
����������
�������

Citation: Lazarenkov, A.; Sardina, J.L.

Dissecting TET2 Regulatory

Networks in Blood Differentiation

and Cancer. Cancers 2022, 14, 830.

https://doi.org/10.3390/

cancers14030830

Academic Editor: Luis Franco

Received: 11 December 2021

Accepted: 3 February 2022

Published: 6 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

Dissecting TET2 Regulatory Networks in Blood Differentiation
and Cancer
Aleksey Lazarenkov and José Luis Sardina *

Epigenetic Control of Haematopoiesis Group, Josep Carreras Leukaemia Research Institute,
08916 Badalona, Spain; alazarenkov@carrerasresearch.org
* Correspondence: jsardina@carrerasresearch.org

Simple Summary: Bone marrow disorders such as leukemia and myelodysplastic syndromes are
characterized by abnormal healthy blood cells production and function. Uncontrolled growth and
impaired differentiation of white blood cells hinder the correct development of healthy cells in the
bone marrow. One of the most frequent alterations that appear to initiate this deregulation and persist
in leukemia patients are mutations in epigenetic regulators such as TET2. This review summarizes
the latest molecular findings regarding TET2 functions in hematopoietic cells and their potential
implications in blood cancer origin and evolution. Our goal was to encompass and interlink up-to-
date discoveries of the convoluted TET2 functional network to provide a more precise overview of
the leukemic burden of this protein.

Abstract: Cytosine methylation (5mC) of CpG is the major epigenetic modification of mammalian
DNA, playing essential roles during development and cancer. Although DNA methylation is gener-
ally associated with transcriptional repression, its role in gene regulation during cell fate decisions
remains poorly understood. DNA demethylation can be either passive or active when initiated
by TET dioxygenases. During active demethylation, transcription factors (TFs) recruit TET en-
zymes (TET1, 2, and 3) to specific gene regulatory regions to first catalyze the oxidation of 5mC to
5-hydroxymethylcytosine (5hmC) and subsequently to higher oxidized cytosine derivatives. Only
TET2 is frequently mutated in the hematopoietic system from the three TET family members. These
mutations initially lead to the hematopoietic stem cells (HSCs) compartment expansion, eventually
evolving to give rise to a wide range of blood malignancies. This review focuses on recent advances
in characterizing the main TET2-mediated molecular mechanisms that activate aberrant transcrip-
tional programs in blood cancer onset and development. In addition, we discuss some of the key
outstanding questions in the field.
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1. Introduction

CpG methylation is the most common DNA modification found in the mammalian
genome [1], playing an essential role in development and cancer [2,3]. DNA demethy-
lation can be either passive, by dilution of DNA methylation after each cell division, or
active when initiated by Tet dioxygenases [4]. During active demethylation, the Ten-
eleven-translocation (TET) family of enzymes first catalyze the iterative oxidation of
5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and subsequently to higher
oxidized derivatives, 5-formylcytosine (5fC) and 5-carboxycytosine (5CaC) [5–7]. These
higher oxidized forms of cytosine, in turn, can either be lost during replication or enzymati-
cally removed, restoring unmodified cytosine and alleviating transcriptional repression
typically associated with 5mC residues [4]. However, 5hmC and higher oxidized deriva-
tives should be considered not only as mere transient states in the DNA demethylation path
but as bona fide epigenetic marks as illustrated by their complex network of specialized
readers [8].
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In the context of the hematopoietic system, TET family members have been involved
in naturally occurring and experimentally induced cell fate decisions [9–14]. Among
the TETs, TET2 is the most broadly expressed and frequently mutated gene in blood
malignancies [15–20]. TET2 mutational profiles show inactivating mutations occurring
along the whole gene coding region and are not only restricted at the 3′ region where the
catalytic domain is located [15,17,21]. Therefore, TET2 epigenetic regulation during blood
differentiation might be mediated not only by its catalytic activity but also by its association
with critical partners [22,23].

Here we review the current understanding of TET2 functions in normal and malignant
hematopoiesis, providing an extensive overview of the intricate molecular mechanisms con-
trolling gene expression, protein stability and function, and enzyme’s genome recruitment.

2. Mechanisms of TET2 Protein/Enzymatic Regulation

Several mechanisms regulating TET2 expression and activity have been elucidated
in the last decade. Here we summarize main control systems, encompassing basal post/
transcriptional regulation, direct protein modulation through post-translation modifications
(PTMs), and enzymatic substrate availability.

2.1. Transcriptional Regulation

Some transcriptional factors have been defined as direct regulators of TETs’ gene
expression. In mouse embryonic stem cells (ESCs), Tet1 and Tet2 are positively regulated by
the pluripotency TF Oct4 that binds to conserved non-coding sequences in both genes [24].
Accordingly, upon ESC differentiation, Tet1 and Tet2 levels decrease due to Oct4 deple-
tion [24].

A similar regulatory mechanism was described for the CXXC-DNA binding domain
protein Rinf (CXXC5), whose depletion leads to decreased Tet1 and Tet2 expression [25].
During myeloid cell fate commitment, Tet2 expression is boosted by the action of the
myeloid transcription factor CEBPα, which binds to Tet2 enhancer regions [26]. CEBPα
might exert its transcriptional control by recruiting Tet2 protein itself to Tet2 gene’s distal
regulatory regions leading to their demethylation and activation [10]. Of note, a mutant
form of CEBPα (Brm2), recapitulating naturally occurring mutations in AML patients [27],
failed to demethylate the Tet2 enhancers [10]. In addition, histone deacetylase 4 (HDAC4)
protein has been recently described as a positive regulator of TET2 expression in the context
of MDS and AML [28]. Finally, in regulatory T cells (Treg), Tet1 and Tet2 are regulated
in response to hydrogen sulfide (H2S) through the action of the sulfhydrating nuclear
transcription factor Y subunit beta (NFYB) [29].

2.2. Post-Transcriptional Regulation

miRNAs regulatory networks targeting TET2 mRNAs have been proposed as the
primary post-transcriptionally regulatory mechanism during blood differentiation and
in myeloid malignancies. High-throughput screens identified a large subset of TET2
3′UTR targeting miRNAs with different efficiencies. Induced expression of those led to
an array of leukemic traits such as myeloid lineage bias, phenocopying to an extent, a
direct TET2 loss [30]. In a related study, miR-22 (also targeting TET2 mRNA) was detected
overexpressed in MDS patients. Mechanistically, miR-22 overexpression leads to reduced
genome-wide levels of 5hmC, increased self-renewal, and myeloid skewing [31]. Also,
in MDS, miR-9 and miR-34a indirectly control TET2 by post-transcriptionally regulating
SIRT1 levels, which affect the TET2 protein function at a post-translational level (See
Section 2.3) [32].

2.3. Post-Translational Regulation

Although TET2 protein levels are mainly regulated via transcriptional mechanisms,
TET2 post-translational modifications might be involved in rapidly fine-tuning protein
levels in response to external cues.
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During ESC differentiation, the CXXC-DNA binding domain protein IDAX (CXXC4)
recruits TET2 to DNA, activating caspases that cleave the TET2-IDAX complex leading
to TET2 protein depletion [33]. Similarly, TET proteins have been described as direct
substrates of the calpain family of proteases [34]. Calpain1 regulates the degradation of Tet1
and Tet2 in mouse pluripotent ESCs and calpain2 of Tet3 during ESCs neural differentiation.
These negative regulatory mechanisms ensure correct global 5hmC level maintenance and
expression of lineage-specific genes in ESCs [34].

In addition, TET2 protein can be largely post-translationally modified (PTM) by
(de)phosphorylation, (de)acetylation, O-GlcNAcylation, or ubiquitylation, among oth-
ers [32,35–38] (Figure 1). The specific output driven by particular PTMs on TET2 activity
is cell type and amino acid residue-specific. For instance, cytokine receptor-associated
JAK2 (in response to FLT3 or EPO/SCF signaling in blood progenitor cells) phosphory-
lates TET2 at tyrosine residues 1939 and 1964, leading to enhanced enzymatic activity [35]
(Figure 1). However, TET2 tyrosine residues 1939 and 1964 are not the only phosphory-
latable residues since the whole N-terminus region of the protein (constituting a large
disordered domain) is usually highly phosphorylated in ESCs [36] (Figure 1). Interestingly,
the O-linked N-acetylglucosaminyltransferase (OGT), a strong TET interactor [36,39–42],
adds O-GlcNAcylation groups to serine and threonine residues of TET2, thereby reducing
the number of available phosphorylation sites and their site occupancy [36]. Once again,
the described phosphorylation vs. O-GlcNAcylation mechanism highlights the fine-tuning
TET proteins might undergo for correct localization and activity according to external
signals [36].
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quently found TET2 mutations. In the upper half, compiled PTM data based on mass spectrometry
(MS) and in silico predictions [35,36,38,43,44]. In grey, proposed modifications with an undefined func-
tion. In color, fully characterized PTMs and their impact on TET2 activity. In the bottom half, a com-
pilation of TET2′s most frequent mutations and their type (truncating, missense, or splice mutations).
Filtering was done from combined 12,845 samples from 35 studies where the mutation was found
in >5 different patients. Data from ‘Myeloid’ dataset from cBioPortal (https://www.cbioportal.org/,
accessed on 19 January 2022) [45,46].

TET2 activity can also be regulated through protein (de)acetylases. This is the case of
the NAD-dependent deacetylase sirtuin-1 (SIRT1) that removes acetylation at TET2 specific
lysine residues K1472, K1473, and K1478, increasing protein’s enzymatic activity [32].
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Consequently, reduced SIRT1 activity in human HSPCs leads to the onset of an MDS-
like disease recapitulating the phenotype observed in TET2-mutated MDS patients [32].
Whereas TET2 global deacetylation mediated by histone deacetylases, 1 and 2 (HDAC1
and 2) leads to reduced enzymatic activity triggering the emergence of abnormal DNA
methylation profiles typically associated with cancer [38]. Zhang and co-workers also
studied the effects on TET2 stability/activity mediated by histone acetyltransferase p300
(enzymatic counterpart of the HDAC1/2 enzymes). p300 was shown to acetylate the TET2
N-terminus region leading to increased protein activity, stability, and partnering with other
proteins such as DNMT1 [38]. TET2/DNMT1 complex might prevent abnormal promoter
methylation typically observed upon exposure to oxidative stress [38].

Finally, ubiquitylation of TET2 has been described to regulate its chromatin associ-
ation [43]. CRL4 (VprBP) E3 ligase, a member of the ubiquitin ligase complex, has been
shown to interact with the cysteine-rich domain of TET2 and promote K1299 monoubiq-
uitylation, enhancing its chromatin association [43]. On the contrary, USP15-dependent
K1299 deubiquitylation leads to decreased TET2 activity [44].

2.4. Enzymatic Regulation

Regarding catalytic activity, TET enzymes are Fe2+/α-KG-dependent dioxygenases.
Metabolite and cofactor availability constitute another relevant layer of protein regu-
lation potentially influencing hematopoiesis and leukemic development. Interestingly,
experimentally-induced ascorbate (VitC) depletion leads to increased HSC function and
compartment expansion, resembling the aberrant self-renewal phenotype typically ob-
served upon Tet2 depletion in HSCs [47–49]. In addition, Cimmino and co-workers ele-
gantly demonstrated the potential of VitC treatment to rescue an aberrant self-renewal
phenotype initiated upon Tet2 in vivo depletion [50]. On the contrary, 2-Hydroxyglutarate
(2-HG), an oncometabolite produced in IDH1/2 mutated patient cells, competitively in-
hibits TET2 catalytic activity [50,51], resulting in genome-wide DNA hypermethylation
and impaired myeloid differentiation [52]. Similarly, mutations in other metabolic players
such as fumarate hydratase (FH) and succinate dehydrogenase (SDH) lead to fumarate and
succinate accumulation that inhibit Tet enzymatic activity even with stable α-KG levels [53].
The interplay between these metabolic intermediaries and TET2 might also be directly
relevant in clinics as mutations in iron and 2-oxoglutarate-binding sites have been reported
in AML patients [15,54]. Finally, although essential for TET catalytic activity, oxygen has
been described as a minor direct regulator of TET function in physiological settings [55].
However, low oxygen levels might indirectly regulate TET2 expression and activity in
leukemic cells through a mechanism involving the activation of the hypoxia-inducible
factor 1α (HIF1α) [56].

3. Partner-Instructed Tet2 Genomic Recruitment during Development and Cancer

Regulation of TET activity by controlling enzymes’ genomic distribution allows surgi-
cally modifying DNA methylation at particular genomic loci and only in specific cell types.
Since TET2 lacks the low-affinity (CXXC) DNA binding domain, which is present in TET1
and TET3 [33], the enzyme must always be recruited to specific genomic locations through
a ‘partner’ protein such as transcription factors.

Here we present an elaborated list of potential Tet2 interactors/recruiters playing
relevant roles in different biological settings (Figure 2).
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3.1. During Embryonic Stem Cell Fate Decisions

Tet2 is considered an important pluripotency regulator playing critical roles during
experimentally-induced pluripotency establishment [10,59–64] and in pluripotency mainte-
nance [65–67]. In addition, Tet enzymes are essential for proper pluripotency exit during
embryo development [68,69] and in ES cell differentiation [70,71].

Molecular mechanisms underlying the Tet2 pluripotency-related functions have re-
cently been partially uncovered by systematically identifying and characterizing critical
Tet2 interactors in ESCs. The naïve pluripotency TF Nanog was the first pluripotency-
related protein identified interacting with Tet2 and Tet1 [62]. Thus, explaining Tet2 and
Tet1 bound at regulatory regions of pluripotency genes in ESCs [62,66]. However, Tet2 is
also functionally associated with other pluripotency-related TF at these regions, including
Sall4 [72] and Prdm14 [73]. Sall4 acts in concert with Tet1 to firstly oxidize 5mC CpG
residues into 5hmC and later with Tet2 to further oxidize them into 5fC and 5caC residues.
However, no direct physical interaction between Sall4 and Tet2 was observed in ESCs [72].
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Thus, suggesting the involvement of additional factors in this functional interplay. On
the contrary, Prdm14, through direct association with Tet2, drives active demethylation
at pluripotency and germline-associated genes such as Tcl1, Tcfap2c, and Spo11, Sycp3,
respectively [73].

Additionally, Tet2 has been described to interact with a handful of non-canonical
pluripotency TFs equally playing essential roles in regulating its functions in ESCs. The
latter includes the CXXC-DNA binding domain proteins Idax (CXXC4) and Rinf (CXXC5),
potentially influencing Tet2 functions in differentiation [33] and pluripotency [25], re-
spectively. Rinf co-occupies with Tet2 and Nanog distal regulatory regions of relevant
pluripotency genes (such as Oct3/4, Sox2, and Nanog itself), positively regulating their
transcription. The RNA-binding protein PSPC1 associates with Tet2 and targets the enzyme
to the MERVL endogenous retroviral elements in ESCs [67]. Of note, these retroviral ele-
ments have been described to regulate the expression of 2C-genes in ESCs [74,75]. Once
recruited to MERVL elements, Tet2 contributes to their transcriptional and epitranscrip-
tomic regulation by recruiting HDACs to chromatin and oxidizing MERVL transcripts,
respectively [67].

As mentioned above, Tet2 is also required during experimentally induced pluripotency
establishment. To uncover factors associated with Tet2 in this biological setting, we analyzed
DNA (hydroxy)methylation dynamics during rapid and highly efficient iPSC reprogram-
ming systems [59,60,76]. Here, Tet2 is recruited by the Klf4 and Tfcp2lƒ1 transcription
factors to drive active enhancer demethylation of chromatin and pluripotency-related
genes to reprogram cell fate [10].

Of note, a prominent study has recently identified common molecular mechanisms
controlling DNA methylation during embryo development and in the leukemic transfor-
mation [77]. Thus, highlighting the potential health implications of studying Tet-mediated
DNA demethylation in embryonic stem cells.

3.2. During Blood Cell Fate Decisions

Tet2 role in hematopoiesis and its influence on the DNA methylome has also been
widely explored in the context of physiological and pathological conditions. Several stud-
ies have described how Tet2 protein deficiency can lead to aberrant cell fate decisions
by extensively altering the DNA methylome during hematopoiesis. Here we recapitu-
late the role of Tet2 recruitment to specific genomic regions in different hematopoietic
developmental pathways:

3.2.1. During Myeloid Cell Fate Decisions

Tet2-mediated epigenetic gene regulation is crucial during myeloid cell development.
C/EBPα is an essential factor in the differentiation process from HSPCs to GMPs [78].
C/EBPα alone, through its pioneer activity, or in concert with PU.1, binds regulatory
regions of myeloid genes to establish the myeloid cell fate [79]. To this end, C/EBPα
directly activates Tet2 expression [26] and, through direct interaction with the enzyme,
targets it to regulatory regions of myeloid genes such as Klf4 or Chd7, driving their ac-
tive DNA demethylation and subsequent enhancer activation [10]. RUNX1, another key
hematopoietic transcription factor, has also been described to interact with TET2 [80]. Thus,
it potentially leads to the DNA demethylation observed at RUNX1 binding sites (including
promoters of PTPN22, RUNX1, and RUNX3, among others) during hematopoietic differ-
entiation [80]. Wilm’s tumor (WT1) gene encodes a sequence-specific transcription factor
found mutated in a mutually exclusive manner with TET2 in AML patients [20]. Interest-
ingly, WT1 directly associates with TET2 [81] to regulate WT1-target genes (including Wnt
and MAPK signaling-related genes such as BTRC, DACT1, and TBL1X), preventing AML
onset [81,82].

However, TET2 activity is not only relevant during early myeloid commitment but
also in myeloid terminal differentiation [83]. In this regard, during monocyte-to-osteoclast
differentiation, the master myeloid TF PU.1 recruits TET2 to promoters of key osteoclast-
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genes (including ACP5, CTSK, and TM7SF4), leading to their demethylation and cell
fate transition [84]. Tolerogenic dendritic cells (tolDCs) are also terminally differentiated
myeloid cells with potent immunosuppressive properties. Mechanistically, the tolerogenic
phenotype is acquired through a synergistic interplay between the glucocorticoid receptor
(GR) and the specific myeloid transcription factor MAFB. Both TFs target TET2 at genomic
loci exclusively demethylated in tolDCs [85]. In addition, EGR2, an essential transcription
factor during IL4/GM-CSF-driven monocyte (MO) to monocyte-derived DCs (moDCs) dif-
ferentiation, has also been described to interact with TET2 and initiate DNA demethylation
at both EGR2 stable and transient binding sites [86]. However, TET2 genomic recruitment
is not always associated with positive regulation of gene expression in dendritic cells. For
instance, Zhang and co-workers identified that IκBζ-dependent Tet2 targeting the Il6 locus
leads to Hdac2 recruitment. Thus, finally leading to Il6 gene repression and inflammation
resolution [87].

3.2.2. Erythroid Lineage

HSPC commitment towards erythroid lineage also correlates with 5hmC accumulation
and increased expression of erythroid-specific genes such as EPOR, GATA1, and HBB [88].
5hmC accumulation might be mediated by Klf1-dependent Tet2 recruitment at erythroid-
specific genes. Of note, both factors have been recently described to interact upon Jak2-
driven Tet2 phosphorylation [35].

3.2.3. B-Cell Lineage

B cell differentiation is tightly regulated at the epigenetic level. B cell maturation is
characterized by extensive reshaping of the cellular methylome [89]. Tet2 might contribute
to the process by interacting with B-cell master regulators such as EBF1 [90], IRF4/8, E2A,
and PU.1 or BATF and driving focal demethylation at regulatory regions of key B-cell loci
(including IgK or Aicda) [91–93].

3.2.4. T-Cell Lineage

5hmC is accumulated at genes encoding key regulators of T cell identity, development,
and differentiation [94]. However, what factors recruit Tet enzymes to the T-cell key regula-
tory regions is poorly known. In regulatory T cells (Tregs), Tet1 and Tet2 are upregulated
in response to the sulfhydrating nuclear transcription factor Y subunit beta (NFYB) [29].
Tet1 and Tet2 are targeted by the activated forms of Smad3 and Stat5 to the Foxp3 promoter
favoring its hypomethylation and stable gene expression [29].

3.3. In Response to External Stimuli

Tet2 has also been implicated in genome stability. Upon exposure to oxidative stress
(OS), protein complexes containing DNMTs and TET2 are recruited to the specific genomic
regions to repair the damaged DNA properly. TET2 depletion leads to reduced 5hmC levels
at the damaged regions and impaired repair [95–98]. As a result of these exciting findings,
several epigenetic regulatory mechanisms that tie Tet2 to protection against abnormal DNA
methylation during stress have been proposed. For instance, Zhang and co-workers showed
that upon OS, TET2 interacts with the thymidine glycosylase (TDG), an enzyme involved
in the DNA active demethylation pathway. Then, both proteins are recruited to chromatin
in a DNMT1 dependent manner, a process that is enhanced when TET2 is acetylated [38].
Therefore, the latter mechanism is suggested to protect against the acquisition of abnormal
DNA methylation at typically unmethylated gene regulatory regions.

Another Tet2 interactor in the context of DNA damage response is the SMAD nuclear
interacting protein 1 (SNIP1) that regulates the expression of relevant c-MYC target genes
involved in apoptosis. Therefore, reduced SNIP1 levels lead to diminished 5hmC levels
and gene expression at c-MYC target genes [99].
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Finally, chemotherapeutic drugs have also been described to trigger hydroxymethy-
lation changes in a mechanism mediated by the interaction between the promyelocytic
leukemia protein (PML) and TET2, linking the protein to direct clinical applications [100].

4. TET2 Loss of Function in Blood Malignancies

DNA methylation aberrations are considered hallmarks of cancer onset and progres-
sion [101–103]. TET2 loss of function mutations are frequently found in patients suffering
from myeloid malignancies such as acute myeloid leukemia, myeloproliferative neoplasms,
or myelodysplastic syndromes [15,20,104] (Table 1). However, these mutations are also
commonly observed in other blood malignancies, including B and T lymphomas [105–109],
such as the angioimmunoblastic T-cell lymphoma (AITL), showing the highest incidence of
TET2 mutations (roughly 80%) among all blood cancer types (Table 1). The broad TET2
mutational profile observed in the hematopoietic system has awakened great interest in the
field to unravel the molecular mechanisms underlying TET2 involvement in the onset of
preleukemic and leukemic diseases.

Table 1. List of TET2 mutation frequencies in hematologic malignancies and their prognos-
tic value. Combined 12845 samples from 35 studies were analyzed according to cancer type
and detailed classification based on WHO Classification of Hematologic Malignancies or The
French–American–British (FAB) classification. Data from ‘Lymphoid’ and ‘Myeloid’ datasets
from cBioPortal (https://www.cbioportal.org/, accessed on 19 January 2022) [45,46] and selected
referenced studies [108,110–112]. AML = Acute myeloid leukemia, AMML = Acute Myelomonocytic
Leukemia, AML-M5 = Acute Monoblastic/Monocytic Leukemia, CML = Chronic Myelogenous
Leukemia, MPN = Myeloproliferative Neoplasms, MDS = Myelodysplastic Syndromes, CMML =
Chronic Myelomonocytic Leukemia, CLL/SLL = Chronic Lymphocytic Leukemia/Small Lympho-
cytic Lymphoma, DLBCL = Diffuse Large B-Cell Lymphoma, AITL = Angioimmunoblastic T-cell
lymphoma, NOS = Not Otherwise Specified, N/A = Not Available.

Cancer Type Detailed Cancer Type Frequency (%) Prognosis

AML (399/4014) 10%

AML (unspecified) 9 Unfavorable [113]
AML, NOS 17 Unfavorable [113]

AML with Biallelic Mutations of CEBPA 24 Unfavorable [114]
AML with inv (3) (q21.3q26.2) or t(3;3) (q21.3;q26.2);

GATA2, MECOM 8 N/A

AML with mutated NPM1 18 Unfavorable [19]
AML with Myelodysplasia Related Changes 8 Unaffected [115]
AML with Recurrent Genetic Abnormalities 5 N/A

AML with t(8;21) (q22;q22.1); RUNX1-RUNX1T1 13 N/A
AMML 8 N/A

AML-M5 15 N/A

MDS/MPN (1023/2700)
38%

MDS (unspecified) 25 Favorable [116]
MDS, Unclassifiable 13 Favorable [116]

MDS with Excess Blasts (unspecified) 22 Favorable [116]
MDS with excess blasts-1 21 Favorable [116]
MDS with excess blasts-2 16 Favorable [116]
MDS with isolated del(5q) 16 Unaffected [117]

MDS with Multilineage Dysplasia 33 Favorable [116]
MDS with Single Lineage Dysplasia 20 N/A

MDS/MPN with Ring Sideroblasts and Thrombocytosis 28 N/A
MPN 22 Unaffected [118]

CMML 56 Favorable [118]
CML 30 Unaffected [119]

Essential thrombocythemia 9 Unaffected [54]
Polycythemia Vera 28 Unaffected [54]

Primary myelofibrosis 26 Unaffected [54]
Histiocytic and Dendritic Cell Neoplasms 2 N/A

https://www.cbioportal.org/
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Table 1. Cont.

Cancer Type Detailed Cancer Type Frequency (%) Prognosis

B/T-cell neoplasms
(343/3712) 9%

Burkitt Lymphoma 4 N/A
DLBCL, NOS 6 N/A

DLBCL (unspecified) 11 Favorable [120]
DLBCL, Germinal Center B-Cell Type 7 N/A

DLBCL, Activated B-cell Type 1 N/A
Follicular Lymphoma 4 N/A

High-Grade B-Cell Lymphoma, NOS 5 N/A
Mantle Cell Lymphoma 3 N/A

Marginal Zone Lymphoma 4 N/A
Mature B-Cell Neoplasms 16 N/A

AITL 78 Unaffected [108]
CLL/SLL 1 N/A

Sezary Syndrome 12 N/A

Therapy-Related
Neoplasms (12/115) 10%

Therapy-Related Myeloid Neoplasms (unspecified) 8 N/A
Therapy-Related Myelodysplastic Syndrome 27 N/A

4.1. Preleukemic Conditions

HSCs, like any other somatic cells, slowly accumulate mutations during the whole life
of an individual [121]. TET2 mutated HSC clones are frequently found among healthy aged
individuals characterized by an increased risk of cancer onset and a higher propensity to de-
velop cardiovascular diseases [18,122–124]. This condition is named clonal hematopoiesis
of indeterminate potential (CHIP). Mechanistically, TET2 loss of function mutations appear
to enhance HSCs’ expansion capabilities and lead to a myeloid bias [48,52,125–127]. Ad-
ditionally, TET2 mutant cells show an enhanced response to pro-inflammatory cytokines
such as IL-6 and TNF-α [128], potentially representing a competitive advantage in response
to inflammatory environments. Moreover, inflammation-based preleukemic myeloprolifer-
ation has been linked to TET2 activity [129,130], where Il6 expression might be negatively
regulated by Tet2-mediated Hdac2 recruitment to its promoter [87].

Regardless, HSCs with altered TET2 activity acquire a competitive clonal advantage
due to an altered DNA methylation landscape that finally allows aberrant gene expression.
However, the precise order of events leading from CHIP to the development of myeloid
malignancies is not yet fully uncovered, nor is the CHIP potential as a clinical predictor.

4.2. Leukemic Conditions

As previously mentioned, TET2 loss of function mutations are frequently found in pa-
tients with myeloid malignancies, myeloproliferative disorders (MPN), or myelodysplastic
syndromes (MDS) (Table 1). These conditions are typically considered as an early event in
myeloid cancer development [15,131] and are characterized by presenting aberrant DNA
methylation profiles due to incorrect TET2 function [52,103]. This is the case, for instance,
of chronic myelomonocytic leukemia (CMML), a mixed MDS/MPN neoplasm where TET2
mutations are present in up to 60% of patients [16,132] (Table 1). In CMML cells, aberrant
methylation was observed at promoters of genes involved in neoplastic transformation,
WNT and PDGF signaling pathways; inflammation; and apoptosis [133]. Of note, similar
gene sets were observed aberrantly methylated and expressed in TET2-mutated AML
patients, including genes coding for tumor suppressors (PDZD2); transcription modulators
(ZNF667, ZNF582, PIAS2, CDK8); nuclear import receptors (TNPO3, IPO8); and myeloid
cytokines (CSDA) [103].

Global methylation analysis also revealed a shared hypermethylation signature in a
subset of AML patients carrying IDH1/2 mutations [52,134], a well-known TET2 inhibitor
and mutually exclusive mutated gene (See Section 2.4). The latter highlights the importance
of TET2 enzymatic deregulation.
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Similarly, mutations in the IDH1/2-TET2-WT1 network, which collectively appear
in 30-50% of AML cases [20,81,131], also present an apparent hypermethylated pheno-
type as a consequence of deficient TET2 activity [82,135]. Several ongoing clinical trials
aim to restore TET2 activity within the IDH1/2-TET2-WT1 mutated network by combin-
ing hypomethylating agents with ascorbate treatment [50,51,135–137] (ClinicalTrials.gov
identifier: NCT03999723, NCT03682029).

In the lymphoid lineage, aberrant B cell differentiation and chronic lymphocytic
leukemia (CLL) have been associated with DNA hypomethylation [138–140]. Hypomethy-
lation at gene bodies and enhancer regions correlates with gene expression differences
in CLL samples compared to normal B cells [89,139,141]. However, available data do
not support a primary role of TET enzymes in CLL, but perhaps an accessory role in
establishing leukemia-specific patterns of 3D chromatin conformation. The latter might
be accomplished, for instance, by modulating CTCF binding to the chromatin, a DNA
methylation-sensitive mechanism [142].

TET2 has also been studied in the context of lymphoproliferative diseases. Diffuse
large B-cell lymphoma (DLBCL) patients have shown specific hypermethylation signatures
on promoters of tumor suppressor genes involved in cell fate and cell cycle changes [109].
Germinal center analysis of B cells in Tet2 deficient mice showed promoter hypermethy-
lation and defective transcription factor binding at essential B-cell pathway genes. Tet2
knockout mice partially phenocopied DLBCL patients, characterized by downregulation
of antigen presentation genes/interferon pathway, lymphoma-like transcriptional profiles
similar to CREBBP-mutant patients, and a failure at the germinal center exit. Therefore, this
data suggests that TET2 is relevant in B cell lymphoma development and how acquiring
mutations in HSCs might influence B-cell maturation and cancer development [105,106].

5. Summary and Conclusions

The last decade of research has shed light on the complex biological functions of
TET2 in normal hematopoiesis and blood cancer development. However, as described in
this manuscript, a holistic approach is required to deconvolute the intricated regulatory
networks determining TET2 function in a cell type-specific manner. Precisely, TET2 activity
is controlled by: (1) TET2 transcriptional regulation (through Oct4, C/EBPα, Rinf or
HDAC4); (2) post-transcriptional regulation (by miR-22, miR-9, or miR-34a); (3) post-
translational regulation (by a whole array of PTMs (Figure 1); (4) enzymatic regulation
(by VitC, α-KG/2-HG, FH, SDH or oxygen/HIF1α) and (5) genomic localization (through
interactions with an extensive network of partners (Figure 2).

C/EBPα regulating Tet2 gene expression by directly recruiting Tet2 enzyme to demethy-
late its own enhancers during myeloid cell fate specification [10] perfectly illustrates the
complexity of the Tet2 regulatory networks. Another interesting example of multilayer
regulation is the miR-9/miR-34a-SIRT1-TET2 network. Sun and co-workers identified
miR-9/miR-34a overexpression within a subset of TET2-WT MDS patients displaying a
TET2 loss of function phenotype [32]. miR-9/miR-34a post-transcriptionally regulates
SIRT1, which modulates TET2 activity by mediating deacetylation at key lysine residues of
the enzyme [32].

About TET2 post-translational regulation, a comprehensive characterization of all
potential PTMs described (Figure 1) is needed to fully determine their physiological rele-
vance. Enhanced knowledge of TET2′s PTM-ome might be particularly relevant to fully
elucidate the functions mediated by well-known TET2 interactors such as SIRT1 or OGT.
Factors that can modify TET2 enzymatic capabilities and modulate its interaction with
other proteins [32,37–40,42,43] (Figure 1).

Substrate availability is the primary mechanism of enzymatic regulation. Therefore,
TET2 activity is tightly regulated by the availability of α-KG and 2-HG produced by
IDH1/2-WT or -mutated enzymes, respectively [50,51]. First studies conducted in AML
patient cells harboring 2-HG-producing IDH1/2 mutations uncovered an altered cellular
epigenetic landscape and a myeloid bias characteristic of AML patients with TET2 loss
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of function [52,90,134,143]. However, such myeloid bias has not been observed when
analyzing the multilayer differentiation potential of Idh2 mutated cells through a single-cell
approach [144]. The apparent discrepancy observed in the phenotype might be explained by
species-specific differences, variations in 2-HG levels produced; differences in 2-HG subtype
(D-2-HG or L-2-HG) produced; or a side-effect of 2-HG-mediated inactivation of other
α-KG-dependent dioxygenases such as the Jumonji-C domain histone demethylase family.

The rapidly increasing list of partners/interactors identified highlights the idea that
TET2 has been promiscuously recruited to the genome by sequence-specific transcription
factors (also by other epigenetic regulators including HDAC1/2 or DNMT1) to drive active
DNA demethylation in a cell state-specific manner. TET2 promiscuous behavior might be
encoded in its nucleotide sequence where only part of the catalytic domain (coding for
the cysteine-rich domain and the first double-stranded β-helix) is structured and ordered
(Figures 1 and 2 and in silico prediction). Whereas the N-terminus protein region is
unstructured, therefore, constituting a large intrinsically disordered domain (IDR) that
might favor most TET2 described interactions through a mechanism of liquid-liquid phase
separation (LLPS). Of note, IDR-mediated LLPS events have been recently described for the
TET2 recruiter KLF4 and its associated pluripotency transcription factor OCT4 [145,146].

To sum up, fine dissection of the molecular mechanisms underlying TET2 activity is
essential to fully uncover its contribution to clonal expansion and malignant transformation.
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