provided instructions,
including nitric oxide (NO) content and total nitric oxide
synthase (TNOS) activity in the liver, and lysozyme activity
and complement 4 (C4) in serum.

Serum Parameter Assays
Automatic biochemical analyzer Chemray 240 (Rayto Life
Science Co., Ltd., Shenzhen, China) and corresponding
commercial kits (Huili Biotech Co., Ltd., Changchun, China)
were used to determine the contents of triglyceride (TG), glucose
(GLU), low-density lipoprotein cholesterol (LDL-C), and high-
density lipoprotein cholesterol (HDL-C), as well as the activities
o f aspar ta te aminotrans ferase (AST) and a lan ine
aminotransferase (ALT) in the serum.

RNA Extraction and Gene
Expression Analysis
The total RNA extraction and subsequent quantitative reverse
transcription polymerase chain reaction (qRT-PCR) were
performed according to the procedures described by Zhao etal.
(17). Briefly, the total RNA of the liver in each cage was extracted
using a reagent kit (TaKaRa, Dalian, China). Agarose gel
electrophoresis at 1% and spectrophotometric analysis
(OD260/280) were used to assess the quality and quantity of
RNA. Then, the total RNA samples were diluted to the same
concentration with diethylpyrocarbonate-treated water for
normalization. Subsequently, cDNA was synthesized using a
PrimeScript RT Reagent Kit with gDNA Eraser (TaKaRa,
Dalian, China) following the manufacturer’s instructions. qRT-
PCR for the target genes was carried out using a LightCycler 480
Real-Time System (Roche Applied Science, Basel, Switzerland)
TABLE 1 | Composition and nutrient levels of the experimental diets (% dry matter).

Ingredients OC0 OC1 OC5

Fish meal1 45 45 45
Soybean meal1 16.3 16 15
Wheat flour1 20 20 20
Beer yeast1 3 3 3
Microcrystalline cellulose 4 3.7 2.4
Fish oil1 7 6.6 4.9
Soybean lecithin1 1 1 1
Ca(H2PO4)2

1 1 1 1
Vitamin premixa 1 1 1
Mineral premixb 1 1 1
Choline1 0.5 0.5 0.5
Vitamin C1 0.2 0.2 0.2
Oedocladium carolinianum 0 1 5
Total 100 100 100
Nutrient levelsc (% dry matter)
Crude lipid 12.47 12.31 11.88
Crude protein 42.02 42.27 42.56
Moisture 9.01 9.05 8.73
Ash 10.21 10.14 10.62
Astaxanthin (g kg-1 dry matter) 0 0.06 0.31
1Obtained from Kyorin Industry (Shenzhen) Co., Ltd., Wuxi, China. Fish meal, crude
protein 65.0%, crude lipid 8.9%; soybean meal, crude protein 48.5%, crude lipid 1.5%;
wheat flour, crude protein 13.8%, crude lipid 2.8%; beer yeast, crude protein 48.0%,
crude lipid 3.9%.
aVitamin premix provides the following per kg of diet: VB1 25 mg, VB2 45 mg, pyridoxine
HCl 20 mg, VB12 0.1 mg, VK3 10 mg, inositol 800 mg, pantothenic acid 60 mg, niacin acid
200 mg, folic acid 20 mg, biotin 1.20 mg, retinal acetate 32 mg, cholecalciferol 5 mg, a-
tocopherola 120 mg, ascorbic acid 2000 mg, choline chloride 2500 mg, ethoxyquin 150
mg, wheat middling 14.012 g.
bMineral premix provides the following per kg of diet: NaF 2 mg, KI 0.8 mg, CoCl2·6H2O 50
mg, CuSO4·5H2O 10 mg, FeSO4·H2O 80 mg, ZnSO4·H2O 50 mg, MnSO4·H2O 60 mg,
MgSO4·7H2O 1200 mg, Ca(H2PO4)2·H2O 3,000 mg, NaCl 100 mg, zeolite 15.447 g.
cMeasured values.
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with SYBR® Premix ExTaq™ II (TaKaRa, Dalian, China). b-
Actin was set as the housekeeping gene. All the primers for qRT-
PCR were consistent with our previous study (17); primer
sequences are presented in Supplementary Table 1. The
relative expression levels of target genes were calculated based
on the 2-DDCT method (25).

Statistical Analysis
The specific growth ratio (SGR), survival rate (SR), weight gain
rate (WGR), and feed conversion ratio (FCR) were calculated
according to the equation described by Zhao etal. (22).

The results were presented as the means ± standard error (SE)
and analyzed using SPSS 20.0 statistical software (SPSS, Chicago,
IL, USA). All data were checked for normality and homogeneity
using the Kolmogorov–Smirnov test and Levene’s test,
respectively. The differences in data were analyzed by using
one-way analysis of variance (ANOVA) followed by Tukey
test. P < 0.05 was considered to be statistically significant.
RESULTS

Biological Performance
The growth performance and feed utilization of T. ovatus fed
with experimental diets are shown in Figure 2. The final body
weight (FBW), WGR, and SGR offish fed with the OC5 diet were
significantly higher than those of fish fed with OC0 and OC1
diets (P < 0.05). Conversely, the FCR offish fed with the OC5 diet
was significantly less than that of fish fed the OC0 and OC1 diets
(P < 0.05). Besides, fish fed the OC5 diet showed the highest
Frontiers in Immunology | www.frontiersin.org 5
value of SR, which was significantly higher than that of fish fed
the OC0 diet (P < 0.05).

Fatty Acid Composition and Astaxanthin
Content of Whole Body
Fatty acid composition and astaxanthin content in the whole
body were assayed, as shown in Table 2 . The total
monounsaturated fatty acid (MUFA) concentration was the
highest in fish fed the OC5 diet and was significantly higher
than that of fish fed the OC0 diet (P < 0.05). With regard to
MUFAs, dietary O.carolinianum powder supplementation
significantly increased the oleic acid (C18:1) and eicosenoic
acid (C20:1) content (P < 0.05), while the lowest palmitoleic
acid content was observed in fish fed the OC5 diet (P < 0.05).
Conversely, the total polyunsaturated fatty acid (PUFAs) and
total n‐6 PUFA profiles were the lowest in fish fed the OC5 diet
and was significantly lower than that of fish fed the OC0 and
OC1 diets (P < 0.05). With regard to PUFAs, fish fed the OC5
diet exhibited a lower linoleic acid (C18:2n6) content and a
significantly lower one than that of fish fed the OC0 and OC1
diets (P < 0.05) . Dietary O. carol inianum powder
supplementation did not affect the total saturated fatty acid
(SFAs) and total n‐3 PUFA profiles and n‐3/n‐6 ratio (P >
0.05). Among all diet treatments, no significantly differences
were observed in the whole-body docosahexaenoic acid (EPA)
and docosahexaenoic acid (DHA) concentrations (P > 0.05).

Whole-body astaxanthin contents were 0.25 and 2.42 mg/kg
(dry weight) in fish fed the OC1 and OC5 diets, respectively.
However, whole-body astaxanthin content was not detected in
fish fed the OC0 diet.
FIGURE 2 | Effects of dietary Oedocladium carolinianum powder supplementation on growth performance and feed utilization of T. ovatus after the 42-day feeding trial.
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Morphology of Liver and Midgut and
Activities of Digestive Enzymes in
the Midgut
As shown in Figure 3A, the villus length of the midgut in fish fed
the OC5 diet was significantly higher than that of fish fed the
OC0 and OC1 diets (P < 0.05). Activities of LPS and PEP in the
midgut of fish fed the OC5 diet were significantly higher than
those of fish fed the OC0 and OC1 diets (P < 0.05) (Figure 3B).
Besides, AMS activity showed no significant difference among all
dietary treatments (P > 0.05).

No obvious histological alterations were observed in the
midgut among all diet treatments (Figure 3C).

The obvious infiltration of inflammatory cells was observed in
the liver offish fed the OC0 diet. However, the liver offish fed the
diet supplemented with O. carolinianum showed a healthy
morphology. Moreover, the number of lipid droplets in the
liver of OC5 diet treatment was less than that of other diet
treatments (Figure 3D).

Immune Biochemical Parameters
As shown in Figure 4, the NO content and TNOS activity in the
liver as well as lysozyme activity in the serum of the OC5 diet
treatment increased significantly compared to the OC0 and OC1
diet treatments (P < 0.05). Besides, the C4 content in the serum
of the OC1 and OC5 diet treatments increased significantly
compared to the OC0 diet treatment.
Frontiers in Immunology | www.frontiersin.org 6
Antioxidant-Related, Metabolism-Related,
and Immune-Related Parameters
As shown in Figure 5A, the T-AOC and CAT, GSH-PX, and
SOD activities in the liver of the OC5 diet treatment were
increased compared with the OC0 diet treatment (P < 0.05).
Conversely, the MDA content of liver in the OC5 diet treatment
was significantly lower than that in the OC0 and OC1 diet
treatments (P < 0.05). Serum GSH-PX and SOD activities in the
OC5 diet treatment were significantly higher than those in the
OC0 and OC1 diet treatments (P < 0.05) (Figure 5B). There was
no significant difference in serum MDA content among all diet
treatments (P > 0.05).

The serum TG and LDL-C contents in the OC5 diet treatment
were significantly lower than those in the OC0 and OC1 diet
treatments (P < 0.05). Conversely, the serumHDL-C content and
HDL-C/LDL-C ratio in the OC5 diet treatment were significantly
higher than those in the OC0 and OC1 diet treatments (P < 0.05).
Besides, the activities of ALT and AST in the serum were
significantly decreased in the O. carolinianum supplementation
treatments (P < 0.05) (Figure 5C).

Compared with the OC0 and OC1 diet treatments, the mRNA
transcriptional levels of glutathione reductase (GR), NF-E2-
related nuclear factor 2 (Nrf2), superoxide dismutase (Mn-
SOD), hemoxygenase-1 (HO-1), carnitine palmitoyltransferase
1 (CPT1), and peroxisome proliferator-activated receptor-alpha
(PPARa) were significantly enhanced in the OC5 diet treatment
TABLE 2 | Fatty acid composition (% total fatty acids) and astaxanthin content (mg/kg dry weight) in the whole body of Trachinotus ovatus fed with experimental diets.

OC0 OC1 OC5

Fatty acid composition (% total fatty acids)
C14:0 8.52 ± 0.17a 8.13 ± 0.22ab 7.56 ± 0.12b

C15:0 0.80 ± 0.01 0.84 ± 0.02 0.82 ± 0.02
C16:0 40.73 ± 0.01 40.28 ± 0.22 40.61 ± 0.07
C17:0 0.75 ± 0.01 0.79 ± 0.03 0.78 ± 0.02
C18:0 9.10 ± 0.13 9.39 ± 0.24 9.65 ± 0.10
C20:0 0.60 ± 0.01a 0.64 ± 0.01b 0.66 ± 0.01b

C14:1 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.01
C16:1 8.86 ± 0.14a 8.52 ± 0.14a 7.47 ± 0.06b

C18:1 22.3 ± 0.01a 22.95 ± 0.02b 24.25 ± 0.09c

C20:1 1.19 ± 0.01a 1.25 ± 0.01b 1.36 ± 0.01c

C18:2n6 2.19 ± 0.09a 2.15 ± 0.10a 1.66 ± 0.02b

C18:3n6 0.01 ± 0.00 0.01 ± 0.00 0.02 ± 0.01
C20:2n6 0.17 ± 0.02 0.16 ± 0.01 0.17 ± 0.02
C20:3n6 0.02 ± 0.01 0.05 ± 0.02 0.04 ± 0.01
C20:4n6 0.16 ± 0.01 0.16 ± 0.01 0.16 ± 0.01
C22:2n6 0.12 ± 0.02 0.11 ± 0.01 0.12 ± 0.02
C18:3n3 0.04 ± 0.01 0.04 ± 0.01 0.03 ± 0.00
C20:3n3 0.22 ± 0.00 0.20 ± 0.01 0.20 ± 0.01
C20:5n3 (EPA) 0.15 ± 0.01 0.14 ± 0.03 0.11 ± 0.03
C22:6n3 (DHA) 0.58 ± 0.03 0.53 ± 0.04 0.46 ± 0.07
Others 3.50 ± 0.06 3.68 ± 0.04 3.85 ± 0.02
SSFAs 60.49 ± 0.01 60.05 ± 0.28 60.05 ± 0.06
SMUFAs 32.39 ± 0.15a 32.75 ± 0.17ab 33.11 ± 0.04b

SPUFAs 3.63 ± 0.09a 3.52 ± 0.16a 2.98 ± 0.02b

n-6 2.66 ± 0.11a 2.62 ± 0.09a 2.16 ± 0.02b

n-3 0.98 ± 0.02 0.90 ± 0.08 0.83 ± 0.01
n-3/n-6 0.37 ± 0.02 0.35 ± 0.02 0.38 ± 0.01
Astaxanthin content (mg/kg dry weight)
Astaxanthin – 0.25 ± 0.02 2.42 ± 0.16
July 2022 | Volume 13 |
SFAs, saturated fatty acids; MUFAs, monounsaturated fatty acids; PUFAs, polyunsaturated fatty acids. Values were presented as mean ± SE (n = 3). The small letters indicated significant
differences at P < 0.05.
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FIGURE 3 | Villus length (A, mm) and digestive enzymes activities (B) in the mid gut of T. ovatus fed experimental diets, and mid-gut (C) and liver morphology (D) of
fish fed OS0 (C-1, D-1), OS1 (C-2, D-2), and OS5 (C-3, D-3) diets. LPS, lipase (U g protein-1); AMS, amylase (U mg protein-1); PEP, pepsin (U mg protein-1). The red
arrow indicated the infiltration of inflammatory cells. The black arrow indicated the lipid droplet. Values were presented as mean ± SE (n = 3). The small letters
indicated significant differences at P < 0.05. Scale bar: 100 mm.
FIGURE 4 | Immune-related parameters in the liver and serum of T. ovatus fed experimental diets. Values were presented as mean ± SE (n = 3). The small letters
indicated significant differences at P < 0.05.
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(P < 0.05). Conversely, fish fed the OC5 diet showed significantly
lower mRNA transcriptional levels of Kelch-like-ECH-associated
protein 1 (Keap1) and fatty acid synthesis (FASN) (P <
0.05) (Figure 5D).

O. carolinianum supplementation significantly down-
regulated the mRNA transcriptional levels of caspase 3 and
caspase 6 and up-regulated the mRNA transcriptional level of
complement 4 (C4) (P < 0.05). Compared with the OC0 and OC1
diet treatments, the mRNA transcriptional levels of interleukin
1b (IL-1b), interleukin 8 (IL-8), caspase 9, and heat shock protein
70 (HSP70) were significantly reduced in the OC5 diet treatment
(P < 0.05). Conversely, fish fed the OC5 diet showed significantly
higher mRNA transcriptional levels of interleukin 10 (IL-10),
transforming growth factor b1 (TGF-b1), and c-type lysozyme
(C-Lyz) (P < 0.05) (Figure 5E).
DISCUSSION

Astaxanthin could increase nutrient utilization by regulating the
intermediate metabolic process and ultimately result in
improved growth performance of fish (26). Previous studies
have reported that dietary astaxanthin or H. pluvialis powder
supplementation enhanced the growth performance in P. crocea
(9), T. ovatus (6, 27), and Astronotus ocellatus (28). Similar
results were found in the present study. T. ovatus fed the OC5
diet showed a significantly elevated growth performance (SGR
Frontiers in Immunology | www.frontiersin.org 8
and WGR) and reduced FCR. There is a close correlation
between digestive enzyme activity and feed utilization
efficiency, which can be used to evaluate the digestive and
absorptive capacities of fish (29, 30). For fish, high activities of
digestive enzyme can promote the digestion and absorption of
nutrients and ultimately improve growth performance (29, 31).
Besides, intestinal morphology is also closely related to digestion
ability. Long villus with an increased surface area is conducive to
enhance the digestion ability of the intestinal tract to nutrients,
which has a positive effect on the growth performance offish (22,
32). In the present study, the activities of LPS and PEP and the
length of villus in the midgut were increased in the OC5 diet
treatments. Therefore, dietary O. carolinianum supplementation
enhanced the growth and the feed utilization efficiency of T.
ovatus may be mainly attributed to the positive effects of
microalgal powder supplementation on villus length and
digestive enzymes activities in the midgut.

In the current study, liver morphological examination showed
pathological alterations in fish fed the OC0 diet, including obvious
infiltration of inflammatory cells and extensive lipid droplets, which
were all common lipid deposition characteristics. Fish cultured in
offshore cages are more vulnerable to various environmental
stressors (e.g., typhoons, rainstorm, hypoxia, temperature,
pollutants), which may suppress fatty acid b-oxidation and
ultimately result in lipid deposition and peroxidation in the liver
(22, 33, 34). Besides, previous studies have suggested that
hepatocyte apoptosis is an important element of liver damage and
A B

D E

C

FIGURE 5 | Antioxidant-related parameters in liver (A) or serum (B), serum biochemical parameters (C), and relative expression levels of antioxidant-related,
metabolism-related, and immune-related genes in the liver (D, E) of T. ovatus fed experimental diets. SOD, superoxide dismutase (U mg protein-1 in liver; U ml-1 in
serum); CAT, catalase (U mg protein-1); GSH-PX, glutathione peroxidase (U mg protein-1 in liver; U ml-1 in serum); T-AOC, total antioxidant capacity (mmol g protein-
1); MDA, malondialdehyde (nmol mg protein-1 in liver; nmol ml-1 in serum); TG, triglyceride (mmol L-1); GLU, glucose (mmol L-1); ALT, alanine aminotransferase (U L-1);
AST, aspartate aminotransferase (U L-1); LDL-C, low-density lipoprotein cholesterol (mmol L-1); HDL-C, high-density lipoprotein cholesterol (mmol L-1). Mn-SOD,
manganese superoxide dismutase; GR, glutathione reductase; HO-1, hemeoxygenase-1; Nrf2, NF-E2-related nuclear factor 2; Keap1, Kelch-like-ECH-associated
protein 1; C-Lyz, c-type lysozyme; HSP70, heat shock protein 70; C4, complement 4; IL-1b, interleukin 1b; IL-8, interleukin 8; TGF-b1, transforming growth factor
b1; IL-10, interleukin 10; CPT1, carnitine palmitoyl transferase 1; PPARa, peroxisome proliferator-activated receptors-alpha; FASN, fatty acid synthesis. Values were
presented as mean ± SE (n = 3). The small letters indicated significant differences at P < 0.05.
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is associated with the occurrence and development of inflammatory
responses (22, 35, 36). Therefore, to further clarify the
hepatoprotective mechanism of O. carolinianum, the current
study determined the effects of O. carolinianum on the mRNA
transcriptional levels of lipid metabolism-related, inflammation-
related, and apoptosis-related genes.

PPARa is a critical transcription regulator involved in fatty acid
transport, lipoprotein hydrolysis, and peroxisomal and
mitochondrial b-oxidation (37). CPT1, located outside the
mitochondrial membrane, is the mitochondrial fatty acid
transporter involved in catalyzing fatty acid b-oxidation in
mitochondria (38). Activated PPARa enhances the expression
levels of fatty acid oxidation-related genes, such as CPT1,
lipoprotein lipase (LPL), and adipose triglyceride lipase (ATGL),
thereby suppressing lipid accumulation in the liver and decreasing
the lipid level in serum (39). FASN is a key enzyme that catalyzes
acetyl coenzyme A and malonyl coenzyme A to synthesize long-
chain fatty acids (40). In this study, fish fed the OC diet upregulated
the mRNA transcriptional levels of PPARa and CPT1 and
downregulated the mRNA transcriptional level of FASN in the
liver. The results demonstrated that 5% O. carolinianum exerted
hepatoprotective effects by inhibiting lipid synthesis and promoting
lipolysis. Besides, lipid deposition is closely related to the occurrence
of inflammatory responses. Activated PPARa negatively regulates
pro-inflammatory pathways (37). Similar results were found in the
present study. Fish fed the OC5 diet showed a significantly lower
mRNA expression of pro-inflammatory cytokine genes (IL-8 and
IL-1b) and a higher expression of anti-inflammatory cytokine genes
(IL-10 and TGF-b1). O. carolinianum has an anti-inflammatory
property and potently suppresses inflammatory responses in the
liver. Apoptosis is the programmed death of cells following
inflammation, which plays an important role in regulating the
development of inflammatory response and preventing tissue and
organ damage after inflammation response. Therefore, hepatocyte
apoptosis was evaluated based on the mRNA expression level of
caspase family genes (Caspase 3, Caspase 6, Caspase 9). Caspase
activity is a critical indicator for detecting hepatocyte apoptosis of
fish (35). Caspases can be divided into upstream initiators (e.g.,
Caspase 8, Caspase 9, Caspase 10) and downstream effectors (e.g.,
Caspase 3, Caspase 6, Caspase 7) based on the molecular structure
and order in the apoptosis program (36). Caspase 9, an initiator of
apoptosis program, triggers a cascade of downstream caspase
activation (e.g., Caspase 3, Caspase 6) (41). In the current study,
the expression levels of Caspase 3, Caspase 6, and Caspase 9
conspicuously increased in the liver of fish fed a diet without O.
carolinianum supplementation, indicating that the apoptotic signal
of hepatocytes in the OC0 diet treatment was activated. The
activated apoptosis signal may be attributed to the occurrence of
inflammatory response in the OC0 diet treatment. Amplified
apoptotic signals help to inhibit the development of inflammation
by releasing metabolites with anti-inflammatory effects (42). The
current results suggested that the liver in the OC0 diet treatment
exhibited inflammatory symptoms and activated apoptosis signals,
which may be attributed to environmental stress. Therefore, we
believe that adding hepatoprotective ingredients to feed is essential
for maintaining the liver health of fish cultured in offshore cages.
Frontiers in Immunology | www.frontiersin.org 9
This also proved from another perspective that dietary O.
carolinianum supplementation exerted a beneficial effect on liver
health. O. carolinianum has potential as a therapeutic agent for
abnormal lipid metabolism, which exerted hepatoprotective effects
by modulating lipid metabolism and inhibiting inflammation.

The Nrf2-ARE pathway plays a significant role in protecting
cells from oxidative stress by removing reactive oxidants (43).
Under basic conditions, Nrf2 and Keap1 form an Nrf2–Keap1
complex anchored in the cytoplasm (44). Once stimulated by
stressors, the Nrf2–Keap1 complex dissociates from the
cytoplasm and allows Nrf2 to translocate into the nucleus,
where it binds to the antioxidant responsive element (ARE)
and transcriptionally activates downstream antioxidant enzyme
genes, such as GR, HO-1, andMn-SOD (43, 44). Previous studies
reported that astaxanthin exerts protection against oxidative
stress by mediating the Nrf2-ARE signaling pathway (45, 46).
In this study, the mRNA transcriptional levels of Nrf2,Mn-SOD,
HO-1, and GR were significantly upregulated and the level of
Keap1 was downregulated in the liver of fish fed the OC5 diet.
Moreover, fish fed the OC5 diet showed the highest activities of
antioxidant enzymes in the liver (SOD, CAT, GSH-PX) and
serum (SOD, GSH-PX). Similar results showed that dietary H.
pluvialis or astaxanthin supplementation enhanced the activities
of antioxidant enzymes in fish (47, 48). Xie etal. (27) suggested
that diet-supplemented H. pluvialis or astaxanthin improved the
antioxidant capacity of T. ovatus by activating the Nrf2-ARE
signal pathway. Similarly, our previous study found that a diet
supplemented with H. pluvialis significantly increased the
expression levels of Nrf2-ARE pathway-related genes and
activities of the antioxidant enzyme in T. ovatus (6). T-AOC is
usually used to reflect the total antioxidant capacity of fish (49).
MDA is a critical indicator for evaluating the damage degree of
cell structure and function and the degree of lipid oxidation (50).
In the present study, T-AOC in the liver showed a conspicuous
increase in the OC5 diet treatment, whereas MDA content was
significantly decreased, indicating that a diet supplemented with
5% O. carolinianum improved the antioxidant status of the liver
of T. ovatus. The current results showed that dietary O.
carolinianum supplementation has a beneficial effect on the
antioxidant capacity of T. ovatus by mediating the Nrf2-ARE
signal pathway and elevating the activities of antioxidant
enzymes, and the above characteristics were dose-dependent.

For fish, hematological parameters are critical indicators for
evaluating the physiological and pathological changes, which are
frequently used for nutritional status assessment and disease
diagnosis (51, 52). In addition, such parameters are considered as
key evidence to evaluate whether fish health status changes after
feeding with additives under culture conditions (53). Previous
studies have reported that the activities of serum AST and ALT
are critical biomarkers for assessing liver function, and a higher
serum level of these enzymes may reflect liver damage and
hepatocyte dysfunction (47, 54). In this study, measurement of
the liver enzymatic responses showed that the activities of serum
AST and ALT significantly decreased in fish fed the
diet supplemented with O. carolinianum, which may be related
to the potential positive effect of O.carolinianum on
July 2022 | Volume 13 | Article 940929
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hepatoprotective functions of T. ovatus. Similarly, our previous
study found that dietary H. pluvialis supplementation reduced
the activities of serum AST and ALT and improved the liver
morphology of T. ovatus (6). In the OC0 diet treatment, higher
activities of serum AST and ALT may be mainly attributed to the
inflammatory symptoms of the liver based on morphological
observation. Furthermore, morphological observations also
provided strong evidence for the protection of liver health by
adding O. carolinianum to the diet. Serum cholesterol and
triglyceride levels are closely related to the health status of fish
(9). LDL is the major carrier that transports cholesterol from the
liver to peripheral tissues, which leads to cholesterol deposition
and atherosclerosis, whereas HDL is beneficial for cholesterol
clearance by transporting cholesterol from peripheral tissues to
the liver for catabolism (55, 56). Therefore, the LDL-C/HDL-C
ratio is measured as an indicator of transport capacity of
cholesterol (55). In the current study, measurement of serum
biochemical parameters showed that fish fed the OC5 diet had
lower TG and LDL-C and higher HDL-C and HDL-C/LDL-C
than those fed other diets. Similar results showed that dietary
astaxanthin or H. pluvialis supplementation decreased the levels
of TG and cholesterol in the serum of P. crocea (9). Zhao etal. (6)
reported that a diet supplemented with H. pluvialis increased the
cholesterol transport capacity of T. ovatus by enhancing the
serum HDL-C level and HDL-C/LDL-C ratio. Serum
biochemical parameters are closely related to liver function.
The current results indicated that 5% O. carolinianum reduced
the serum TG level and promoted the transport capacity of
cholesterol, which may be mainly attributed to the
hepatoprotective effect of O. carolinianum.

Compared with other vertebrates, the non-specific immune
system of teleost fish plays a more important role in resisting
pathogen invasion and secondary damage (53). In the current
study, the mRNA transcriptional levels of C-Lyz and C4 were
used to evaluate the effect of diet supplemented with O.
carolinianum on the non-specific immune response of T.
ovatus. Complement plays a central role in the non-specific
immune response of fish and is responsible for removing
cellular debris, apoptotic cells, and foreign invaders (57).
Besides, it can bind to specific sites on the surface of
phagocytes to promote phagocytosis (58). Lysozyme, directly
or indirectly together with the complement system, lyses bacteria
by hydrolyzing the b-1,4 glycosidic bond of the peptidoglycan
layer of the bacterial cell wall (59, 60). A previous study reported
that a diet supplemented with astaxanthin or H. pluvialis
significantly enhanced the lysozyme activity and total
complement content in the serum of P. crocea (9). Zhao etal.
(6) also demonstrated that T. ovatus fedH. pluvialis up-regulated
the mRNA expression of C-Lyz and C4 in the liver. Consistently,
the current results found that T. ovatus fed O. carolinianum up-
regulated the mRNA transcriptional level of C4 and increased the
C4 content in the serum. Besides, the mRNA transcriptional level
of C-Lyz in the liver and Lyz activity in the serum of the OC5 diet
group was also significantly higher than that of the OC0 and OC1
diet groups. These results suggested that O. carolinianum could
improve the non-specific immune response of T. ovatus by
Frontiers in Immunology | www.frontiersin.org 10
activating the lysozyme and complement system, and the
above characteristics were dose-dependent. In addition, the
mRNA transcriptional level of HSP70 in the liver was
determined in order to confirm the hypothesis that the
impairment of liver function in the diet without O.
carolinianum was caused by environmental stressors. HSP70, a
biomarker for assessing stress status, can be activated by various
environmental stressors, such as thermal shock, hypoxia,
pollutants, and heavy metal (61, 62). In the current study, fish
fed the OC5 diet down-regulated the mRNA transcriptional level
of HSP70 in the liver. Previous studies suggested that dietary
supplemented with immunostimulants reduced the mRNA
expression of HSP70, which may be due to enhanced tolerance
of fish to environmental stressors after feeding with
immunostimulants under culture conditions (5, 63). Further
study is required to clarify the potential mechanism by which
O. carolinianum affects stress tolerance and HSP70 mRNA
expression in T. ovatus. The current results provide strong
evidence that fish cultured in offshore cages are susceptible to
environmental stressors that can impair liver function.

NO, as a gaseous signaling molecule, is involved in the
regulation of neuronal transmission and anti-inflammatory,
antitumor, and antibacterial activities (64). NO can react with
free radical superoxide to generate active substances, including
nitrogen dioxide, dinitrogen trioxide, and peroxynitrite, which
cause severe nitrosation and oxidative stress to bacteria,
eventually destroying cell membranes and causing cell
dysfunction of bacteria (65). Therefore, NO is considered to be
an effective bactericidal agent that kills broad-spectrum bacteria,
especially drug-resistant ones (66). NO is produced by the NOS-
catalyzed reaction of L-arginine with molecular oxygen (67).
Therefore, there was a positive correlation between NO content
and NOS activity. NO and NOS are considered to be important
antibacterial molecules against pathogen infection in aquatic
animals (68, 69). In this study, TNOS activity and NO content
increased significantly in the liver of fish fed the OC5 diet. The
findings obtained in the current study indicated that 5% O.
carolinianum powder promoted the defense ability of T. ovatus
against pathogenic infection.

Fatty acid composition is an important indicator reflecting
the nutritional value of fish, which has an impact on the sales
price. In the current study, fish fed the OC0 or OC1 diet showed
similar fatty acid profiles. However, fish fed the OC5 diet showed
higher contents of oleic acid and eicosenoic acid and a lower
content of linoleic acid in the whole body than that of fish fed
other diets, which may be due to the high oleic acid content of
the O. carolinianum itself. In addition, fish oil content in the feed
formula of the OC5 group was reduced in order to maintain the
consistency of the total lipid content between experimental diets,
which may be the main reason for the reduction of the linoleic
acid content of the whole body in the OC5 group. The
aforementioned observation suggested that O. carolinianum
powder can be used by fish and affect the fatty acid profiles of
whole body. Furthermore, an attractive result was found in this
study, showing that O. carolinianum did not contain EPA and
DHA under the culture conditions of this experiment, but the
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhao et al. Dietary Oedocladium carolinanum Beneficial to T. ovatus
partial replacement of fish oil byO. carolinianum powder did not
have an adverse effect on the contents of DHA and EPA in the
whole body. These results indicated that dietary O. carolinianum
supplementation may promote the synthesis of endogenous
DHA and EPA in T. ovatus. It is well known that marine
species have a lower capability or inability for long-chain
polyunsaturated fatty acid (LC-PUFA) biosynthesis (70).
However, previous studies demonstrated that fatty acyl
desaturase exhibited D4, D5, D6, and D8 activities, which plays
an important regulatory role in the biosynthesis pathway of
endogenous LC-PUFA in T. ovatus (71, 72). Therefore, the
results obtained in this study also proved that T. ovatus may
have the ability for de novo synthesis of endogenous LC-PUFA
and that dietary O. carolinianum supplementation promotes this
ability. However, further study is required to clarify the potential
mechanism by which O. carolinianum affects the biosynthesis
pathway of endogenous LC-PUFA in T. ovatus. Besides, dietary
O. carolinianum supplementation promoted the deposition of
astaxanthin in the whole body. Astaxanthin is beneficial to
human health, such as antioxidant, anti-inflammation,
antidiabetic, cardiovascular disease prevention, anticancer, and
immune modulation (5). Therefore, T. ovatus containing
astaxanthin is more attractive to consumers, which also
contributes to the increase in sales price.
CONCLUSIONS

In summary, this study indicated that O. carolinianum exerted
beneficial effects in T. ovatus. The diet supplementation of 5% O.
carolinianum increased growth performance, antioxidant ability,
and non-specific immunity and exerted the hepatoprotective
effects of T. ovatus. Besides, dietary O. carolinianum
supplementation promoted the deposition of astaxanthin in the
whole body. Based on the results of this study, 5% O.
carolinianum is recommended to be added to the diet to
promote the growth, antioxidant capacity, immune response,
and flesh quality of T. ovatus. Then, it is particularly important to
further evaluate the optimal addition level of O. carolinianum for
its application in the commercial feed of T. ovatus.
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