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ABSTRACT

Transcription factor Foxm1 plays a critical role
during embryonic development and its expression
is repressed during retinoic acid (RA)-induced
differentiation of pluripotent P19 embryonal car-
cinoma cells at the early stage, correlated with
downregulation of expression of pluripotency
markers. To study whether Foxm1 participates in
the maintenance of pluripotency of stem cells, we
knock down Foxmi expression in P19 cells and
identify that Oct4 are regulated directly by Foxm1.
Knockdown of Foxm1 also results in spontan-
eous differentiation of P19 cells to mesodermal
derivatives, such as muscle and adipose tissues.
Maintaining Foxm1 expression prevents the down-
regulation of pluripotency-related transcription
factors such as Oct4 and Nanog during P19 cell dif-
ferentiation. Furthermore, overexpression of FOXM1
alone in RA-differentiated P19 cells (4 days) or
human newborn fibroblasts restarts the expression
of pluripotent genes Oct4, Nanog and Sox2.
Together, our results suggest a critical involvement
of Foxm1 in maintenance of stem cell pluripotency.

INTRODUCTION

Pluripotent stem cells are undifferentiated cells that can
give rise to several lineages of differentiated cell types (1).
They are the founder cells for every organ, tissue and cell
in the body. These cells are characterized by the ability to
self-renew and maintain pluripotency, which allows them
to fulfill their multiple functions, namely to provide
enough cells during organogenesis, to control tissue
homeostasis and, in addition, to ensure regeneration and
repair. Among the well-established pluripotent cells, such

as embryonic stem cells (ESCs) and embryonic germ cells
(EGCs), embryonal carcinoma cells (ECCs) are derived
from teratocarcinomas and have been well characterized
as pluripotent cell lines that can be maintained as undif-
ferentiated cells and induced under controlled conditions
to differentiate in vitro to any cell type of all three germ
layers (2), providing an attractive cell model system for
studying pluripotent stem cells. The mouse P19 EC cell
line was derived from a teratocarcinoma in C3H/He
mice, produced by grafting an embryo at 7 days of gesta-
tion to testes of an adult male mouse (3). The cells contain
a normal karyotype, predicting that the cells do not
possess any gross genetic abnormalities. When injected
into mouse blastocysts, P19 cells differentiate into a
broad range of cell types in the resulting chimeras (4).
P19 cells can differentiate in vitro into derivatives of all
three germ layers depending on chemical treatment and
growth conditions (5-7).

Understanding how pluripotency is regulated will have
a large impact on developmental biology studies and re-
generative medicine. Several transcription factors are
required for maintenance of pluripotency, including Oct4
Sox2, and Nanog, and inactivation of these genes leads to
loss of pluripotent stem cells and aberrant differentiation
(8-11). Recently, overexpression of a cocktail of transcrip-
tion factors (Oct4, Sox2, c-Myc and KIf4 or Oct4, Sox2,
Lin-28 and Nanog) has resulted in the induction of
pluripotency in somatic cells (12—14). These induced pluri-
potent stem cells (iPSCs) have all the properties of pluri-
potent cells, and the mechanism of this induction includes
modification of epigenetics that mediate large-scale regu-
lation of gene expression patterns (15). Growing evidence
suggests that additional factors also contribute to the
control of pluripotency (16,17) and identification of
novel factors that are involved in maintenance of
pluripotency is crucial and necessary for future applica-
tion of pluripotent stem cell derivatives in regenerative
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medicine and for reprogramming of differentiated somatic
cells.

Transcription factor Foxml belongs to the fork head/
winged-helix family of transcription factors that play im-
portant roles in maintaining pluripotency (18,19), cellular
proliferation and differentiation during embryonic devel-
opment (20-23) and also play roles in cancer (24). Foxm1
is expressed in proliferating mammalian cells (25,26),
where it regulates transcription of cell cycle genes critical
for progression into DNA replication and mitosis(27-30).
Foxml has been shown to be highly expressed in
multipotent progenitor cells, such as proliferating neural
stem cells in germinal regions of central nervous system
(31,32) and progenitor cells of hair follicles (33), and to
inhibit differentiation of the progenitors, implicating that
Foxml1 plays in maintaining multipotent progenitor cells
from divergent embryonic lineages. Although the func-
tions of Foxm1 in pluripotent cells are not characterized,
we have found in this study that pluripotent stem
cells express Foxml and its expression is dramatically
downregulated upon differentiation, suggesting that
Foxml1 expression in pluripotent stem cells is functionally
significant. Thus, Foxm1 appears to be a likely candidate
for searching novel factors in controlling the pluripotency
of stem cells.

In this study, we have investigated the possible role of
Foxml in maintenance of pluripotency of P19 EC cells.
We have shown that in response to retinoic acid (RA)
treatment, P19 cells lose their pluripotency rapidly,
evidenced by decreased expression of pluripotent stem
cell markers, and Foxml expression is also repressed.
The downregulation of Foxml protein levels happens
before the decrease of Oct4 and Nanog upon differenti-
ation. We have used an adenovirus-based vector to
express Foxml-specific siRNA to knock down Foxml
expression in pluripotent P19 cells. The expression of
Oct4 and Nanog are diminished by Foxml knockdown
and the Oct4 promoter is regulated directly by Foxml.
Knockdown of Foxml in P19 cells also results in spon-
taneous differentiation of P19 cells to mesodermal deriva-
tives, such as muscle and adipose tissues. We have used
an adenovirus vector to maintain Foxml expression,
which results in the prevention of Oct4 and Nanog
downregulation during P19 cell differentiation. In
differentiated cells, such as RA-differentiated P19 cells
(4 days) or human newborn fibroblasts, overexpression
of FOXMI1 alone restarts the expression of Oct4, Nanog
and Sox2. Together, our results suggest a critical in-
volvement of Foxml in maintenance of stem cell
pluripotency.

MATERIALS AND METHODS
Cell culture and RA-induced neural differentiation

The P19 EC cell line and human newborn fibroblasts was
purchased from ATCC. Adenovirus-purification 293A cell
line was purchased from Invitrogen. P19 cells were main-
tained in Dulbecco’s modified Eagle’s medium (DMEM)
containing 7.5% calf serum, 2.5% fetal bovine serum
(Gibco) and 0.5% penicillin streptomycin (Gibco) at

37°C in 5% CO,. 293A and human newborn fibroblasts
were maintained in DMEM containing 10% fetal bovine
serum. For RA-induced differentiation, P19 cell aggre-
gates were formed by placing 3 x 10° cells in a 100 mm
bacteriological dish (Petri dish) (Falcon) with addition
of 5x107’M all-zrans-RA  (Sigma) for 4 days.
Subsequently, the aggregates were replated on tissue
culture dishes (Corning) for further differentiation.

Adenovirus purification, infection and siRNA treatment

The adenovirus-based vector AdFoxmlIsiRNA that
expresses Foxml-specific siRNA was constructed with
Invitrogen Block-it Adenoviral RNAi Expression System
(Cat. No K4941-00 and V492-20), following the manufac-
turer’s instructions. A siRNA sequence 5-GGA CCA
CTT CCC TTA CTT T-3 from mouse Foxml cDNA
was used to design a double-strand DNA that
was recombinated into the adenovirus vector. The con-
structions of human FOXMIl-expression adenovirus
AdFOXMI1 and control virus AdLacZ or AAGFP were
described previously (34). The large-scale adenovirus puri-
fication and viral infections were carried out as previously
described (35). For siRNA treatment, mOct4 siRNA
(sc-36124) and control siRNA (sc-37007) were purchased
from Santa Cruz. The siRINA transfection was performed
according to the manufacturer’s instructions.

Isolation of RNA, reverse transcription polymerase chain
reaction and quantitative real-time PCR

Total RNA isolated from cell cultures were routinely used
for reverse transcription polymerase chain reaction
(RT-PCR) or quantitative real-time PCR (qPCR). Total
RNA was prepared by using RNAprep Pure Cell/Bacteria
Kits (Tiangen Biotech, China), following the manufac-
turer’s instructions. For RT-PCR, the cDNAs were
synthesized using RevertAid " First Strand cDNA
Synthesis Kits (Fermentas) with total RNA as templates.
PCR amplification was performed with Taqg DNA poly-
merase (Promega) with following sense (S) and antisense
(AS) primers, annealing temperature (7,) and number of
PCR cycles (N): mFoxml-S, 5-CAC TTG GAT TGA
GGA CCA CTT-3 and mFoxml-AS, 5-GTC GTT
TCT GCT GTG ATT CC-3 (T,: 57.5°C N: 35);
mOct4-S, 5-CAC TTT GGC ACC CCA GGC TA-¥
and mOct4-AS, 5-GCC TTG GCT CAC AGC ATC
CC-3 (T,: 58°C, N: 30); mSox2-S, 5-TGA CCA GCT
CGC AGA CCT AC-3 and mSox2-AS 5-GGA GGA
AGA GGT AAC CAC GG -3 (T, 55°C, N: 35);
mFgf4-S, 5-CAC GCG GCA CGC AGA ATT GG-¥
and mFgf4-AS, 5-ATG CTC ACC ACG CCT CGC
TG-3' (T,: 60°C, N: 30); mCripto-S, 5-CAT GGC ACC
TGG CTG CCC AA-3 and mCripto-AS, 5-GGC AGG
CGC CAG CTA GCA TA-3' (T,: 60°C, N: 30); mEras -S,
5-TGG GCG TCT TTG CTC TTG-3' and mEras -AS
5-TCG GGT CTT CTT GCT TGA TT-3' (T,: 62°C, N:
35); mUtf1-S, 5-CCG TCG CTA CAA GTT CCT CA-3
and mUtf1-AS, 5-GCA GCA ACG CGG TAT TCA-3'
(T,: 58.5°C, N: 30); mEsgl-S, 5-TGG TGA CCC TCG
TGA CCC GT-3' and mEsgl-AS, 5-ACA TGG CCT
GGC TCA CCT GC-3' (T,: 63°C, N: 30); mRexI-S,



-GGG TGC AAG AAG AAG CTG AG-3 and
mRex1-AS, 5-GCG TGG GTT AGG ATG TGA AT-3¥
(T, 57.5°C, N: 30); mCyclophilin-S, 5¥-GGC AAA TGC
TGG ACC AAA CAC-3' and mCyclophilin-AS, 5-TTC
CTG GAC CCA AAA CGC TC-3' (T, 57.5°C, N: 22);
hFOXMI-S, 5-GGA GGA AAT GCC ACA CTT AGC
G-3' and hFOXMI-AS, 5-TAG GAC TTC TTG GGT
CTT GGG GTG-3' (T,: 55.7°C, N: 35); hOct4-S, 5-AAG
CGA TCA AGC AGC GAC TAT-3 and hOct4-AS,
5-GGA AAG GGA CCG AGG AGTA CA-3 (T
60°C, N: 30); hNanog-S, 5-CAA AGG CAA ACA
ACC CAC TT-3' and hNanog-AS, 5-TCT GCT GGA
GGC TGA GGT AT-3 (T, 60°C, N: 30); hSox2-S,
5Y-ACC TAC AGC ATG TCC TAC TC-3 and
hSox2-AS, 5-CAT GCT GTT TCT TAC TCT CCT
C-3 (T,: 60°C, N: 32); and hCyclophilin-S, 5-GCA
GAC AAG GTC CCA AAG ACA G-3¥ and
hCyclophilin-AS, 5-CAC CCT GAC ACA TAA ACC
CTG G-3 (T,: 55.7°C, N: 22). For qPCR, two samples
were collected at each time point. Each sample was
analyzed in triplicate with cyclophline as the inner
control by real-time PCR with SYBR Green Supermix
(Bio-Rad, USA). Amplification data were collected by
Mastercycler ep realplex and analyzed by the realplex2.0
software (Eppendorf).

Western blot analysis and flow cytometry

To measure protein levels, cell lysates were resolved by
denaturing gel electrophoresis before electrotransfer to
Protran nitrocellulose membrane. The membrane was sub-
jected to western blot analysis with antibodies against
proteins of interest as described previously (36). The
signals from the primary antibody were amplified by
horse radish peroxidase (HRP)-conjugated anti-mouse or
anti-rabbit IgG (Bio-Rad, Hercules, CA, USA), and
detected with Enhanced Chemiluminescence Plus (ECL-
plus, Amersham Pharmacia Biotech, Piscataway, NIJ,
USA). The following antibodies and dilutions were used
for western blotting: rabbit anti-Foxml (1:500; abcam
ab47808), rabbit anti-Oct4 (1:500; Chemicon AB3209),
rabbit anti-Nanog (1:2500; Chemicon AB9220), rabbit
anti-Sox2 (1:1000; abcam ab59776), rabbit anti-Nestin
(1:2500; Chemicon AB5922), mouse anti-Tubulin
BIIT (1:1000; Chemicon MABI1637) and mouse anti-
B-Actin (1:10000; Sigma AC-15). For flow cytometry,
cells at the certain time point were dissociated with
0.025% trypsin and 10 cells were incubated with 10 pl
of antibody against protein of interest in 100 pl buffer
(0.5% BSA, 2mM EDTA, 1X PBS) for 10min at 4°C.
The cells were washed by adding 2ml buffer and
centrifuged 10min (300g) and resuspended in 500 pl
buffer. Samples were analyzed for flow cytometry on
FACSCalibur (BD Biosciences) with SSEA-1-PE
antibody (R&D Systems FAB2155P).

Teratoma formation

Cells (1.5 x 10° cells/mouse) were injected subcutaneously
into the dorsal flank of 6-week-old male nude mice. Three
weeks after the injection, teratomas that had formed were
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fixed overnight in 4% PFA and embedded in paraffin.
Sections were stained with hematoxylin and eosin dyes.

Alkaline phosphatase staining

Cells were fixed with 50% acetone and 50% methanol at
room temperature for 2 min and stained using an alkaline
phosphatase (ALP) staining kit (Vector Laboratories
Burlingame) according to a standard protocol.

Chromatin immunoprecipitation assays and
cotransfection assays

Chromatin immunoprecipitation (ChIP) assays were per-
formed as previously described (35). For immunopre-
cipitation, 2pul of rabbit anti-FOXMI1 serum (27) or
control serum was used. The ChIP DNA sample or 5%
total input was used in PCR reaction with the following
primers: mOct4 promoter —3155bp forward: 5'-GCC
TTG GAC CTT TGT TCT TAT CAC-3 and mOct4
promoter —2985bp backward: 5-TCT GTC TCG GAG
TTC TGT CTG GAG-3 (T,: 56°C, N: 35); and mOct4
promoter —1335bp forward: 5-GGA GCA GAC AGA
CAA ACA CCA TC-3' and mOct4 promoter —1148 bp
backward: 5-TGG CGG AAA GAC ACT AAG GAG
AC-3 (T,: 62.5°C, N: 35).

For cotransfection assays, the mouse Oct4 promoter
regions were PCR amplified from mouse genomic DNA
with the following primers: mOct4 —1331 Mlul: 5-CGA
CGC GTC AGA GCA TGG TGT AGG AGC A-3 or
mOct4-1249 Mlul: 5-CGA CGC GTT AAG CAC CAG
GCC AGT AAT G-3’, and mOct4+29 Bglll: 5-GGA
AGA TCT GTG GAA AGA CGG CTC ACC TA-3,
and cloned into the corresponding Mlul and BgllI sites
of the pGL3 basic Luciferase vector (Promega). The
mouse Oct4 promoter —3550 to —2817 region was PCR
amplified from mouse genomic DNA with the following
primers: mOCT4 —3550 Mlul: 5-CGA CGC GTC TAA
CAC GAG TGA TTT CCC TGC TC-3" and mOct4-2817
Mlul backward: 5-CGA CGC GTG GTG TCT GAA
GTA CTT ACG-3/, and cloned into the corresponding
Milul site of pGL3-Oct4-1361-bp-promoter. The site-
directed mutagenesis was performed by GenScript. P19
cells were transfected with 200ng of either CMV-
FOXM1 cDNA or CMV empty expression vectors and
1500 ng of the Luciferase reporter constructs containing
different mouse Oct4 promoter regions using Lipofecter
2000 (Invitrogen). Protein extracts were prepared from
transfected P19 cells at 48 h following DNA transfection
and the Dual-Luciferase Assay System (Promega) was
used to measure Luciferase enzyme activity following the
manufacturer’s instructions.

Statistical analysis

We used Microsoft Excel Program to calculate SD and
statistically significant differences between samples using
the Student’s #-test. The asterisks in each graph indicate
statistically significant changes with P-values calculated by
Student’s t-test: *P <0.05, **P <0.01 and ***P <0.001.
P-values < 0.05 were considered statistically significant.
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RESULTS

To confirm that P19 EC cells are pluripotent stem cells, we
tested whether the cells were capable of forming teratomas
upon subcutaneous inoculation into nude mice. The tera-
tomas formed by P19 cells contained tissues of all three
germ layers including neural rosette (ectoderm), cuboidal
epithelium  (endoderm) and muscle (mesoderm)
(Supplementary Figure S1A), revealing that P19 cells
possess the pluripotency. P19 cells were known to differ-
entiate to neural cells by RA treatment in vitro when
aggregated to form embryoid bodies (EBs) (5,7). We con-
firmed that RA-induced P19 cell neural differentiation
displayed at least three phases: the first phase in which
P19 cells lost their pluripotency, marked by decrease of
alkaline phosphatase activity (Supplementary Figure S1B)
and disappearance of the expression of the pluripotency
marker Nanog at RA induction (Supplementary
Figure S1C); the second phase in which certain percentage
of P19 cells committed to the neural differentiation and
neural stem-like cells appeared, evidenced by elevated ex-
pression of neural stem cell marker Nestin that peaked at
Day 3 after RA treatment (Supplementary Figure S1C)
and increased cell populations positive with neural stem
cell-surface marker Prominin-1 (homolog of human
CD133) (Supplementary Figure S1D); and the terminal
differentiation phase (6—7 days following RA treatment)
in  which differentiated neuronal cell populations
appeared, evidenced by elevated expression of
neuron-specific marker NeuroD1 and Tubulin BIII
(Supplementary Figure SIC and S1E-K).

Foxml is repressed at early time points during
differentiation and knockdown of Foxml
results in loss of pluripotency of P19 cells

Transcription factor Foxm1 highly expressed in P19 pluri-
potent cells and its expression decreased dramatically
between Day 1 to Day 2 following RA treatment
(Figure 1A and B), suggesting the reduction of Foxml
was one of the early events during differentiation of the
pluripotent cells and Foxm1 might participate in the main-
tenance of P19 cell pluripotency. The reduction of Foxml
expression post RA treatment was correlated with the
decreased expression of many of the known
pluripotency-related genes, such as Oct4, Nanog, Sox2,
Fgf4, Cripto and Utfl (Figure 1A and B and
Supplementary Figure S2). Interestingly, the down-
regulation of Foxml occurred before the decrease of
Oct4 expression during differentiation, implicating
that Foxml might be one of the upstream controlling
factors of Oct4 expression in the maintenance of stem
cell pluripotency. This idea was further confirmed
by Foxm1 knockdown experiments, in which the infection
of AdFoxmIsiRNA resulted in the decreased activity
of alkaline phosphatase in P19 cells (Figure 1C). Control
adenovirus infections determined that almost 100% of
the cells were infected with the wviral dosage at
10 plaque-forming units (pfu)/cell (35) and the infection
of AdFoxmlsiRNA could knockdown the Foxml
mRNA expression around 95% (Figure 1D, qPCR).
The decreased expression of Foxml resulted in

downregulation of levels of cell cycle-related genes such
as Cyclin D1, Skp2, Cdc25B and Cdk1 and consequently
the decrease of proliferation rate in P19 cells
(Supplementary Figure 3S) as expected because Foxml
was found to stimulate transcription of cell cycle genes
critical for progression into DNA replication and mitosis
(27-30). On the other hand, knockdown of Foxml does
not affect survival of P19 cells (Supplementary Figure S3
and Figure 3C). The inhibition of Foxml expression by
AdFoxmlsiRNA also abolished the expression of Oct4
and Nanog in P19 cells (Figure 1D and E), implicating
that the levels of Oct4 and Nanog in pluripotent stem
cells rely on the Foxml expression. Taken together, our
data reveal that Foxml highly expressed in the undiffer-
entiated P19 pluripotent cells and was downregulated
by the differentiation process. Importantly, inhibition of
its expression caused the loss of pluripotency of P19
cells, implying its role in maintaining the pluripotency of
stem cells.

Knockdown of Foxml1 resulted in spontaneous
mesodermal differentiation of P19 cells

To test whether knockdown of Foxm1 promoted spontan-
eous differentiation in P19 cells, we analyzed the expres-
sion levels of differentiation markers in AdFoxm1siRNA-
infected P19 cells, including Map2 (ectoderm), Brachyury
(mesoderm) and Gata4 (endoderm). Without obvious
effects on the expression of Map2 and Brachyury (data
not shown), knockdown of Foxml in P19 cells resulted
in a rapid increase of Gata4 expression (Figure 2A). Gata4
was known to be one of the major transcription factors
that stimulated cardiogenesis during development (37-39)
even though it was frequently used as a marker for endo-
dermal derivatives during differentiation of pluripotent
stem cells (40). Flow cytometry was performed to
measure the expression of SSEA-1, which highly expresses
in mouse pluripotent stem cells, in P19 cells and
AdFoxmIsiRNA-infected P19 cells (3d). We used mouse
embryonic fibroblasts as negative control cells and mouse
ES cells as positive control cells. AdFoxm1siRNA infec-
tion resulted in significant decrease of SSEA-1 in P19 cells
(Figure 2B). We performed the teratoma formation
in vivo with AdFoxmlsiRNA-infected P19 cells and
found that P19 cells with decreased levels of Foxml
produced significantly smaller teratomas (Figure 2C).
Compared with the control P19 cell-formed teratomas,
which expressed all three germ layer differentiation
markers, teratomas formed with AdFoxmlsiRNA-
infected P19 cells only expressed mesodermal marker
Brachyury (Figure 2D). Moreover, the expression of
cardiac  muscle-specific  Actcl was detected in
AdFoxmlsiRNA-infected teratomas, implicating that in-
hibition of Foxml limited the multipotentials of P19 cell
differentiation and caused P19 cell spontaneous differen-
tiation to cardiomyocytes in vivo. This possibility was
further confirmed by hematoxylin and eosin-stained
sections from teratomas of AdFoxmlsiRNA-infected
P19 cells, in which only mesodermal derivatives such as
muscle and adipose connective tissues were observed
(Figure 2E).
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Figure 1. The expression of Foxml was repressed during RA-induced P19 cell differentiation and knockdown of Foxml decreased alkaline phos-
phatase activity and the expression of pluripotency genes. (A and B) Gene expression analysis of Foxm1, Oct4, Nanog and Sox2 during RA-induced
differentiation of P19 cells by RT-PCR or quantitative real-time PCR (qPCR) (A) or western blotting (B). Cyclophilin or B-actin was used as the
loading control. (C) P19 cells, P19 cells infected with AAGFP control virus or AdFoxml1siRNA virus (10 pfu/cell, 3 days) were stained for alkaline
phosphatase. (D and E) Knockdown of Foxm1 decreased the expression of pluripotency markers in P19 cells. P19 cells were infected with AAGFP or
AdFoxmlIsiRNA (10 pfu/cell) and gene expression analysis of Foxml, Oct4, Nanog and Sox2 was performed by RT-PCR or qPCR (D) or western

blotting (E).

Foxml1 binds to and stimulates Oct4 promoter

To test whether Foxm1 was one of the regulators of Oct4
transcription, we scanned —5kb promoter region of
mouse Oct4 gene with the Foxm1 DNA binding consensus
sequence, and found multiple tandem Foxml putative
binding sites at the regions of —3434 to —3415bp,
—2895 to —2880bp and —1328 to —1313 bp in the Oct4
promoter (Figure 3A). We used ChIP assays to determine
the Oct4 promoter regions that mediate Foxm1 binding to

endogenous Oct4 promoter at physiological conditions.
The chromatin of P19 cells or RA-induced (3d) P19 cells
was cross-linked, sonicated to DNA fragments of 500—
1000 nt in length, and then immunoprecipitated (IP) with
either rabbit Foxm1 antiserum or rabbit serum (control).
The amount of promoter DNA associated with the IP
chromatin was quantitated by RT-PCR with primers
specific to Oct4 promoter region —3155bp to —2985bp
or —1335bp to —1148 bp. Compared to the RA treated
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Figure 2. Knockdown of Foxml resulted in spontaneous mesodermal differentiation of P19 cells. (A) Knockdown of Foxml increased the expres-
sion of differentiation marker Gata4 in P19 cells. P19 cells were infected with AAGFP or AdFoxm1siRNA (10 pfu/cell) and gene expression analysis
of Foxml and Gata4 was performed by RT-PCR. (B) Knockdown of Foxml resulted in significant decrease of SSEA-1 in P19 cells. Flow cytometry
was used to measure cell populations of SSEA-1 in P19 cells and AdFoxml1siRNA-infected P19 cells (3d). MEFs were used as negative control cells
and mouse ES cells were used as positive control cells. (C) Teratoma formation was abrogated in P19 cells with decreased levels of Foxml.
Teratomas collected from the nude mice injected with Adcontrol or AdFoxmlsiRNA-infected P19 cells are shown. (D) Teratomas formed with
AdFoxmlsiRNA-infected P19 cells expressed mesodermal marker Brachyury and cardiac muscle-specific Actcl. The total RNAs isolated from
teratomas of P19 cells or AdFoxmlsiRNA-infected P19 cells were analyzed for selected genes by RT-PCR. (E) Knockdown of Foxml in P19
cells resulted in differentiation of mesodermal derivatives in teratoma formation. Hematoxylin and eosin-stained sections from teratomas of

AdFoxmlIsiRNA-infected P19 cells after 3 weeks were shown.

samples that showed no Foxml specific binding, P19
pluripotent cell samples showed obvious binding activities
of Foxml on the Oct4 promoter region around —3 kb but
not the —1.3kb region (Figure 3B). These results con-
firmed that Foxml bound directly to endogenous Oct4
promoter at —3 kb upstream region in pluripotent stem
cells. To test whether Foxml activates Oct4 promoter,
luciferase reporter plasmids with different length of
mouse Oct4 promoter regions were constructed and trans-
fected into P19 cells with the CMV-Foxml expression
vector or a CMV empty expression vector. Luciferase
enzyme activity was analyzed following transfection.
Cotransfection of Foxml expression vector caused a
significant increase in —3kb Oct4 promoter activity
(Figure 3C). The activities of Oct4 promoters with differ-
ent length were inhibited at different levels during
RA-induced P19 cell differentiation (Figure 3D).
Furthermore, only the activities of the Oct4 promoter
that binds Foxml were affected significantly by Foxml
depletion (Figure 3E). To further prove that Oct4 is a
bona fide target for Foxm1, we generated point mutations
on the Foxml putative binding site A and B, and found
that the luciferase activities of mutated promoters were
decreased significantly compared with that of the intact
promoter when cotransfected with the Foxm1 expression
plasmid (Figure 3F). Together, these results demonstrated

that the Oct4 gene was one of the direct transcriptional
targets of Foxml1 in pluripotent stem cells.

Maintained expression of FOXMI1 prevented the
downregulation of pluripotency marker expression
during P19 cell differentiation

In order to determine the effects of maintained Foxml
expression during differentiation of P19 cells, we used an
adenovirus vector AdFOXM1 (34) constructed with
human FOXMI1 cDNA to prevent the downregulation
of Foxml protein post RA treatment. ADFOXM]1 infec-
tion resulted in efficient expression of exogenous human
FOXMI1, with no effects on the expression of endogenous
Foxml in P19 cells (Figure 4A). Then, P19 cells infected
with AJFOXMI1 were induced to differentiation accord-
ing to the standard protocol one day after viral infection.
Maintained expression of FOXM1 prevented the decrease
of mRNA levels of pluripotency genes such as Oct4,
Nanog, Sox2 and endogenous Foxml that were
downregulated by differentiation in P19 cells or control
AdGFP-infected P19 cells (Figure 4B). The analysis of
Oct4 protein levels confirmed the prevention of Oct4
protein decrease during P19 cell differentiation by
AdFOXMI1 infection (Figure 4C). Next, we studied the
effects of re-expression of FOXMI1 in differentiated P19
cells. P19 cell EBs were treated with RA for 4 days till the
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Figure 3. Foxml binds to and stimulates Oct4 promoter. (A) The predicted positions of putative Foxm1 binding sites in —5 kb mouse Oct4 promoter
by gene sequence analysis and the positions of primers designed for ChIP assays. (B) FoxA1l bound to endogenous Oct4 promoter. ChIP assays were
used to show direct binding of Foxml to endogenous Oct4 promoter regions. The chromatin of P19 cells or RA-induced (3d) P19 cells was
cross-linked, sonicated, and immunoprecipitated (IP) with either Foxml antiserum or rabbit serum (control) and the amount of promoter DNA
associated with the IP chromatin was quantitated by RT-PCR with primers specific to different Oct4 promoter regions. The predicted size of the
PCR product was 170 bp (ChIP1) or 187 bp (ChIP2). (C) The —3-kb region of Oct4 promoter mediated the transcription activity of Foxm1. The Oct4
promoters with different length were constructed into luciferase reporter plasmid. The different reporter plasmid (1.5pg) and loading control
pRL-CMV luciferase reporter plasmid (20ng) were transfected into P19 cells with the CMV-FOXMI1 expression vector (200ng) or a CMV
empty expression vector (200ng). Protein lysates were prepared at 24h following transfection, and used to measure dual Luciferase enzyme
activity. (D) The activities of Oct4 promoters with different length were inhibited at different degree during RA-induced P19 cell differentiation.
The different reporter plasmid (1.5pg) was transfected into P19 cells, followed by RA-induced differentiation. Three days later, the luciferase
activities were measured. (E) Only the Oct4 promoter that binds Foxml was inhibited by Foxml depletion. The different reporter plasmid
(1.5 ng) was transfected into P19 cells, followed by AdFoxml1siRNA infection. Two days later, the luciferase activities were measured. (F) Point
mutations on Foxml binding sites of the ~3kb Oct4 promoter inhibited Foxml-mediated transcription activity. Intact or mutated -3 kb Oct4
promoter-luciferase reporter plasmids (1.5png) were transfected into P19 cells with the CMV-FOXMI1 expression vector (200ng). The luciferase
activities were measured at 24 h following transfection. The asterisks indicate statistically significant changes: *P <0.05, **P <0.01, ***P <0.001.

cells lost the pluripotency and consequently the expression
of Oct4, Nanog and Sox2. The differentiated cells were
infected with AAFOXMI1 or control AAGFP and the ex-
pression analysis of selected genes were performed. We
found that the expression of exogenous FOXMI in the
differentiated P19 cells (RA/EB 4 day) started the expres-
sion of Oct4, Nanog, Sox2 and endogenous Foxml
(Figure 4D). The analysis of Oct4 and Nanog protein

levels further confirmed the results (Figure 4E). Flow
cytometry was performed to measure the SSEA-1 expres-
sion in the differentiated P19 cells infected with
AdFOXMI1 or AAGFP. The differentiated P19 cells (RA
4d) were used as negative control cells. We found that the
AdFOXMI infection in differentiated P19 cells resulted in
significant increase of SSEA-1 (Figure 4F). The staining
of alkaline phosphatase was performed to show that
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Figure 4. Maintained expression of FOXMI1 prevented the downregulation of pluripotency marker expression during P19 cell

differentiation.

(A) Overexpression of FOXMI1 in P19 cells by AJFOXMI infection. P19 cells were infected with AdGFP or AdFOXM1 (10 pfu/cell) and
mRNA levels of exogenous FOXMI1, endogenous Foxml, and loading control Cyclophilin were measured by RT-PCR. (B and C) P19 cells
infected with AAGFP or AAFOXM1 were induced to differentiation according to the standard protocol one day after viral infection. Gene expression
analysis of selected pluripotency genes was performed by RT-PCR (B) or western blotting (C). (D and E) The overexpression of FOXMI activated
expression of Foxml, Oct4, Nanog and Sox2 in the differentiated P19 cells. P19 cells were differentiated by RA treatment and 4 days later the cells
were infected with AJGFP or AAFOXMI. The expression analysis of selected genes was performed by RT-PCR (D) or western blotting (E). (F) The
overexpression of FOXMI1 activated expression of of SSEA-I in differentiated P19 cells. Flow cytometry was used to measure cell populations of
SSEA-1 in P19 cells (RA 4d), P19 cells (RA 4d)/AdGFP (3d), P19 cells (RA 4d)/AdFOXMI (3d) and P19 cells. P19 cells (RA 4d) were used as
negative control cells and P19 cells were used as positive control cells. (G) P19 cells (RA 4d)/AdGFP (3d) and P19 cells (RA 4d)/AdFOXM1 (3d)

were stained for alkaline phosphatase.

FOXMI1 overexpression also resulted in higher activities
of alkaline phosphatase in the differentiated P19 cells
infected with AAFOXM1 (Figure 4G). Therefore, these
data indicated a potential of Foxml to induce the expres-
sion of pluripotency-related genes in differentiated cells.

The overexpression of FOXMI1 activated the expression of
pluripotency-related genes in human newborn fibroblasts

We used human newborn fibroblasts to test whether
overexpression of FOXMI is able to induce the expression
of pluripotency-related genes in well differentiated somatic
cells. Human newborn fibroblasts were infected three
times by AdFOXM1 (100 pfu/cell) at 4 days interval
between each infection. Control AdLacZ infections
determined that almost 100% of the cells were infected
with the viral dosage at 100 pfu/cell (Supplementary
Figure S4). We noticed that the multiple AAFOXMI1 in-
fections caused dramatic morphology changes of human
newborn fibroblasts, which formed cell aggregates and
colonies afterwards (Figure 5A). Moreover, we found
that the colonies formed by AdFOXM -infected human
newborn fibroblasts possessed high levels of alkaline phos-
phatase activity (Figure 5B), suggesting that these colonies
started to have some characteristics similar to pluripotent

stem cells. Next, the human newborn fibroblasts infected
with AFOXM1 were analyzed for pluripotency markers
by RT-PCR. We found that the overexpression of
FOXMI1 activated expression of OCT4, NANOG and
SOX2 in human newborn fibroblasts (Figure 5C). Based
on the findings that mouse and human somatic cells can be
induced to acquire pluripotency by overexpression of
specific transcription factors such as OCT4 and
NANOG, the data of the ectopic expression of FOXM1
in human newborn fibroblasts suggested that FOXMI
might be one of the candidates for reprogramming
differentiated somatic cells to iPS cells. Future work will
be focused on testing this possibility.

DISCUSSION

Pluripotent stem cells are unique in their ability to remain
self-renewing and pluripotency in vitro and these
processes are tightly regulated by a network of transcrip-
tion factors (41). Our results for the first time define a role
for transcription factor Foxml in maintaining the
pluripotency of stem cells. The loss of Foxml expression
in pluripotent P19 cells results in the decreased activity of
alkaline phosphatase and the diminished expression of
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Figure 5. The overexpression of FOXMI activated the expression of pluripotency-related genes in human newborn fibroblasts. (A) The morphology
of FOXM1-overexpressed human newborn fibroblasts. Human newborn fibroblasts were infected three times by AAFOXMI1 (100 pfu/cell) at 4 days
interval between each infection. Pictures of human newborn fibroblasts or the cells post AAFOXM1 3X infections were taken at 200x magnification
using a TE2000 microscope (Nikon). (B) FOXMI-overexpressed human newborn fibroblasts obtained high levels of alkaline phosphatase activity.
The human newborn fibroblasts infected 3X with AdGFP or AAFOXM1 were stained for alkaline phosphatase. (C) The overexpression of FOXM1
activated expression of OCT4, NANOG and SOX2 in human newborn fibroblasts. The human newborn fibroblasts infected with AAFOXM]1 were
analyzed for selected genes by RT-PCR (C). The human EC cell line NT2/D1 was used as a positive control of human pluripotent stem cells.

pluripotency genes such as Oct4 and Nanog. Maintaining
Foxml expression prevents the downregulation of Oct4
and Nanog during P19 cell differentiation. Furthermore,
we also found that the stable expression of FOXMI1 in P19
cells prevented the downregulation of Oct4 expression
during RA-induced differentiation (Supplementary
Figure S5). Moreover, overexpression of FOXM1 alone
starts the expression of Oct4, Nanog and Sox2 in
RA-differentiated P19 cells or differentiated human
newborn fibroblasts. It is well known that Oct4, Nanog
and Sox2 form a regulatory feedback circuit to maintain
pluripotency in human and mouse ESCs (42,43). This
regulatory circuit, in which all three transcription factors
regulate themselves as well as each other to form an inter-
connected autoregulation loop, has been identified to be
essential to the ESC identity. Our results confirm that
Foxml maintains Oct4 expression by directly binding to
the Oct4 promoter, suggesting that Foxm1 is one of the
upstream regulators of Oct4 and possesses a plausible
position in the regulatory circuit of pluripotency.

This idea has been further confirmed by the experiments
of the combinantion of Oct4 knockdown and FOXM1
overexpression in P19 cells. The Oct4 specific siRNA
transfection (10nM) that inhibits Oct4 expression
resulted in the decreased levels of the alkaline phosphatase
activity and the expression of Sox2 but not Nanog in
P19 cells (Supplementary Figure S6). The AdFOXMI1
infection to the Oct4 knockdown cells caused the elevation
of alkaline phosphatase activity and the increased expres-
sion of Oct4 and Sox2 in these cells (Supplementary
Figure S6), implicating that the overexpression of
FOXMI1 activates the transcription of Oct4 mRNAs
which may compensate the siRNA-induced Oct4 mRNA
degradation. Because Oct4 acts as a major regulator that
activates target genes encoding pluripotency/self-renewal
mechanisms and represses signaling pathways promoting
differentiation (42—45), it is reasonable to believe that
Foxml contributes to the hallmark characteristics of
pluripotent stem cells through its regulation on Oct4
expression.
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The expression of Foxm1 is required for the repression
of pathways that promote differentiation because
knockdown of Foxml results in activation of Gata4 ex-
pression and spontaneous differentiation of pluripotent
P19 cells to mesodermal derivatives such as cardiac
muscle especially. Although Gata4 is frequently used as
a marker for endodermal derivatives during differenti-
ation of pluripotent stem cells (46), Gata4 is also con-
sidered as a key regulator of cardiogenesis (39). Gata4
possesses the ability to specify endoderm with temporal
and spatial specificity and to facilitate the generation of
cardiomyocyte progenitors from associated mesoderm
(40). It is known that the overexpression of Gata4
enhances cardiogenesis in P19 cells (47). It has been
shown that a balance between levels of Nanog and
Gatad/Gatab6 is necessary for differentiation into primitive
endoderm of the developing blastocyst (48). Nanog
represses the expression of Gata6 and Gata4, and
Gata4/Gata6 are upregulated in the absence of Nanog.
It is interesting to notice that knockdown of Foxml in
P19 cells results in the decreased expression of Nanog,
which may explain that knockdown of Foxml results in
activation of Gata4 expression in P19 cells. Whether the
increased expression of Gata4 is directly regulated by the
decrease of Foxml or through the reduced expression of
other pluripotency factors, such as Nanog, need to be
further investigated.

RA-initiated differentiation reduces the Foxm1 expres-
sion, which is correlated with the decreased expression of
many of the known pluripotency-related genes. The model
of RA-induced P19 cell differentiation, which mimics
events that occur during early development, has been
widely used for molecular analysis of in vitro differenti-
ation (49-54). As an important molecule for controlling
cell growth and differentiation in both embryo and adult,
RA functions by binding to the ligand-inducible transcrip-
tion factors (nuclear receptor proteins RARs and RXRs)
that activate or repress the transcription of downstream
target genes (55). RA-induced P19 cell differentiation is
followed by the repression of pluripotency genes such as
Oct4 (56). There are numerous publications suggesting
that the repression of pluripotency genes during differen-
tiation is regulated majorly by modifications of epigenet-
ics, such as DNA methylation of specific promoter regions
(57), histon modifications (58), and participation of
microRNAs (59). For example, differentiation-related
microRNA miR-124 is induced by RA to repress the ex-
pression of pluripotency-related Hes-1 during neuronal
differentiation of P19 cells (60). Given the evidence that
the reduction of Foxml expression is similar as that of
many pluripotency genes post RA treatment, we imagine
that the mechanisms of epigenetic modification are
involved in the regulation of Foxml expression during
RA-induced P19 cell differentiation. This hypothesis will
be elucidated by future studies.

Direct reprogramming of somatic cells into induced
pluripotent stem cells (iPSCs) can be achieved by
overexpression of transcription factors (Oct4, Sox2,
c-Myc and KliIf4 or Oct4, Sox2, Lin-28 and Nanog)
(12-14). In this study, we demonstrate that expressions
of Oct4, Nanog and Sox2 are upregulated by Foxml in

differentiated P19 cells or human newborn fibroblasts. On
the other hand, Foxml has been shown to activate the
expression of c-Myc directly (61). Based on the findings
in this study and published evidences that the increase of
the cell division rate results in an accelerated kinetics
of iPSC formation (62) and Foxml is a major stimulator
of cell proliferation (27), we hypothesize that Foxm1 may
be one of the candidates to help reprogramming somatic
cells into iPSCs.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online

FUNDING

Natural Science Foundation of China (grant numbers
30771096, 30871244 to Y.T.); Ministry of Science and
Technology of China (grant numbers SKLCBSC-
2007-05 to Y.T., 2009ZX10004-312, 2010DFB30300).
Funding for open access charge: Natural Science
Foundation of China (grant number 30771096 to Y.T.).

Conflict of interest statement. None declared.

REFERENCES

. Yu,J. and Thomson,J.A. (2008) Pluripotent stem cell lines.
Genes Dev., 22, 1987-1997.

2. Martin,G. (1980) Teratocarcinomas and mammalian
embryogenesis. Science, 209, 768-776.

. McBurney,M.W. and Rogers,B.J. (1982) Isolation of male
embryonal carcinoma cells and their chromosome replication
patterns. Dev. Biol., 89, 503-508.

4. Rossant,J. and McBurney,M.W. (1982) The developmental
potential of a euploid male teratocarcinoma cell line after
blastocyst injection. J. Embryol. Exp. Morphol., 70, 99-112.

. McBurney,M.W., Jones-Villeneuve,E.M., Edwards,M.K. and
Anderson,P.J. (1982) Control of muscle and neuronal
differentiation in a cultured embryonal carcinoma cell line.
Nature, 299, 165-167.

. Edwards,M.K., Harris,J.F. and McBurney,M.W. (1983) Induced
muscle differentiation in an embryonal carcinoma cell line.

Mol. Cell. Biol., 3, 2280-2286.

. Jones-Villeneuve,E.M., McBurney, M.W., Rogers,K.A. and
Kalnins,V.I. (1982) Retinoic acid induces embryonal carcinoma
cells to differentiate into neurons and glial cells. J. Cell. Biol., 94,
253-262.

. Nichols,J., Zevnik,B., Anastassiadis,K., Niwa,H., Klewe-
Nebenius,D., Chambers,I., Scholer,H. and Smith,A. (1998)
Formation of pluripotent stem cells in the mammalian embryo
depends on the POU transcription factor Oct4. Cell, 95, 379-391.

. Avilion,A.A., Nicolis,S.K., Pevny,L.H., Perez,L., Vivian,N. and
Lovell-Badge,R. (2003) Multipotent cell lineages in early mouse
development depend on SOX2 function. Genes Dev., 17, 126-140.

10. Mitsui, K., Tokuzawa,Y., Itoh,H., Segawa,K., Murakami,M.,
Takahashi,K., Maruyama,M., Maeda,M. and Yamanaka,S. (2003)
The homeoprotein nanog is required for maintenance of
pluripotency in mouse epiblast and ES cells. Cell, 113, 631-642.

. Chambers,I., Colby,D., Robertson,M., Nichols,J., Lee,S.,
Tweedie,S. and Smith,A. (2003) Functional expression cloning of
nanog, a pluripotency sustaining factor in embryonic stem cells.
Cell, 113, 643-655.

12. Takahashi,K. and Yamanaka,S. (2006) Induction of pluripotent
stem cells from mouse embryonic and adult fibroblast cultures by
defined factors. Cell, 126, 663-676.

13. Yu,J., Vodyanik,M.A., Smuga-Otto,K., Antosiewicz-Bourget,J.,

Frane,J.L., Tian,S., Nie,J., Jonsdottir,G.A., Ruotti,V., Stewart,R.

—_—

(98]

i

N

~

oo}

Nel

1

—



20.

21.

22.

23

24.

25.

26.

217.

28.

29.

30.

31

32.

33.

et al. (2007) Induced pluripotent stem cell lines derived from
human somatic cells. Science, 318, 1917-1920.

. Takahashi,K., Tanabe, K., Ohnuki,M., Narita,M., Ichisaka,T.,

Tomoda,K. and Yamanaka,S. (2007) Induction of pluripotent
stem cells from adult human fibroblasts by defined factors. Cell,
131, 861-872.

. Maherali,N., Sridharan,R., Xie,W., Utikal,J., Eminli,S.,

Arnold,K., Stadtfeld,M., Yachechko,R., Tchieu,J., Jaenisch,R.
et al. (2007) Directly reprogrammed fibroblasts show global
epigenetic remodeling and widespread tissue contribution.
Cell Stem Cell, 1, 55-70.

. Sato,N., Sanjuan,I.M., Heke,M., Uchida,M., Naef,F. and

Brivanlou,A.H. (2003) Molecular signature of human embryonic
stem cells and its comparison with the mouse. Dev. Biol., 260,
404-413.

. Richards,M., Tan,S.P., Tan,J.H., Chan,W.K. and Bongso,A.

(2004) The transcriptome profile of human embryonic stem cells
as defined by SAGE. Stem Cells, 22, 51-64.

. Hanna,L.A., Foreman,R.K., Tarasenko,l.A., Kessler,D.S. and

Labosky,P.A. (2002) Requirement for Foxd3 in maintaining
pluripotent cells of the early mouse embryo. Genes Dev., 16,
2650-2661.

. Liu,Y. and Labosky,P.A. (2008) Regulation of embryonic stem

cell self-renewal and pluripotency by Foxd3. Stem Cells, 26,
2475-2484.

Kaestner,K.H., Knochel,W. and Martinez,D.E. (2000) Unified
nomenclature for the winged helix/forkhead transcription factors.
Genes Dev., 14, 142-146.

Lehmann,O.J., Sowden,J.C., Carlsson,P., Jordan,T. and
Bhattacharya,S.S. (2003) Fox’s in development and disease.
Trends Genet., 19, 339-344.

Kaufmann,E. and Knochel,W. (1996) Five years on the wings of
fork head. Mech. Dev., 57, 3-20.

. Friedman,J.R. and Kaestner,K.H. (2006) The Foxa family

of transcription factors in development and metabolism.

Cell. Mol. Life Sci., 63, 2317-2328.

Myatt,S.S. and Lam,E.W. (2007) The emerging roles of forkhead
box (Fox) proteins in cancer. Nat. Rev. Cancer, 7, 847-859.
Costa,R.H., Kalinichenko,V.V., Holterman,A.X. and Wang,X.
(2003) Transcription factors in liver development, differentiation,
and regeneration. Hepatology, 38, 1331-1347.

Ye,H., Kelly, T.F., Samadani,U., Lim,L., Rubio,S., Overdier,D.G.,
Roebuck,K.A. and Costa,R.H. (1997) Hepatocyte nuclear factor
3/fork head homolog 11 is expressed in proliferating epithelial
and mesenchymal cells of embryonic and adult tissues.

Mol. Cell. Biol., 17, 1626-1641.

Wang,I.C., Chen,Y.J., Hughes,D., Petrovic,V., Major,M.L.,
Park,H.J., Tan,Y., Ackerson,T. and Costa,R.H. (2005) Forkhead
box M1 regulates the transcriptional network of genes essential
for mitotic progression and genes encoding the SCF (Skp2-Cksl)
ubiquitin ligase. Mol. Cell. Biol., 25, 10875-10894.

Laoukili,J., Kooistra,M.R., Bras,A., Kauw,J., Kerkhoven,R.M.,
Morrison,A., Clevers,H. and Medema,R.H. (2005) FoxM1 is
required for execution of the mitotic programme and
chromosome stability. Nat. Cell Biol., 7, 126-136.

Wang,X., Kiyokawa,H., Dennewitz,M.B. and Costa,R.H. (2002)
The Forkhead Box mlb transcription factor is essential for
hepatocyte DNA replication and mitosis during mouse liver
regeneration. Proc. Natl Acad. Sci. USA, 99, 16881-16886.

Ye. H., Holterman,A., Yoo,K.W., Franks,R.R. and Costa,R.H.
(1999) Premature expression of the winged helix transcription
factor HFH-11B in regenerating mouse liver accelerates
hepatocyte entry into S-phase. Mol. Cell. Biol., 19, 8570-8580.
Karsten,S.L., Kudo,L.C., Jackson,R., Sabatti,C., Kornblum,H.I.
and Geschwind,D.H. (2003) Global analysis of gene expression in
neural progenitors reveals specific cell-cycle, signaling, and
metabolic networks. Dev. Biol., 261, 165-182.

Ahn,J 1., Lee,K.H., Shin,D.M., Shim,J.W., Kim,C.M., Kim,H.,
Lee,S.H. and Lee,Y.S. (2004) Temporal expression changes during
differentiation of neural stem cells derived from mouse embryonic
stem cell. J. Cell. Biochem., 93, 563-578.

Lee,D., Prowse,D.M. and Brissette,J.L. (1999) Association
between mouse nude gene expression and the initiation of
epithelial terminal differentiation. Dev. Biol., 208, 362-374.

34.

35.

36.

37.

38.

39

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51

52.

Nucleic Acids Research, 2010, Vol. 38, No. 22 8037

Wang,X., Krupczak-Hollis,K., Tan,Y., Dennewitz,M.B.,
Adami,G.R. and Costa,R.H. (2002) Increased hepatic Forkhead
box MIB (FoxM1B) levels in old-aged mice stimulated liver
regeneration through diminished p27Kipl protein levels and
increased Cdc25B rxpression. J. Biol. Chem., 277, 44310-44316.
Tan,Y., Xie,Z., Ding, M., Wang,Z., Yu,Q., Meng,L., Zhu,H.,
Huang,X., Yu,L., Meng,X. er al. (2009) Increased levels of
FoxAl transcription factor in pluripotent P19 embryonal
carcinoma cells stimulate neural differentiation. Stem Cells Dev.,
PMID: 19916800 [Epub ahead of print; doi:10.1089/
scd.2009.0386].

Tan,Y., Raychaudhuri,P. and Costa,R.H. (2007) Chk2 mediates
stabilization of the FoxMI1 transcription factor to stimulate
expression of DNA repair genes. Mol. Cell. Biol., 27, 1007-1016.
Grepin,C., Robitaille,L., Antakly,T. and Nemer,M. (1995)
Inhibition of transcription factor GATA-4 expression blocks

in vitro cardiac muscle differentiation. Mol. Cell. Biol., 15,
4095-4102.

Lien,C.L., Wu,C., Mercer,B., Webb,R., Richardson,J.A. and
Olson,E.N. (1999) Control of early cardiac-specific transcription
of Nkx2-5 by a GATA-dependent enhancer. Development, 126,
75-84.

. Pikkarainen,S., Tokola,H., Kerkela,R. and Ruskoaho,H. (2004)

GATA transcription factors in the developing and adult heart.
Cardiovasc. Res., 63, 196-207.

Holtzinger,A., Rosenfeld,G.E. and Evans,T. (2010) Gata4

directs development of cardiac-inducing endoderm from ES cells.
Dev. Biol., 337, 63-73.

Jaenisch,R. and Young,R. (2008) Stem cells, the molecular
circuitry of pluripotency and nuclear reprogramming. Cell, 132,
567-582.

Boyer,L.A., Lee,T.1., Cole,M.F., Johnstone,S.E., Levine,S.S.,
Zucker,J.P., Guenther,M.G., Kumar,R.M., Murray,H.L.,
Jenner,R.G. et al. (2005) Core transcriptional regulatory circuitry
in human embryonic stem cells. Cell, 122, 947-956.

Loh,Y.H., Wu,Q., Chew,J.L., Vega,V.B., Zhang,W., Chen,X.,
Bourque,G., George,J., Leong,B., Liu,J. et al. (2006) The Oct4
and Nanog transcription network regulates pluripotency in mouse
embryonic stem cells. Nat. Genet., 38, 431-440.

Nichols,J., Zevnik,B., Anastassiadis,K., Niwa,H., Klewe-
Nebenius,D., Chambers,I., Scholer,H. and Smith,A. (1998)
Formation of pluripotent stem cells in the mammalian embryo
depends on the POU transcription factor Oct4. Cell, 95, 379-391.
Hay,D.C., Sutherland,L., Clark,J. and Burdon,T. (2004) Oct-4
knockdown induces similar patterns of endoderm and trophoblast
differentiation markers in human and mouse embryonic stem
cells. Stem Cells, 22, 225-235.

Soudais,C., Bielinska,M., Heikinheimo,M., MacArthur,C.A.,
Narita,N., Saffitz,J.E., Simon,M.C., Leiden,J.M. and Wilson,D.B.
(1995) Targeted mutagenesis of the transcription factor GATA-4
gene in mouse embryonic stem cells disrupts visceral endoderm
differentiation in vitro. Development, 121, 3877-3888.

Grepin,C., Nemer,G. and Nemer,M. (1997) Enhanced
cardiogenesis in embryonic stem cells overexpressing the GATA-4
transcription factor. Development, 124, 2387-2395.

Hyslop,L., Stojkovic,M., Armstrong,L., Walter,T., Stojkovic,P.,
Przyborski,S., Herbert,M., Murdoch,A., Strachan,T. and Lako,M.
(2005) Downregulation of NANOG induces differentiation of
human embryonic stem cells to extraembryonic lineages.

Stem Cells, 23, 1035-1043.

Pruitt,S.C. (1994) Discrete endogenous signals mediate neural
competence and induction in P19 embryonal carcinoma stem
cells. Development, 120, 3301-3312.

Pevny,L.H., Sockanathan,S., Placzek,M. and Lovell-Badge,R.
(1998) A role for SOX1 in neural determination. Development,
125, 1967-1978.

Lee,M.S., Jun,D.H., Hwang,C.I., Park,S.S., KangJ.J., Park,H.S.,
Kim,J., Kim,J.H., Seo.,J.S. and Park,W.Y. (2006) Selection of
neural differentiation-specific genes by comparing profiles of
random differentiation. Stem Cells, 24, 1946-1955.

Varga,B., Hadinger,N., Gocza,E., Dulberg,V., Demeter,K.,
Madarasz,E. and Herberth,B. (2008) Generation of diverse
neuronal subtypes in cloned populations of stem-like cells.

BMC Dev. Biol., 8, 89.



8038 Nucleic Acids Research, 2010, Vol. 38, No. 22

53.

54.

55.

56.

57.

Schwob,A.E., Nguyen,L.J. and Meiri,K.F. (2008) Immortalization
of neural precursors when telomerase is overexpressed in
embryonal carcinomas and stem cells. Mol. Biol. Cell, 19,
1548-1560.

Xia,C., Wang,C., Zhang,K., Qian,C. and Jing,N. (2007) Induction
of a high population of neural stem cells with anterior
neuroectoderm characters from epiblast-like P19 embryonic
carcinoma cells. Differentiation, 75, 912-927.

Soprano,D.R., Teets,B.W. and Soprano,K.J. (2007) Role of
retinoic acid in the differentiation of rmbryonal carcinoma and
embryonic stem cells. In Litwack,G. (ed.), Vitamin A., Vol. 75.
Academic Press, pp. 69-95.

Schoorlemmer,J., Jonk,L., Sanbing,S., van Puijenbroek,A.,
Feijen,A. and Kruijer,W. (1995) Regulation of Oct-4 gene
expression during differentiation of EC cells. Mol. Biol. Rep., 21,
129-140.

Deb-Rinker,P., Ly,D., Jezierski,A., Sikorska,M. and Walker,P.R.
(2005) Sequential DNA methylation of the Nanog and Oct-4
upstream regions in human NT2 cells during neuronal
differentiation. J. Biol. Chem., 280, 6257-6260.

58

59.

60.

—

6

62.

. Hattori,N., Imao,Y., Nishino,K., Ohgane,J., Yagi,S., Tanaka,S.

and Shiota,K. (2007) Epigenetic regulation of Nanog gene in
embryonic stem and trophoblast stem cells. Genes Cells, 12,
387-396.

Tay,Y., Zhang,J., Thomson,A.M., Lim,B. and Rigoutsos,l. (2008)
MicroRNAs to Nanog, Oct4 and Sox2 coding regions

modulate embryonic stem cell differentiation. Nature, 455,
1124-1128.

Wang,C., Yao,N., Lu,C.L., Li,D. and Ma,X. (2010) Mouse
microRNA-124 regulates the expression of Hesl in P19 cells.
Front Biosci., 2, 127-132.

. Wierstra,l. and Alves,J. (2007) FOXMIc and Spl transactivate

the P1 and P2 promoters of human c-myc synergistically.
Biochem. Biophys. Res. Commun., 352, 61-68.

Hanna,J., Saha,K., Pando,B., van Zon,J., Lengner,C.J.,
Creyghton,M.P., van Oudenaarden,A. and Jaenisch,R. (2009)
Direct cell reprogramming is a stochastic process amenable to
acceleration. Nature, 462, 595-601.



