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Abstract: Human adenovirus (HAdV)-F40 and -F41 are leading causes of diarrhea and diarrhea-
associated mortality in children under the age of five, but the mechanisms by which they infect host
cells are poorly understood. HAdVs initiate infection through interactions between the knob domain
of the fiber capsid protein and host cell receptors. Unlike most other HAdVs, HAdV-F40 and -F41
possess two different fiber proteins—a long fiber and a short fiber. Whereas the long fiber binds to
the Coxsackievirus and adenovirus receptor (CAR), no binding partners have been identified for the
short fiber. In this study, we identified heparan sulfate (HS) as an interaction partner for the short
fiber of enteric HAdVs. We demonstrate that exposure to acidic pH, which mimics the environment of
the stomach, inactivates the interaction of enteric adenovirus with CAR. However, the short fiber:HS
interaction is resistant to and even enhanced by acidic pH, which allows attachment to host cells.
Our results suggest a switch in receptor usage of enteric HAdVs after exposure to acidic pH and
add to the understanding of the function of the short fibers. These results may also be useful for
antiviral drug development and the utilization of enteric HAdVs for clinical applications such as
vaccine development.

Keywords: enteric adenovirus; heparan sulfate; short fibers; capsid proteins; fiber knobs

1. Introduction

The Adenoviridae family contains more than 100 types of human adenoviruses (HAdVs),
which are classified into seven species (A to G) based on serum neutralization and genome
sequence analyses [1,2]. HAdVs cause different types of infections such as ocular (species
B, D and E), respiratory (species A, B, C and E) and enteric infections (species F) [3]. HAdV-
F40 and -F41 are the only members of species F and are referred to as enteric human
adenoviruses. They cause gastrointestinal infections primarily in children below five years
of age [4,5]. With developments in molecular diagnostics, enteric HAdV-F40 and -F41 are
now recognized as a leading cause of gastroenteritis and diarrhea-associated mortality
in young children [6,7]. The HAdV particle consists of three major capsid proteins: fiber,
penton base and hexon. The protruding fiber is needed for initial attachment to host cell
receptors [8,9], followed by secondary binding of the penton base to integrins leading to
internalization of the virus into the cells [10–12]. Several attachment receptors have been

Viruses 2021, 13, 298. https://doi.org/10.3390/v13020298 https://www.mdpi.com/journal/viruses

https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0002-4873-8528
https://orcid.org/0000-0002-0505-533X
https://orcid.org/0000-0001-7999-4367
https://orcid.org/0000-0002-3634-066X
https://orcid.org/0000-0002-6799-7795
https://orcid.org/0000-0001-5109-9408
https://doi.org/10.3390/v13020298
https://doi.org/10.3390/v13020298
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/v13020298
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/1999-4915/13/2/298?type=check_update&version=2


Viruses 2021, 13, 298 2 of 17

identified for HAdVs, including the Coxsackievirus and adenovirus receptor (CAR) [8],
CD46 [13–15], desmoglein 2 [16] and sialic acid-containing glycans [9,17,18]. HAdV-C2
and -C5 [19,20] and, to some extent, HAdV-B3 and -B35 [21] bind heparan sulfate as recep-
tors/coreceptors to facilitate infection. Strikingly, sulfated glycosaminoglycans (GAGs) can
also act as decoy receptors for sialic acid-binding HAdV-D37, where binding of the virus
to GAGs prevent efficient infection [22]. Thus, GAGs play an important role for several
HAdV types, but have not been associated with enteric adenoviruses until now. HS and
other GAGs such as chondroitin sulfate (CS), dermatan sulfate (DS), keratan sulfate (KS)
and hyaluronic acid (HA) are long, unbranched polysaccharides consisting of repeating
disaccharide units of an amino sugar (N-acetylglucosamine or N-acetylgalactosamine) and
an uronic sugar (iduronic or glucuronic acid) or galactose [23].

Enteric HAdV-F40 and -F41 have two different types of fibers, long fibers (LF) and
short fibers (SF), a characteristic shared only with HAdV-G52 and no other human aden-
ovirus [9,24,25]. HAdV-G52 was isolated from a small outbreak of gastroenteritis [26], and,
although morphologically similar to HAdV-F40 and -F41, this virus has been classified into
a new species—species G. In HAdV-F40 and -F41, the SF is more abundant in the capsid
than the LF with a ratio of 6:1 [25]. The LF binds CAR [8], but no cellular interaction part-
ners have been identified for the SFs. The SF of HAdV-F41 stimulates enteroendocrine cells
of the small intestine, called enterochromaffin cells, to secrete serotonin, which activates
enteric glial cells causing diarrhea and vomiting [27].

Unlike most other HAdVs, which can infect cells of multiple organs, enteric HAdVs
exclusively infect the intestinal tract and do not cause any infections at other sites. We
recently showed that this restricted tropism can be attributed to differences in the external
structure of the virion as compared to respiratory and ocular HAdVs [28]. The restricted
tropism has also been suggested to depend on the ability of the SF of HAdV-F40 and
HAdV-F41 to protect the virus against acidic gastric conditions [29,30]. Here, we identify
HS as a cellular attachment factor for the SF. Our findings also suggest a switch in receptor
usage after exposure to acidic pH from being LF:CAR dependent to SF:HS dependent,
further supporting the theory that SFs confer the enteric tropism of these viruses.

2. Materials and Methods
2.1. Cells, Viruses and Antibodies

Cells: A549 cells (a kind gift from Dr. Alistair Kidd) were cultured in Dulbecco’s Mod-
ified Eagle Medium (DMEM; Sigma-Aldrich, St. Louis, MO, USA) with 5% fetal bovine
serum (FBS; Thermo Fisher Scientific, Waltham, MA, USA), 20 mM HEPES (Sigma-Aldrich,
St. Louis, MO, USA) and 20 U/mL penicillin +20 µg/mL streptomycin (PEST; Thermo
Fisher Scientific, Waltham, MA, USA); HAP1-WT, HAP1-∆CAR (Horizon Discovery, Wa-
terbeach, UK) and HAP1-∆GAG (beta-1,3-galactosyltransferase deficient; a kind gift from
Dr. Frank Kuppeveld) were cultured in Iscove’s Modified Dulbecco’s Medium (IMDM;
Gibco, Thermo Fischer Scientific, Waltham, MA, USA) with 10% FBS and PEST; CHO-K1,
and CHO-∆HS (pgsD-677) [31] were cultured in Ham’s F12 (Sigma-Aldrich, St. Louis, MO,
USA) with 10% FBS and PEST. HuTu80 (ATCC, Manassas, VA, USA) cells were grown in
DMEM with PEST and 10% FBS; Pro-5 (LGC Promochem, Teddington, UK) and Lec2 cells
(LGC Promochem, Teddington, UK) were grown as described previously [32,33]. Human
neuroblastoma SK-N-SH cells (LGC Promochem, Teddington, UK) were grown in DMEM
supplemented with 10% FBS, 20 mM HEPES and PEST. SH-SY5Y cells (LGC Promochem,
Teddington, UK) were grown in DMEM:Ham’s-F12 (Sigma-Aldrich, St. Louis, MO, USA )
at 1:1, with the same supplements as the parental SK-N-SH cell line.

Viruses/Vector: HAdV-F40 (strain Hovix), HAdV-F41 (strain Tak), HAdV-D36 (strain
275), HAdV-D37 (strain 1477), HAdV-C5 (strain adenoid 75) were grown in A549 cells
with or without 35S-labeling as described previously in [34] except that the elution buffer
after NAP column (GE Healthcare, Chicago, IL, USA) purification and storage buffer was
phosphate buffered saline (PBS). Virions were stored in PBS with 10% glycerol at −80 ◦C.
HAdV-F41 GFP vector was produced as described in [35].



Viruses 2021, 13, 298 3 of 17

Antibodies: anti-RGS His mouse monoclonal antibody (Qiagen, Hilden, Germany) and
Alexa Fluor 488 donkey antimouse IgG (Life technologies, Carlsbad, CA, USA) were used
in flow cytometry to detect recombinant fiber knobs. Serotype-specific rabbit polyclonal
antisera against HAdV-C5, -D36, -D37, -F40 and -F41 were a kind gift from Dr. Göran
Wadell [36]. Anti-HS (clone F58-10E4, Amsbio, Abingdon, UK) and anti-CAR (clone RmcB,
Sigma-Aldrich, St. Louis, MO, USA) monoclonal antibodies were used to check expression
levels of HS and CAR, respectively.

2.2. Recombinant Fiber Knobs, Enzymes, Metabolic Inhibitors, Soluble GAGs and Cholera Toxin

Recombinant FKs: Cloning, expression and purification of 40SFK (amino acids 215 to
387), 40LFK (amino acids 348 to 547), 41LFK (amino acids 363 to 562), 5FK (amino acids 387
to 581) and 37FK (amino acids 172 to 365) were performed in a similar manner as described
in [9] and 52SFK was produced as described in [9].

Enzymes: Vibrio cholera neuraminidase (Sigma-Aldrich, St. Louis, MO, USA), fig
tree latex ficin (Sigma-Aldrich, St. Louis, MO, USA ), Engyodontium album proteinase K
(Sigma-Aldrich, St. Louis, MO, USA) proteases and Flavobacterium heparinum heparinase III
(Sigma-Aldrich, St. Louis, MO, USA).

Metabolic inhibitors: P4 [(1R,2R)-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-
propanol] and inactive enantiomer of P4 (1S,2S, both kindly provided by Dr. Ronald
L. Schnaar).

Soluble GAGs: Heparin (from porcine intestinal mucosa; Sigma-Aldrich, St. Louis,
MO, USA), chondroitin sulfate A (from bovine trachea; Sigma-Aldrich, St. Louis, MO,
USA), dermatan sulfate (from porcine intestinal mucosa; Sigma-Aldrich, St. Louis, MO,
USA), chondroitin sulfate mix A and C (from shark cartilage; Sigma-Aldrich, St. Louis,
MO, USA) and hyaluronic acid (from Streptococcus equi; Sigma-Aldrich, St. Louis, MO,
USA). Alexa Fluor 488 conjugated cholera toxin subunit B, which binds the ganglioside
GM1 (Molecular probes, Invitrogen, Carlsbad, CA, USA).

Recombinant human CAR (CXADR Fc chimera full length extracellular D1D2 domain;
R&D systems, Minneapolis, MN, USA).

2.3. Fiber Knob Binding Assay

FK binding to cells was evaluated by flow cytometry. Cells (A549, CHO-K1, CHO-
∆HS, Pro-5, Lec2, SK-N-SH, SH-SY5Y or HuTu80) were detached from culture flasks by
PBS-EDTA (0.05% EDTA), counted and then reactivated in growth media for one hour
at 37 ◦C under shaking conditions. After this incubation, the cells (2 × 105 cells/mL)
were added to a V-bottom 96-well plate and washed with serum-free media. We added
10 µg/mL of fiber knobs in serum-free media to the cells and incubated for one hour at
4 ◦C. The cell and fiber knob mix was washed with FACS buffer (PBS with 2% FBS) to
remove unbound fiber knobs. To detect bound fiber knobs, cells were first incubated with
anti-RGS His antibody (diluted 1:200 in FACS buffer) for 30 min at 4 ◦C, washed and then
incubated with Alexa Fluor 488 donkey antimouse IgG antibody for another 30 min at
4 ◦C. After a final wash, samples were analyzed using FACSLSRII flow cytometer (Becton
Dickinson, Franklin Lakes, NJ, USA) and results were analyzed by FACSDiva software
(Becton Dickinson, Franklin Lakes, NJ, USA). The results were expressed as geometrical
mean of Alexa Fluor 488 fluorescence. FK binding experiment was performed with the
following variations: Before addition of the FKs, cells were incubated with or without (a)
different concentrations of ficin and proteinase K for 30 min at 37 ◦C to degrade proteins on
the cell surface (b) 2.5 µM each of P4 or inactive P4 for 5 days at 37 ◦C to inhibit glycolipid
biosynthesis via the glycosylceramide synthase enzyme as described in [37], (c) 10 mU/mL
of Vibrio cholera neuraminidase for one hour at 37 ◦C to remove cell surface sialic acids, or
(d) 1 U/mL of Flavobacterium heparinum heparinase III for one hour at 37 ◦C to degrade HS.
Another variation to this experiment was (e) the preincubation of fiber knobs with a wide
range of concentrations of soluble GAGs for one hour at 4 ◦C before addition to cells.
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2.4. Infection Assay

A549, CHO-WT, CHO-∆HS or HuTu80 cells were grown as monolayers overnight
at 37 ◦C in 96-well clear bottom plates (Greiner bio-one, Kremsmünster, Austria). For
experiments blocking infection with soluble GAGs, the cell monolayers were washed three
times with serum-free medium and incubated with heparin-treated virions for one hour
on ice. Unbound virions were removed by washing the cells three times with serum-free
medium. Medium with 1% FBS was then added and the cells were incubated for 44 h at
37 ◦C. Next, the cells were washed with PBS and fixed with ice-cold methanol for 10 min at
−20 ◦C. Viral capsid proteins were stained with polyclonal rabbit antibodies diluted in PBS
for 30 min at room temperature. The cells were washed twice for 15 min with PBS and then
incubated with Alexa Fluor 647 goat antirabbit IgG (H+L) secondary antibody for detection
of infected cells, and Hoechst 33342 (Thermo Fisher Scientific, Waltham, MA, USA) for
visualization of cellular nuclei. After two more washes with PBS, number of transfected
cells were analyzed using the Tina program of the TROPHOS (Luminy Biotech Enterprises,
Marseille, France). For transduction with HAdV-F41 vector, the vector was incubated with
CHO cells for two hours on ice before adding medium with 1% FBS and incubating the
cells at 37 ◦C for 72 h. The cells were given a final PBS wash before analyzing them on
the TROPHOS.

2.5. 35S-Labeled Virion Binding Assay

Cells were detached with PBS-EDTA, reactivated in growth medium for one hour
at 37 ◦C, pelleted in V-bottom 96-well plates (2 × 105 cells/mL) and then washed with
serum-free media. We preincubated 2 × 109 35S-labeled virions with or without different
concentration of heparin in serum-free media for one hour at 4 ◦C and then added to the
cells in the plate and incubated for another hour at 4 ◦C (all steps were done in suspen-
sion). Unbound virions were washed away with PBS and cell associated radioactivity was
measured in a Wallac 1450 Microbeta liquid scintillation counter (Perkin Elmer, Waltham,
MA, USA). In the experiment with HAP1 cells, cells were first incubated with 2 µg/mL of
41LFKs for one hour on ice. Meanwhile, the virions were treated with simulated gastric
fluid without enzyme (pH 1.1–1.3; 2.0 g/l NaCl and 3.0 g/l HCl; based on synthetic gastric
fluid formulation by Ricca Chemical Company catalog #7108-16) or incubated with plain
DMEM for five minutes at 37 ◦C, and then neutralized with 20× volume of serum-free
media. Virions were subsequently incubated with or without 100 µM soluble heparin for
one hour on ice. The fiber knobs were washed away from the cells with serum-free media
and the virus-heparin mixture was added to the cells for one hour on ice.

2.6. HAdV Uptake Assay

Virus labeling: Purified HAdV-F40, -F41 and -C5 virions were labeled on free amine
groups with Alexa Fluor 488 NHS ester (Thermo Fisher Scientific, Waltham, MA, USA)
by incubating with a 10-fold molar excess of the dye in PBS, pH 7.4, for one hour under
rotation. Virions were then separated from free dye by CsCl gradient centrifugation as
in the initial purification described under Viruses/Vectors, with subsequent desalting on
NAP columns and elution in PBS, pH 7.4. Virions were supplemented with 4% glycerol
and frozen at −80 ◦C.

Imaging-based HAdV entry assay: A549 cells were seeded in 8-well µ-slides (Ibidi,
Gräfelfing, Germany; 45,000 cells/well) 24 h prior to experimentation. Alexa Fluor 488-
labeled HAdVs were preincubated with 0 µM, 100 µM or 1000 µM soluble heparin in
medium without FBS on ice for one hour. The virus-heparin mixtures were then added
to the cells and incubated for one hour on ice. Unbound virions were removed, and cells
were supplemented with growth medium to allow for virus entry for five hours at 37 ◦C.
The cells were then transferred back on ice, washed with cold PBS, blocked with cold
PBS containing 3% BSA for 15 min and stained for remaining extracellular virus particles
using anti-Alexa Fluor 488 antibody (Thermo Fisher Scientific, Waltham, MA, USA) and
antirabbit Alexa Fluor 568 antibody (Thermo Fisher Scientific, Waltham, MA, USA) in
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PBS with 3% BSA for 45 min each. Cells were washed with cold PBS and subsequently
fixed with 4% PFA at room temperature for 20 min. Cells were then stained with Hoechst
33342 (Thermo Fisher Scientific, Waltham, MA, USA) and Alexa Fluor 647-labeled wheat
germ agglutinin (WGA; Thermo Fisher Scientific, Waltham, MA, USA) for visualization of
cellular nuclei and plasma membrane, respectively. Images were acquired on a Leica SP8
confocal microscope with a 63× oil objective at the BICU imaging unit of Umeå University.
Sufficient fields of view were acquired for each condition in independent experiments to
reach a total of more than 100 cells. For HAdV-C5 and HAdV-F40, single medial focal
planes from random fields of view were acquired. For HAdV-F41, cell spanning stacks of
10 slices with 0.5 µm step size from random fields of view were imaged and converted
by maximum intensity projection (Fiji; [38]). Internalization ratio was determined by
primary object identification in CellProfiler (version 3.1.9; [39]) as follows: cell outlines
were determined using the cell counter stain WGA. Cell mask was transferred onto the
channels for all virus (Alexa Fluor 488) and extracellular virus (Alexa Fluor 568). Within
the masked images, virus particles per cell area were identified by primary object detection.

2.7. Surface Plasmon Resonance

SPR experiments were performed using BIAcore T200 optical biosensors (GE Health-
care, Chicago, IL, USA). CAR was covalently immobilized to CM5 sensor chips by standard
EDC/NHS coupling for 420 s at a flow rate of 10 µL/minute using a 50 µg/mL concen-
tration in 10 mM sodium acetate, pH 4.0. For heparin interaction a heparin chip (Xantec,
Düsseldorf, Germany) was used. For each BIAcore kinetic experiment, HAdV-F40, -F41
or 40SFK was pretreated with or without acidic pH as described under 35S-labeled virion
binding assay, followed by a buffer exchange to running buffer (20 mM sodium phos-
phate, 150 mM NaCl, with 0.05% (v/v) surfactant P20, pH 7.4) and injected for 120 s at
30 µL/minute followed by 120 s of dissociation. All covalent surfaces were regenerated
with one 30 s pulse of 10 mM glycine–HCl (pH 1.5, GE Healthcare, Chicago, IL, USA). All
experiments were conducted at 25 ◦C. Virus binding to CAR was corrected for binding
to an empty channel. Sensorgrams were calculated and processed using BIAcore T200
evaluation software (version 2.0, GE Healthcare, Chicago, IL, USA).

2.8. Statistical Analysis

The results are expressed as mean ± standard error of mean (SEM) and either t-test
or one-way ANOVA with Dunnett’s multiple comparison’s test was performed using
GraphPad Prism version 8.2.1. p-values < 0.05 were considered statistically significant. All
experiments were performed at least three times with duplicate samples.

3. Results
3.1. HAdV-F40 Short Fiber Knob Binding to Cells Requires Heparan Sulfate-Containing Proteins

The knob domain of the fiber protein (FK) mediates the attachment of HAdVs to their
cellular receptors on host cells. Assuming that the short fiber knob (SFK) of enteric HAdVs
also contributes to cell attachment, we first characterized the nature of HAdV-F40 SFK
interaction partners by flow cytometry using A549 cells, a cell line that supports productive
infection of enteric HAdVs [40]. To test for dependence of proteins and glycolipids, we first
treated cells with either ficin, a cysteine endopeptidase or proteinase K, a broad-spectrum
serine protease to remove cell surface proteins, or with P4, an inhibitor of de novo glycolipid
biosynthesis. Treatment with ficin and proteinase K reduced binding of 40SFK by more
than 80% (Figure 1A), while the glycolipid biosynthesis inhibitor P4 had no effect on
binding of any of the FKs used (Figure 1B). We used CAR-binding HAdV-C5 fiber knob
(5FK) and HAdV-F40 long fiber knob (40LFK) as controls for the protease treatment and
the glycolipid-binding cholera toxin subunit B as a control for P4 treatment. As expected,
protease treatment reduced 5FK and 40LFK binding and P4 treatment diminished binding
of cholera toxin. Both 5FK and 40LFK bind CAR, but we observed a remarkable difference
in sensitivity to protease treatment between the two, with 40LFK being substantially more



Viruses 2021, 13, 298 6 of 17

sensitive than 5FK. In addition, we observed an increase in 5FK binding at low proteinase
K concentrations that could potentially result from the partial removal of the protein
factors from the cell surface revealing novel binding sites for 5FK. We did not evaluate
these results further as it did not fall within the scope of this study. The strong reduction
observed for 40SFK binding after protease treatment indicated that a protein component
is required for its efficient binding to A549 cells. Since P4 did not inhibit binding of 5FK,
40SFK or 40LFK, we concluded that glycolipids are not a target for these FKs. Next, we
investigated whether the 40SFK:cell interaction was a pure protein-protein interaction
or if glycans could also be involved. Along with being receptors for other HAdV types,
sialic acid-containing glycans [41] and HS proteoglycans [20] are abundantly expressed in
the intestinal glycocalyx [42,43], which makes them ideal attachment factors for viruses
attacking from the lumen. We treated A549 cells with V. cholerae neuraminidase, which
cleaves all sialic acids, and evaluated the binding of FKs. Neuraminidase pretreatment
reduced the binding of 40SFK by 30% and 40LFK by 10% (Figure 1C), while the sialic
acid-binding HAdV-G52 short fiber knob (52SFK) control [9] was reduced by more than
85%. Since neuraminidase reduced both 40SFK and 40LFK binding to A549 cells, we
also analyzed FK binding to sialic acid-expressing Pro-5 cells and Pro-5-derived, sialic
acid-lacking Lec2 cells [32,33]. We observed no significant reduction in 40SFK binding
to neuraminidase-treated Pro-5 cells as compared to untreated Pro-5 cells. However, a
slightly reduced binding was detected to sialic acid-deficient Lec2 cells as compared to
sialic acid-expressing Pro-5 cells (Figure 1D). As expected, a more significant reduction
was seen for the sialic acid-binding 52SFK control, while the CAR-binding 5FK and 40LFK
displayed no or low binding, respectively. Since 52SFK, the only other SFK found in
HAdVs, preferentially binds α2,8-linked polysialic acid [18], we also evaluated the binding
of 40SFK to polysialic acid-expressing SHSY-5Y cells and the polysialic acid-deficient
parental SK-N-SH cell line. We found that 40SFK bound to both cell types to a similar
extent (Figure 1E). Taken together, these results suggested that sialic acid-containing
glycans are not important attachment factors for 40SFK.Next, we treated A549 cells with
heparinase III from Flavobacterium heparinum, which cleaves cellular HS. The removal of
HS drastically reduced 40SFK binding, whereas there was little effect on the other FKs
(Figure 1F). An anti-HS antibody bound substantially less efficiently to heparinase III-
treated cells as compared to nontreated cells, demonstrating that heparinase III treatment
was efficient in cleaving HS from the cell surface. The reduced binding after both protease
and heparinase III treatment of target cells suggested that HS-containing proteins could
function as attachment factors for 40SFK on the cell surface.

3.2. HAdV-F40 SFK Binding to A549 Cells Requires Sulfated GAGs

To validate the effect of heparinase III treatment, and to determine the potential
specificity of 40SFK for specific GAG types, we next investigated binding of 40SFK to A549
cells in the presence of different, soluble GAGs potentially blocking cell binding. Flow
cytometry analysis of 40SFK binding after preincubation with soluble GAGs demonstrated
that all GAGs except HA reduced 40SFK binding but with varying efficiency (Figure 2A).
Heparin (a soluble analogue of HS) most efficiently inhibited binding with an inhibitory
concentration (IC50) as low as 1 nM. CS and DS also inhibited 40SFK binding but were
less efficient, being 50 and 100 times higher IC50, respectively, as compared to heparin. As
expected, we did not observe any significant inhibition of GAGs on 5FK binding to cells
(data not shown) since the domain of HAdV-5 that interacts with GAG is suggested to
be present on the fiber shaft and not the knob domain [20]. The inability of HA—a GAG
structurally similar to HS lacking sulfate groups—to decrease 40SFK binding indicated that
sulfation of GAGs was needed for efficient interaction. To further validate the interaction
with HS, we studied knob binding to CHO cells lacking or expressing HS. We observed
that 40SFK binding to CHO-∆HS cells (expressing all GAGs except HS) was completely
depleted as compared to the parental control cell line CHO-K1 (Figure 2B). Neither 5FK nor
40LFK bound efficiently to these cells, which was expected since these cells do not express
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CAR [44]. An anti-HS antibody was used to verify the absence of HS on CHO-∆HS. In
summary, these findings show that 40SFK interact with sulfated GAGs, preferably with HS.
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acid, (F) A549 cells pretreated with heparinase III—which cleaves heparan sulfate. Binding was determined by geometric
mean of fluorescence on a FACSLSRII flow cytometer and shown as % binding of fiber knobs on untreated cells in (A–C,F).
All experiments were performed three times with duplicate samples in each experiment. Error bars represent mean ± SEM.
* P < 0.05 and *** P < 0.001 versus control.
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concentrations of heparin in infection experiments. A dose-dependent decrease in HAdV-
F40 and -F41 infection was observed, with about 80% reduction at the highest concentra-
tion (Figure 3A). Heparin did not affect HAdV-C5 or HAdV-D36 infection but inhibited 
HAdV-D37, -F40 and -F41 infection with comparable efficiency. HS-binding HAdV-D37 
was included as a positive control [22,36]. The reduction of HAdV-F40 and -F41 infection 
after preincubation with heparin indicated that the enteric HAdVs required an interaction 
with HS for infection of A549 cells. To further examine the SFK:HS interaction without 
interference from the LFK:CAR interaction, we used CHO-cells since they do not express 
human CAR. We transduced CHO-K1 and CHO-ΔHS cells with a GFP-expressing HAdV-
F41 vector since CHO cells do not support viral hexon production used to quantify infec-
tion by WT viruses. Here, we observed an 80% decrease in transduction of the cells lacking 
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was observed with a GFP-expressing HAdV-C5 vector (data not shown). Additionally, 
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Figure 2. Effect of sulfation on FK binding: (A) 40SFK binding to A549 cells. Fiber knobs were pretreated with a broad
range of concentrations of different glycosaminoglycans (GAGs). (B) Fiber knob binding to CHO cells expressing or
lacking heparan sulfate (HS). HS expression levels are shown with an anti-HS antibody. The parental cell line CHO-K1
expresses GAGs and CHO-∆HS specifically lacks HS but expresses other GAGs. Binding was determined by geometric
mean of fluorescence on a FACSLSRII flow cytometer and shown as % binding of fiber knobs on untreated cells in (A). All
experiments were performed three times with duplicate samples in each experiment. Error bars represent mean ± SEM.
Error bars represent mean ± SEM. *** P < 0.001 versus control.

3.3. Sulfated GAGs Play an Important Role in HAdV-F40 and -F41 Infection of A549 Cells

Since soluble, sulfated GAGs reduced 40SFK binding to A549 cells, we tested their
effect on HAdV infection of A549 cells. Due to the close relationship between HAdV-F40
and -F41 SFKs, we hypothesized that GAGs may be of importance for both viruses and
therefore included HAdV-F41 in the study. To investigate the importance of HS for these
viruses, we first analyzed the effect of preincubating wild type (WT) viruses with different
concentrations of heparin in infection experiments. A dose-dependent decrease in HAdV-
F40 and -F41 infection was observed, with about 80% reduction at the highest concentration
(Figure 3A). Heparin did not affect HAdV-C5 or HAdV-D36 infection but inhibited HAdV-
D37, -F40 and -F41 infection with comparable efficiency. HS-binding HAdV-D37 was
included as a positive control [22,36]. The reduction of HAdV-F40 and -F41 infection
after preincubation with heparin indicated that the enteric HAdVs required an interaction
with HS for infection of A549 cells. To further examine the SFK:HS interaction without
interference from the LFK:CAR interaction, we used CHO-cells since they do not express
human CAR. We transduced CHO-K1 and CHO-∆HS cells with a GFP-expressing HAdV-
F41 vector since CHO cells do not support viral hexon production used to quantify infection
by WT viruses. Here, we observed an 80% decrease in transduction of the cells lacking HS
(Figure 3B). No difference in transduction levels of CHO-∆HS compared to CHO-K1 was
observed with a GFP-expressing HAdV-C5 vector (data not shown). Additionally, upon
pretreatment of HAdV-F41 vector with heparin, transduction was lowered to the same
amount as in the CHO-∆HS cells (Figure 3C). Taken together these results show that HS is
important for the infection of cells by both HAdV-F40 and -F41.

3.4. HAdV-F40 and -F41 Binding to and Uptake in A549 Cells Is Not Affected by Heparin

As cell surface HS serves as an attachment factor for the SFKs of enteric HAdVs,
we next analyzed the role of HS during virion binding to A549 cells by preincubating
35S-labeled HAdV-F40 or -F41 virions with soluble heparin before attachment to cells.
Surprisingly, we did not see a decrease in HAdV-F40 or -F41 virion binding in the presence
of heparin, not even at a concentration of 1 mM (Figure 4A). This was peculiar since 40SFK
binding to A549 cells was completely blocked with as little as 10 nM of heparin (Figure 2A),
and infection was reduced with 100 µM heparin (Figure 3A). As expected, the binding of
the control virions to A549 cells was reduced in a dose-dependent manner (HAdV-D37) or
was unaffected (HAdV-C5) (Figure 4A).
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cells. The number of infected cells were quantified by immunofluorescence and shown as % infection of untreated HAdVs. 
(B) Transduction of HAdV-F41 GFP vector on CHO cells expressing or lacking heparan sulfate (HS) and (C) transduction 
of heparin pretreated HAdV-F41 GFP vector on CHO-K1 cells. The parental cell line CHO-K1 expresses glycosaminogly-
cans and CHO-ΔHS specifically lacks heparan sulfate but expresses other glycosaminoglycans. The number of in-
fected/transduced cells were quantified by immunofluorescence and shown as % infection of untreated A549 cells. All 
experiments were performed three times with duplicate samples in each experiment. Error bars represent mean ± SEM. 
*** P < 0.001 versus control. 
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2A), and infection was reduced with 100 µM heparin (Figure 3A). As expected, the bind-
ing of the control virions to A549 cells was reduced in a dose-dependent manner (HAdV-
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To investigate if HS was involved in virion internalization, Alexa Flour 488-labeled 
HAdV-F40 and -F41 virions were preincubated with heparin followed by a synchronized 

Figure 3. Importance of heparan sulfate on infection and transduction. (A) Infection of heparin pretreated HAdVs on
A549 cells. The number of infected cells were quantified by immunofluorescence and shown as % infection of untreated
HAdVs. (B) Transduction of HAdV-F41 GFP vector on CHO cells expressing or lacking heparan sulfate (HS) and (C)
transduction of heparin pretreated HAdV-F41 GFP vector on CHO-K1 cells. The parental cell line CHO-K1 expresses
glycosaminoglycans and CHO-∆HS specifically lacks heparan sulfate but expresses other glycosaminoglycans. The number
of infected/transduced cells were quantified by immunofluorescence and shown as % infection of untreated A549 cells. All
experiments were performed three times with duplicate samples in each experiment. Error bars represent mean ± SEM.
*** P < 0.001 versus control.

To investigate if HS was involved in virion internalization, Alexa Flour 488-labeled
HAdV-F40 and -F41 virions were preincubated with heparin followed by a synchronized
uptake into A549 cells for five hours at 37 ◦C, after which the number of extracellular and
intracellular virions were quantified by confocal microscopy. After five hours at 37 ◦C,
approximately 50% of HAdV-F40 and 20% of HAdV-F41 virions were internalized into
the cells (Figure 4B). Preincubation with heparin did not reduce internalization even at
high concentrations. Almost all HAdV-C5 virions were internalized regardless of heparin
treatment (Figure 4B). Since heparin did not affect the number of bound or internalized
HAdV-F40 and -F41 virions, these data suggest that the SFK:HS interactions do not con-
tribute to virion attachment or internalization at neutral pH.
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Figure 4. Effect of soluble heparin on virion binding and uptake in A549 cells. (A) 35S-labeled HAdV-F40 and -F41
virion binding to A549 cells. Virions were pretreated with different concentrations of soluble heparin. Binding to cells
was quantified as counts per minute (CPM) by a liquid scintillation counter and represented as % binding of untreated
virions. (B) HAdV-C5, -F40 and –F41 uptake in A549 cells. The number of intracellular virions were quantified by
immunofluorescence and shown as a relative % of internalized virus in the untreated sample. The experiments were
performed three times with duplicate samples. Error bars represent mean ± SEM. * P < 0.05 and *** P < 0.001 versus control.

3.5. LFK:CAR-Dependent Cell Attachment of Enteric HAdVs Is Switched to SFK:HS-Dependent
Cell Attachment after Virion Exposure to Acidic pH

Previous studies on SFs of enteric HAdVs suggest that the SF is important for the
enteric tropism of these viruses since it imparts resistance to acidic pH [29,30]. To further
understand the role of the SFK:HS interaction during enteric HAdV infection, we addressed
the potential impact of acidic pH on virion attachment to host cells. We analyzed the
binding of 35S-labeled virions to WT haploid HAP1 cells, derived from a human chronic
myelogenous leukemia cell line and to HAP1 cells devoid of CAR or GAGs. The absence of
CAR and HS from these cells was verified by flow cytometry using anti-CAR and anti-HS
monoclonal antibodies (data not shown). At neutral pH (Figure 5A), HAdV-F40 bound with
similar efficiency to HAP1 WT cells and HAP1-∆GAG cells, but to a substantially lower
degree to HAP1-∆CAR cells, suggesting that at this pH, HAdV-F40 virions bound to HAP1
cells mainly in a LF:CAR dependent manner, and did not rely on SF:GAG interactions. This
was further supported by the observation that the preincubation of cells with soluble, CAR-
binding 41LFK reduced binding of HAdV-F40 virions to CAR-expressing cells, while the
preincubation of virions with heparin did not affect binding to these cells (Figure 5A). After
the exposure of virions to acidic pH (pH 1.1 to 1.3) (Figure 5B) the binding of HAdV-F40 to
WT HAP1 cells remained high, while binding to HAP1-∆GAG cells decreased and binding
to HAP1-∆CAR cells increased, as compared to binding at neutral pH. Interestingly, at
acidic pH the preincubation of virions with heparin reduced HAdV-F40 binding to both
HAP1 WT cells and HAP1-∆CAR cells efficiently (Figure 5B).

The binding to HAP1-∆GAG cells in the presence of heparin was also reduced, but
to a lesser extent. On the other hand, the preincubation of cells with 41LFK did not affect
acidic pH-exposed virion binding. Similar results were observed when these experiments
were performed with HAdV-F41 (Figure 5C,D). Taken together, these results suggested
that virion exposure to acidic pH changes the mechanism by which enteric HAdVs attach
to host cells. The LFK:CAR interaction dominates in a neutral environment, but exposure
to acidic pH switches the mechanism of virion binding to be SFK:HS dependent.
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results support our theory that acidic pH exposed HAdV-F40 and -F41 lose their ability to 
bind CAR, but instead bind HS on target cells through an interaction with the SF. 

Figure 5. Effect of pH treatment on receptor usage: 35S-labeled HAdV-F40 and HAdV-F41 virion binding to HAP1 WT cells,
HAP1-∆GAG cells and HAP1-∆CAR cells. The parental cell line HAP1 WT expresses glycosaminoglycans (GAGs) and
CAR. HAP1-∆GAG lacks expression of GAGs, while HAP1-∆CAR lacks expression of CAR. (A) Untreated (neutral pH)
HAdV-F40 or (B) acidic pH treated HAdV-F40 or (C) untreated (neutral pH) HAdV-F41 or (D) acidic pH treated HAdV-F41
were preincubated with heparin and cells were preincubated with 41LFKs before binding. Binding to cells was quantified
as counts per minute (CPM) by a liquid scintillation counter. All experiments were performed three times with duplicate
samples in each experiment. Error bars represent mean ± SEM. * P < 0.05, ** P < 0.01 and *** P < 0.001 versus control.

3.6. Acidic pH-Exposed HAdV-F40 and -F41 Virions Lose CAR-Binding Capacity But Retain
HS-Binding Capacity

To validate the HAdV-F40 and -F41 preference for HS binding after exposure to acidic
pH, we performed surface plasmon resonance (SPR) studies with CAR or heparin attached
on the sensor chip and virions as the analyte. At neutral pH, both HAdV-F40 and -F41
virions displayed a very strong binding to CAR, which was almost completely abrogated
after exposure to acidic pH (Figure 6A–D). On the other hand, virion binding to heparin
was maintained at similar levels before and after acidic pH treatment (Figure 6E–H). When
the binding between 40SFK and heparin was tested (Figure 6I), we observed a substantially
increased binding after exposure of 40SFK to acidic pH (Figure 6J). These results support
our theory that acidic pH exposed HAdV-F40 and -F41 lose their ability to bind CAR, but
instead bind HS on target cells through an interaction with the SF.

3.7. Heparin Specifically Reduces Infection and Short Fiber Knob Binding on a Small Intestinal
Cell Line

HAdV-F40 and -F41 cause infection in the small intestine [45]. To validate the role of
HS in a more physiologically relevant cell line, we studied the importance of the SFK:HS
interaction using a small intestinal cell line, HuTu80. The results obtained with HuTu80 are
largely consistent with those obtained using A549 cells. Preincubation with soluble heparin
reduced 40SFK binding to HuTu80 cells very efficiently with more than 50% of the binding
reduced at 1 nM heparin (Figure 7A). As expected, heparin also inhibited 37FK binding
but not that of 40LFK or 5FK. We also observed that 40SFK binding was inhibited by CS,
but only at a much higher concentrations (Figure 7B), and not at all by HA (Figure 7C)
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suggesting that 40SFK interacts mainly with HS on these cells. Finally, the preincubation of
virions with heparin also reduced HAdV-F40 and -F41 (and positive control HAdV-D37)
infection of HuTu80 cells but did not influence infection of the negative control HAdV-
C5 (Figure 7D). Neither CS (Figure 7E) nor HA (Figure 7F) reduced HAdV-F40 and -F41
infection as efficiently as heparin. Taken together, these results demonstrate that enteric
HAdVs interact with HS through their short fibers on multiple cell lines, including small
intestinal cells.
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Figure 6. SPR analyses of HAdV-F40 and -F41 interactions with CAR and heparin and 40SFK interaction with heparin:
(A) Untreated (neutral pH) HAdV-F40 or (B) acidic pH-treated HAdV-F40 or (C) untreated (neutral pH) HAdV-F41 or
(D) acidic pH treated HAdV-F41 binding to immobilized CAR. (E) Untreated (neutral pH) HAdV-F40 or (F) acidic pH-treated
HAdV-F40 or (G) untreated (neutral pH) HAdV-F41 or (H) acidic pH treated HAdV-F41 or (I) untreated (neutral pH) 40SFK
or (J) acidic pH treated 40SFK binding to immobilized heparin. Interactions are displayed in response units (RU). All
experiments were performed three times. Displayed is one representative set from each experiment.
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shown as % binding of untreated fiber knobs. Infection of (D) heparin or (E) chondroitin sulfate mix 
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4. Discussion 
A distinguishing feature of enteric HAdVs is the presence of SFs in the viral capsid. 

The relatively high ratio of SFs to LFs suggests that SFs play an important role in the in-
fectious cycle of these viruses. Despite being a leading cause of diarrhea and diarrhea-

Figure 7. Effect of GAGs on fiber knob binding to and infection of HuTu80 cells: Binding of
(A) heparin or (B) chondroitin sulfate mix or (C) hyaluronic acid pretreated HAdVs on HuTu80 cells.
Binding was determined by geometric mean of fluorescence on a FACSLSRII flow cytometer and
shown as % binding of untreated fiber knobs. Infection of (D) heparin or (E) chondroitin sulfate
mix or (F) hyaluronic acid pretreated virions to HuTu80 cells. The number of infected cells were
quantified by immunofluorescence and shown as % infection of untreated HAdVs. All experiments
were performed three times with duplicate samples in each experiment.

4. Discussion

A distinguishing feature of enteric HAdVs is the presence of SFs in the viral capsid.
The relatively high ratio of SFs to LFs suggests that SFs play an important role in the
infectious cycle of these viruses. Despite being a leading cause of diarrhea and diarrhea-
associated mortality in young children, no cellular attachment factors have been identified
for the SFs of enteric HAdVs. Here, we demonstrate for the first time that HS is an
important host factor for infection by enteric HAdVs. We pinpoint this interaction to occur
through the SF by the observations that SF does not bind—(i) when cells are treated with
heparinase III, (ii) in the presence of heparin and (iii) when cells are devoid of HS. We
further demonstrate that enteric HAdVs undergo a switch in receptor usage when exposed
to pH mimicking the acidic environment in the stomach. Exposure of enteric HAdVs
to acidic pH resulted in a loss of LFK-dependent CAR-binding capacity but maintained
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SFK-dependent HS-binding to cells. Since enteric HAdVs are transmitted through the fecal–
oral route by the ingestion of contaminated food or water, we propose a novel function
of the short fiber, where it compensates for the loss of CAR-binding occurring during
passage through the harsh acidic environment of the digestive tract and facilitates a first
round of infection when reaching the permissive, HS-expressing cells in the small intestine.
Subsequent rounds of infection result in production and release of progeny virions to
an environment with neutral pH, where the LFK:CAR interaction can be of importance
for further spread of the infection. It has previously been shown that cells infected with
CAR-binding and CD46 binding HAdVs produce an excess of soluble fibers, which upon
release can disrupt intercellular CAR and CD46 homodimers and destroy the integrity of
tight junctions, thereby facilitating spread of progeny virions [46,47]. It is possible that
the LF of HAdV-F40 and -F41 could exert a similar function and enable the transmission
of the released progeny virions within a tissue, or between tissues. The released virions
will not be subjected to acidic pH and will therefore maintain their ability to bind CAR
in order to further propagate the infection. Exposure to gastrointestinal fluids is very
likely to cause structural alterations in virus particles, making them noninfectious or, as for
rotavirus, activating them to enable infection. Rotavirus requires proteolytic cleavage of
proteins in the outer capsid layer by enzymes present in digestive fluids to render it more
infectious [48]. For enteric HAdVs, the harsh environment of the stomach may destroy
the LF:CAR interaction that would make the virions less infectious without the rescuing
effect of the SF:HS interaction. Further studies are needed to address the exact molecular
mechanism behind the effect of acidic gastric juice on SFs.

The ability of 40SFK to bind cellular HS was efficiently blocked with nanomolar
concentrations of heparin. A significantly higher concentration was needed to reduce,
but not completely block, HAdV-F40 and -F41 infection. This can partly be explained by
the presence of the LF in the virion and its ability to interact with CAR as a receptor for
attachment and entry, independent of the SF. To our surprise neither virion binding nor
entry was affected by preincubation with heparin at neutral pH, indicating that the SF:HS
interaction is not of importance for these steps in the viral life cycle under physiological
conditions. Nevertheless, we observed a specific reduction of infection by heparin that
could not be seen with CS or HA: nor could it be explained by a general negative effect on
the cells since no effect was observed on the control viruses HAdV-C5 and HAdV-D36. We
speculate that under neutral pH, the intact LF:CAR interaction is mainly responsible for
virus entry and that heparin bound to the SF may block a subsequent interaction of the SF
with an intracellular protein needed for efficient infection. This theory is supported by the
suggestion that 41SF can interact with a novel intracellular protein, ParAd41, which may
facilitate attachment to the nuclear membrane prior to injection of DNA to the nucleus [49].

The only other HAdV to have a SF is HAdV-G52 [26]. The SF of HAdV-52 binds to long
negatively charged glycan chains of polymerized sialic acid residues known as polysialic
acid [18]. We show here that 40SFK does not bind polysialic acid as indicated by similar
binding levels to cells expressing and lacking polysialic acid. Instead 40SFK cellular binding
shows a dependency of sulfated GAGs, preferably HS. Polysialic acid is a posttranslational
modification present on proteins such as NCAM [50], SynCAM-1 [51], neuropilin-2 [52] and
CCR7 [53]. Since these proteins are absent or only expressed in low amounts on target cells
of the small intestine, they are unlikely receptor candidates for the SF of enteric HAdVs.
Although HAdV-G52 was isolated from a case of gastroenteritis, it was classified in a
separate species and is not considered one of the enteric HAdVs [26], which is the opposite
of HAdV-F40 and -F41, which are common in the human population [54,55]. HAdV-G52
is rarely isolated [56] and even though it is closely related to HAdV-F40 and -F41 it is
actually more similar to simian AdVs [26]. An interesting observation on the divergence of
species F and G, both containing short fibers, from the other HAdVs species, is the evolved
ability of short fiber binding to negatively charged glycans. While 52SFK has evolved to
bind polysialic acid, 40SFK and 41SFK binds heparan sulfate. It still needs to be explored
whether exposure to acidic pH causes a receptor switch for HAdV-G52 as well.
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The precise function of the short fibers of enteric HAdVs has been under investigation
for a long time. The 41SFK is suggested to function as a viral enterotoxin by stimulating
release of serotonin from enterochromaffin cells which could result in symptoms such as
vomiting and diarrhea. Furthermore, the SF of enteric HAdVs have been suggested to be
responsible for the restricted intestinal tropism since these viruses were shown to be more
resistant to acidic pH than other HAdV types [29,30]. This claim was refuted by another
study describing that a recombinant HAdV-C5 vector carrying the 41SFs showed reduced
affinity for enterocytes [57]. The latter study, however, did not subject the virions to acidic
pH, which could have affected their results and interpretations. Here, we identified HS as
an interaction partner to the SF and explained its role in cellular attachment after exposure
to acidic pH. In our opinion, the SF contributes to infection and pathogenesis through
at least two distinct mechanisms. Firstly, the SF preserves the infectivity of the virion
through an acidic gastric environment and enables the virions to attach to their host cell
through an interaction with HS. Secondly, as shown in another study, the SF stimulates
the production of serotonin, causing the symptoms of diarrhea and vomiting. This points
out the short fibers as key proteins, contributing not only to pathogenesis when serving
as viral enterotoxins, but also to infection of host cells. The ability of enteric HAdVs to
interact with HS adds to the knowledge about their distinct tropism. These results may
also be useful for the design of novel antiviral drugs and to explore enteric HAdVs as tools
for gene therapy and vaccine development.
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