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ABSTRACT: This study investigates four machine-learning (ML)
models to predict the redox potentials of phenazine derivatives in
dimethoxyethane using density functional theory (DFT). A small
data set of 151 phenazine derivatives having only one type of
functional group per molecule (20 unique groups) was used for the
training. Prediction accuracy was improved by a combined strategy
of feature selection and hyperparameter optimization, using the
external validation set. Models were evaluated on the external test
set containing new functional groups and diverse molecular
structures. High prediction accuracies of R2 > 0.74 were obtained
on the external test set. Despite being trained on the molecules
with a single type of functional group, models were able to predict
the redox potentials of derivatives containing multiple and different
types of functional groups with good accuracies (R2 > 0.7). This type of performance for predicting redox potential from such a small
and simple data set of phenazine derivatives has never been reported before. Redox flow batteries (RFBs) are emerging as promising
candidates for energy storage systems. However, new green and efficient materials are required for their widespread usage. We
believe that the hybrid DFT-ML approach demonstrated in this report would help in accelerating the virtual screening of phenazine
derivatives, thus saving computational and experimental costs. Using this approach, we have identified promising phenazine
derivatives for green energy storage systems such as RFBs.

1. INTRODUCTION
Today, ∼85% of the world’s energy demand is being fulfilled
by fossil fuels.1,2 The limited supply of fossil fuels and the ever-
increasing population have raised concerns that we might run
out of fossil fuels sooner than expected.1,3 Furthermore,
electricity production from fossil fuels is one of the major
factors responsible for greenhouse gas emissions.4 In this age,
humanity faces two major challenges of balancing increased
energy demand while reducing the environmental impact
associated with energy production. In the past decades,
investments and research efforts in the green technology
have been increased to overcome these challenges.5 Significant
progress has already been made to access renewable energy
sources.6,7 Renewable energy sources, being intermittent,
require efficient energy storage.4 Improvements in the energy
storage technology would not only help in the adoption of
renewable energy but also help in making efficient use of non-
renewable energy sources. Historically, it has been more
expensive to store energy than to expand energy generation for
handling increased demand.8 Thus, grid systems employed
today are likely to fail when additional energy cannot be
generated during peak demand. The massive Texas Blackout in
February 2021 is an example of such a failure.9 It suggests that
an efficient energy storage technology is urgently required.
Unfortunately, only 1.0% of the energy consumed worldwide

can be stored with the energy storage technology accessible
today.10 Furthermore, the contribution of electrochemical
batteries to energy storage capacity is less than 2.0%, even
though most of the devices we use every day include
batteries.8,10 Li-ion batteries are widely used today due to
their high energy density, high specific energy, long cycle life,
and fast charge−discharge cycle.4,8,11 Unfortunately, Li-ion
batteries suffer from high production costs, safety issues, and
high environmental impact.2,12 Redox flow batteries (RFBs)
have the potential to overcome drawbacks of Li-ion batteries,
owing to their high storage capacity, independent control over
storage capacity and power, fast responsiveness, ease of scaling,
room-temperature operation, cost-effectiveness, high round
trip efficiency, safety, and lower environmental impact.13−26

RFBs are increasingly being used as energy storage devices in
renewable energy systems, thereby helping in the adoption of
green energy.15,22 A schematic diagram of the typical RFB is
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shown in Figure 1. The RFB consists of two storage tanks
containing cathode and anode redox-active species dissolved in

an electrolyte solution. The electrolyte solution in the positive
and negative compartments is termed catholyte and anolyte,
respectively. These storage tanks are connected to an
electrochemical cell (or current collector) via pumps. The
electrochemical cell consists of porous electrodes separated by
an ion-selective membrane. During operation, electrolytes
containing redox-active species are pumped to the electro-
chemical cell, where they undergo oxidation or reduction
depending on the charge/discharge cycle. Then, electrolytes
are circulated back to their storage tanks.13,24 So far, transition
metal-based RFBs (such as vanadium, iron, and chromium)
have found some commercial success. However, their wide-
spread adoption has been limited mainly due to high
production cost, toxicity, and cell component corrosion
associated with the use of transition-metal salts.27,28 Therefore,
RFBs containing organic redox-active species are being heavily
investigated due to their low production cost, access to a
massive space of electroactive compounds, and low environ-
mental impact.28,29 Many organic compounds such as
quinones, viologens, flavins, thiazines, imides, and their
derivatives have been investigated for redox-active species in
both aqueous and non-aqueous RFBs.27,30,31 However, non-
aqueous RFBs offer large operating voltage.30 Recently,
phenazine derivatives have been shown to be promising
redox-active candidates in non-aqueous RFBs. Recent reports
have revealed why phenazine derivatives are promising redox-
active candidates. Romadina et al. synthesized phenazine
derivatives having significantly negative redox potential.32

RFBs require anolytes with high negative redox potential.
They showed that the non-aqueous RFB based on the
synthesized phenazine derivative is capable of achieving a
potential of 2.3 V, high capacities, >95% Coulombic efficiency,
and good charge−discharge cycling stability after the initial 20
cycles. Mavrandonakis and co-workers, in their computational
investigation, reported the most negative redox-active

candidate based on phenazine for non-aqueous RFBs.27 They
showed that tetra-amino-phenazine has 140 mV more negative
potential than N-methylphthalimide (MePht), which has one
of the most negative redox potentials reported so far in RFBs.33

They also proposed all-phenazine RFB reaching a high
potential of 2.83 V. Furthermore, the redox potential of
phenazine derivatives could be tuned easily with the addition
of appropriate electron-donating or electron-withdrawing
functional groups. The synthesis of phenazine derivatives is
very economical than mining transition metals. Therefore,
phenazine derivatives are currently being investigated as
candidates for novel redox-active species.27,32

These investigations remain primarily experimental. Un-
fortunately, the vast chemical space offered by organic
compounds cannot be explored using experimental procedures.
Quantum mechanical density functional theory (DFT)
computations have been used heavily in materials science
research due to high accuracy but are very slow and cannot
screen millions of molecules in a reasonable amount of time.
Therefore, a fast and reliable method to screen millions of
compounds without compromising accuracy is required. In this
regard, machine-learning (ML) algorithms have shown
excellent predictive accuracies along with short development
and prediction times.34−38 Therefore, ML models have been
used extensively to screen millions of molecules in materials
science and drug discovery.39−43 ML models generally require
a large amount of data for accurate predictions. When the
quantity of data is limited, feature engineering is employed to
generate the most informative features. These features are
expected to capture the appropriate molecular information
necessary to predict the target quantity. Feature engineering
requires domain knowledge, relying on having access to
experts.44−46 In small data sets, DFT-based or experimentally
determined features have been used due to their high accuracy.
However, some reports also explore simple features based on
the molecular structure.47−52

In this work, we investigated four ML models to predict the
redox potentials of phenazine derivatives in the dimethoxy-
ethane (DME) solvent. The training-set containing 151
phenazine derivatives was obtained from the previously
reported DFT study having 189 phenazine derivatives with
only one type of functional group per molecule (20 unique
functional groups).27 Molecular features were computed from
the optimized neutral structures using the RDKit python
library.53 Model accuracy was improved through feature
selection and hyperparameter optimization using the external
validation set. Then, the model performance was assessed on
the external test-set compiled from the literature consisting of
new functional groups, multiple functional groups, and diverse
structures. Their redox potential was computed using the DFT.
The trained models were employed to predict the redox
potentials of randomly generated phenazine derivatives with
multiple functional groups. We also carried out feature
importance analysis and discussed the structure−functional
relationship of phenazine derivatives. Finally, promising
candidates were identified for the anolyte from the external
test-set and multiple functional group test-sets.

2. MATERIALS AND METHODS
2.1. Computational Details. The redox potentials of

phenazine derivatives were computed using the DFT workflow
described in the paper by Mavrandonakis et al.27 All the DFT
calculations were performed with Gaussian 09 software.54

Figure 1. Schematic diagram of a typical RFB.
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Geometry optimization of neutral and reduced forms of
phenazine and its derivatives were carried out in the gas phase
by employing B3LYP/6-31+G(d,p) level of theory.55−58

Harmonic frequency analysis was performed for all the
structures to confirm them as minima. Solvation effects of
DME were incorporated during the single-point calculations
using the M06-2X functional,59 by employing the SMD
solvation model (details in the Supporting Information).60,61

The term “Redox Potential” in this report corresponds to the
“Reduction Potential” with respect to unsubstituted phenazine
molecule (i.e., the parent phenazine). The redox potentials of
phenazine derivatives were computed using the following
equations:

[ ] + [ ] → [ ] + [ ]− −PZ XPZ PZ XPZ (1)

= −
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where PZ symbolizes the parent phenazine, XPZ represents the
substituted phenazine molecules, E1(ref)

0 is the reported redox
potential of parent PZ,27 ΔG(rxn,sol) corresponds to the free
energy change of the reaction, F is the Faraday constant, n is
number of electrons involved in the reduction, and G(sol)

0

represents the final composite free energy of individual species,
which was calculated by adding the free energy contribution
computed at the B3LYP level of theory, G(therm,gas)

(B3LYP) , to the
single-point energies calculated at the M06-2X level of theory:
E(sol)
M06‑2X.
2.2. Data Generation. 2.2.1. Training-Set and Internal

Test−Test. These data sets were obtained from work reported
by Mavrandonakis and co-workers.27 In their report, the redox
potentials of 189 phenazine derivatives were computed using
DFT in the DME solvent. These DFT redox potentials were
used as a target property in this work during training and
testing. 20 unique electron-withdrawing and electron-donating
functional groups were present in the data set [−N(CH3)2,
−NH2, −OH, −OCH3, −P(CH3)2, −SCH3, −SH, −CH3,
−C6H5, −CHCH2, −F, −Cl, −CHO, −COCH3, −CONH2,

Table 1. Representative Structures from Training-Set/Internal Test-Seta

aMol IDs were assigned to identify derivatives from the corresponding data set.

Table 2. Representative Structures from the External Test-Seta

aMol IDs were assigned to identify derivatives from the corresponding data set.
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−COOCH3, −COOH, −CF3, −CN, and −NO2]. It should be
noted that phenazine derivatives in this data set contain only
one type of functional group per molecule. The optimized 3D
structures of derivatives in neutral and in anionic states were
also provided. However, only neutral structures were used in
this study. Unfortunately, not all compounds were supplied
with their neutral structure, those compounds were modeled,
and their optimized structures were added to the data set.
Next, 208 different types of features were generated using the
RDKit python library.53 The list of all features is given in Table
S1 of Supporting Information. The features were scaled using
the “StandardScaler” class of the scikit-learn library,62 removing
the mean and scaling each feature to unit variance. Finally, the
whole data set was shuffled and split randomly into a training-
set and test-set in an 8:2 ratio (151 samples in the training-set
and 38 samples in the test-set). A few phenazine derivatives
from the training-set/internal test-set are shown in Table 1.
2.2.2. External Test-Set. This data set was compiled from

different reports studying various properties of phenazine
derivatives.63−67 Their redox potentials were computed using
DFT and used as a target property during testing. We gathered
a total of 30 phenazine derivatives. Derivatives containing five
or more substituted rings were removed. Also, derivatives
having drastically different neutral and anion structures were
removed. In the end, 22 diverse phenazine derivatives with
multiple types of functional groups remained in the external
test-set. Table 2 shows some of the structures from this data
set. It can be seen that this data set contains unique and
different structures compared to the training-set.
2.2.3. Multiple Functional Group Test-Sets. This data set

contains two test-sets: (i) two functional group test-set and (ii)
three functional group test-set. These test-sets were generated
by randomly choosing the position and the type of the
functional group from this list [−N(CH3)2, −NH2, −OH,
−OCH3, −P(CH3)2, −SCH3, −SH, −CH3, −C6H5, −CH
CH2, −F, −Cl, −CHO, −COCH3, −CONH2, −COOCH3,
−COOH, −CF3, −CN, and −NO2]. 20 derivatives having two
different types of functional groups per molecule were
generated for two functional group test-set. Similarly, 20
derivatives having three different types of functional groups per
molecule were generated for three functional group test-set.
Their redox potentials were computed using DFT and used as
a target property during testing. Five derivatives from two and
three functional group test-sets were removed to form an
external validation set. Thus, the final size of two and three

functional group test-sets was reduced from 20 to 15. In this
report, the term “multiple” refers to the derivatives containing
different types and more than one functional group. Similarly,
the terms “two functional groups” and “three functional
groups” refer to the derivatives containing two different types
of functional groups and three different types of functional
groups per molecule, respectively. A few representative
structures from these test-sets are shown in Table 3.

2.2.4. External Validation Set. An external validation set of
10 phenazine derivatives was compiled from two and three
functional group test-sets. Five derivatives from two functional
group test-set and five derivatives from three functional group
test-set were selected. Their redox potentials were computed
using DFT and used as a target property. This validation set
does not come from the training-set. Therefore, it is termed as
an external validation set. It was used for feature selection and
hyperparameter optimization. External validation set improves
generalization by transferring knowledge from the test-set to
models through hyperparameters.

2.3. Hyperparameter Optimization. Hyperparameters of
the models were optimized using the “GridSearchCV” class of
the scikit-learn library.62 During hyperparameter optimization,
models were trained on the training-set and evaluated on the
external validation set. Mean squared error (MSE) was used as
an evaluation metric for hyperparameter optimization. The
grid of hyperparameters for each model is given in Table S2 of
Supporting Information. The parameter grid was adjusted
manually.

2.4. ML Models. Following four ML models were
investigated in this study. These models were chosen due to
their ability to generalize from small data sets. Models were
implemented with the scikit-learn python library.62 First,
models were trained on the training-set containing all 208
features, followed by hyperparameter optimization. Then, the
models were re-trained on different subsets of features to
identify the set of features having the highest average
performance on the external validation set. Once the optimum
features were identified, hyperparameter optimization was
performed with the selected features to improve the model
performance further.

2.4.1. Automatic Relevance Determination Regression
(ARDR). This is a probabilistic model related to the sparse
Bayesian learning (SBL) framework. It assumes axis-parallel,
elliptical Gaussian distribution for each coefficient. The
precision of each Gaussian distribution is drawn from the

Table 3. Representative Structures from Multiple Functional Group Test-Setsa

aMol IDs were assigned to identify derivatives from the corresponding data set.
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prior distribution (gamma distribution); therefore, it can lead
to sparser coefficients. Thus, it is an effective tool to remove
irrelevant features.68,69

2.4.2. Gaussian Process Regression (GP). It is a non-
parametric Bayesian model. The nonparametric Bayesian
model provides the probability distribution of parameters
over all possible functions that fit the data. The prior in a
Gaussian process is specified on the function space. Gaussian
process prior is a multivariate normal distribution whose mean
is obtained from the data, and covariance is specified using the
kernel function. The hyperparameters of the kernel are
optimized during the training.70,71 We used a combination of
WhiteKernel and RBF kernel. WhiteKernel is used for specifying
the noise level, and RBF kernel is a very popular kernel used in
many algorithms.
2.4.3. Kernel Ridge Regression (KRR). It is the extension of

ridge regression with kernel trick. In ridge regression, a linear
model is leaned with the l2-norm regularization. Using the
kernel trick, KRR learns a linear function in the high
dimensional non-linear space without actually transforming
the data.72

2.4.4. Support Vector Regression (SVR). This model is the
regression form of the support vector machine (SVM), a
popular algorithm for classification tasks. Analogous to the
SVM, SVR depends on the subset of training data and ignores
the points whose prediction is close to their true value. SVM
also utilizes the kernel trick and learns a hyperplane in the high
dimensional space.73

2.5. Evaluation Metrics. The following metrics were used
for evaluating the model performance. In the formulas below,
N denotes the number of data points, ŷi denotes the predicted
value of ith sample, and the yi denotes the corresponding true
value.

• Coefficient of determination (R2):

= −
∑ −

∑ − ̅

̂=

=

R
y y

y y
1

( )

( )
i
N

i i

i
N

i

2 1
2

1
2

where

̅ =
∑ =y

y

N
i
N

i1

• Mean Squared Error (MSE):

=
∑ − ̂=MSE

y y

N

( )i
N

i1
2

• Mean Absolute Error (MAE):

=
∑ | − |̂=MAE

y y

N
i
N

i i1

The use of terms “Accuracy” and “Performance” in this
report is contextual and refers to one or more metrics defined
above.
2.6. Feature Selection. As the number of features

obtained from the RDKit library was more than the size of
training-set, it was necessary to implement a feature selection
strategy. It has been observed that the training-set containing
more features than data points leads to overfitting.30 Feature

selection was implemented using the “SelectKBest” class of the
scikit-learn library.74 The parameter “k” of the “SelectKBest”
class was obtained by evaluating the average performance of
models on the external validation set at different values of “k.”
First, models were trained on the training-set containing all
features, followed by hyperparameter optimization. Then, the
models were re-trained on the subsets of features selected
using “SelectKBest” class at different values of “k.” These values
for “k” were tested: 50, 75, 100, 125, 150, and 208. The
average model performance at different values of “k” on the
external validation set is shown in Table 4. It can be seen that

the models trained on 100 selected features show the highest
average performance in terms of R2. Therefore, these 100
features were selected for the subsequent analysis. The models
trained on 100 selected features were further improved
through hyperparameter optimization.

2.7. Feature Importance Analysis. Feature importance
analysis was performed using the technique known as
permutation importance. In this technique, values of the
feature to be assessed are randomly shuffled (permuted).
Then, prediction accuracy is computed on the shuffled data
set. Shuffling feature values is equivalent to replacing the
feature with noise, thereby removing its information from the
data set. Therefore, the model is expected to perform poorly
on the shuffled data set if the feature is important. The degree
of importance depends on the amount of variation in the
accuracy. This technique does not re-train the model;
therefore, a trained model is required. The permutation
importance was computed using “permutation_importance”
class of the scikit-learn library and the training-set.75 This
procedure was repeated 100 times to obtain reliable estimates.
The feature importance scores were rescaled between 0 to 1.
The mean and standard deviation of the feature scores were
reported. The mean feature score was used for the ranking of
individual features. The terms “Feature” and “Descriptor” are
used interchangeably in this report.

3. RESULTS AND DISCUSSION
3.1. Test-Set Performance. We assessed the general-

izability of the trained models (i.e., performance on the unseen
data) using internal and external test-sets. Please refer to
Section 2 for the preparation of internal and external test-sets.
As the internal test-set comes from the same source, it is very
similar to the training-set and contains derivatives with only
one type of functional group per molecule. However, the
external test-set is compiled from multiple sources, therefore, it
has very diverse phenazine derivatives with different types of
functional groups. It also contains functional groups and
structures not present in the training-set (e.g., −NHPh, −Br,
and extended conjugation). Figure 2 shows the performance
on the internal test-set, and Figure 3 shows performance on the
external test-set. It can be seen that all models have excellent
accuracy on the internal test-set (R2 > 0.98) and high accuracy

Table 4. Average Model Performance on External
Validation Set at Different Values of “k”

values of “k”

performance metric 50 75 100 125 150 208

R2 0.45 0.42 0.57 0.55 0.54 0.54
MSE 0.02 0.02 0.02 0.02 0.02 0.02
MAE 0.12 0.12 0.10 0.10 0.10 0.10
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on the external test-set set (R2 > 0.74). The GP model
achieved the highest R2 of 0.89 on the external test-set. After
deep analysis in Section 3.3, it was revealed that GP is not a
stable model, whereas relatively low-performing models KRR
(R2 = 0.83) and SVR (R2 = 0.85) are more stable. Therefore,
one should be careful while using the high-performing model,
and the stability of the model should also be considered. The
values of performance metrics on internal and external tests are

shown in Table 5. Such a performance on the external test-set
is surprising as models were trained on the phenazine

derivatives having only one type of functional group. These
results show that ML models are capable of generalizing from a
very small and simple data set.

3.2. Prediction on Multiple Functional Group Test-
Sets. Next, we assessed the model performance on the
phenazine derivatives substituted with different types of
functional groups per molecule. These test-sets were generated
randomly; please refer to Section 2 for the generation of this
data set. Figures 4 and 5 show the performance on the

derivatives containing two and three different functional
groups, respectively. It can be seen that the models performed
reasonably well (R2 > 0.7) even though molecules used for the
training had only one type of functional group per molecule. In
particular, GP model achieved the highest performance of R2 =
0.82 on two functional groups test-set. However, automatic
relevance determination regression (ARDR) achieved the
highest performance of R2 = 0.82 on three functional groups
test-set. A deeper analysis of GP and ARDR in Section 3.3
suggests that GP and ARDR are not very reliable models.
Although KRR and SVR have relatively low performance, they

Figure 2. Plots showing ML predictions on internal test-set (y-axis) vs
DFT redox potentials (x-axis). Gray dashed line corresponds to the
perfect predictions.

Figure 3. Plots showing ML predictions on external test-set (y-axis)
vs DFT redox potentials (x-axis). Gray dashed line corresponds to the
perfect predictions.

Table 5. Values of Performance Metrics on Internal and
External Test-Setsa

Internal test-set External test-set

Model name R2 MSE MAE R2 MSE MAE

ARDR 0.98 0.01 0.06 0.74 0.06 0.18
GP 0.99 0.01 0.05 0.89 0.03 0.11
KRR 0.98 0.01 0.05 0.83 0.04 0.14
SVR 0.98 0.01 0.07 0.85 0.03 0.13

aNumbers were rounded upto two decimals.

Figure 4. Plots showing ML predictions on two functional group test-
set (y-axis) vs DFT redox potentials (x-axis). Gray dashed line
corresponds to the perfect predictions.
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are more reliable. Therefore, one should be careful while using
a high-performing model, and the model’s reliability and
stability should also be considered. Nevertheless, these results
again show the surprising generalization power of ML models.
Furthermore, we added all 15 derivatives from two

functional group test-set to the training-set and re-trained
the models on this new data set of 166 derivatives. The
predictive performance of this combined data set was assessed
on the same data set of 15 derivatives containing three
different types of functional groups. The results of this analysis
are shown in Figure 6. It can be seen that the model
performance has improved with the addition of more data in
the training-set.
3.3. Feature Importance Analysis. We carried out

feature importance analysis using permutation importance.
Please refer to Section 2 for the details on the technique. In
order to understand how model performance changes with the
number of descriptors, we re-trained the models on the subset
of features and assessed their performance on the internal test-
set. Top 50 features based on their permutation importance
score were used. R2 was used as a performance metric. The
result of this analysis is shown in Figure 7. It can be seen that
most of the models show a jump in the R2 and have R2 > 0.9
around the top 10 features. The unusual behavior of the GP
model is attributed to the instability of the model for a small
number of features. The plots in Figure 8 show the histograms
of the top 10 important features from each model. Although
models show variation in feature importance, they all agree in
terms of the most important feature that is, “PEOE_VSA1.”
Interestingly, most of the features in ARDR have small weights
as ARDR tries to prune the large number of irrelevant features,
leading to a sparse model.69,76 Five out of 10 features
“MaxAbsPartialCharge,” “PEOE_VSA1,” “f r_ArN,” “f r_NH0,”
and “f r_NH2” are common to all models. Variations in the
feature importance scores could be attributed to the difference

in the internal structures of the models. Here, we discuss some
of the common features from Figure 8.

Figure 5. Plots showing ML predictions on three functional group
test-set (y-axis) vs DFT redox potentials (x-axis). Gray dashed line
corresponds to the perfect predictions.

Figure 6. Plots showing ML predictions on three functional group
test-set (y-axis) vs DFT redox potentials (x-axis). The combined data
set (training-set + two functional group test-set) was used for the
training. Gray dashed line corresponds to the perfect predictions.

Figure 7. R2 vs number of descriptors. R2 was computed using the
internal test-set. In this study, we identified a few issues with ARDR
and GP. Despite high predictive performance, ARDR is not a reliable
model as it places very high weight on one feature (i.e.,
“PEOE_VSA1”). Similarly, GP is not a reliable model as it becomes
unstable when the small number of features are used. We encountered
divided by zero errors in the kernel function during the analysis with
the GP model.
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3.3.1. PEOE_VSA1. This is the sum of the approximate
accessible van der Waals surface area (i.e., VSA in Å2) of the
atoms having partial charge less than −0.30.77−79 The partial
charges are computed using the partial equalization of orbital
electronegativities (PEOE) method developed by Gasteiger
and Marsili in 1980. Please refer to the discussion of
MaxAbsPartialCharge descriptor for the PEOE method.
Thus, this descriptor captures the information related to
molecular size and the number of electron-donating functional
groups.
3.3.2. MaxAbsPartialCharge. This is the maximum value of

the absolute Gasteiger partial charges present in the molecule.
In 1980, Gasteiger and Marsili gave the procedure to calculate
the partial charges in a molecule. That procedure is known as
PEOE. In this method, the charge is transferred between

bonded atoms until equilibrium. Gasteiger partial charges
depend on the connectivity and orbital electronegativity, thus
capturing the electron-donating and electron-withdrawing
power of the atoms.80 Electronegativity is essential information
as electron-donating groups decrease the redox potential, and
electron-withdrawing groups increase the redox potential.27

3.3.3. MinPartialCharge. This is the minimum value of the
Gasteiger partial charges present in the molecule. Please refer
to the discussion of MaxAbsPartialCharge descriptor for the
properties of Gasteiger partial charges.

3.3.4. fr_NH0. It is the number of tertiary amines present in
the molecule.

3.3.5. fr_ ArN. It is the number of N functional groups
attached to aromatic rings.

3.3.6. fr_NH2. It is the number of primary amines.
3.3.7. NHOHCount. It is the number of N−H and O−H

bonds present in the molecule.
From the analysis in this section, we realized that there are

some issues with the ARDR and GP which are outlined below.
One should be very careful while using ARDR and GP models.

3.3.8. Issues with the ARDR Model. As ARDR is related to
the SBL framework, it reduces the number of irrelevant
features. Unfortunately, in this case, ARDR has put a lot of
weight on only one feature, that is, “PEOE_VSA1” (Figure 8).
Surprisingly, ARDR also archives an accuracy of more than
0.95R2 only with the two features (Figure 7). Although it has
shown good performance on the data set used in this work, it
may not work for the broad chemical space. This type of
behavior reduces the reliability of the model.

3.3.9. Issues with the GP Model. From Figure 7, it can be
seen that the model’s accuracy decreases with more features,
and at around 10 features, there is a significant drop in the
performance. We also encountered divided by zero errors in
the kernel function during this analysis. This shows that GP
may not be a very stable model in this case.

3.4. Structure−Functional Relationship. “PEOE_VSA1”
is the most important descriptor common to all models. It is
computed by summing over the approximate accessible VSA
(i.e., in Å2) of the atoms having partial charge less than
−0.30.77−79 Thus, the “PEOE_VSA1” descriptor captures the
information related to molecular size and the number of

Figure 8. Top 10 features (y-axis) vs mean feature importance score
(x-axis). Feature importance scores were rescaled between 0 to 1.
Error bars represent standard deviation from 100 repetitions.

Figure 9. Redox potential vs“PEOE_VSA1.”
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electron-donating functional groups present in the molecule.
From Figure 9, we can see that the redox potential of
phenazine derivatives decreases with the increasing value of
“PEOE_VSA1.” The Pearson correlation coefficient between
“PEOE_VSA1” and redox potential is −0.69, supporting the
the observation. We observed that the value of “PEOE_VSA1”
is higher for the systems having delocalization of negative
partial charge. The delocalized system contains more atoms
with the negative partial charge than the corresponding
localized system. Thus, the number of atoms contributing to
“PEOE_VSA1” in delocalized systems is higher than localized
ones. The effect of delocalization of partial charge on
“PEOE_VSA1” is shown in Figure 10 with a few examples
from the training-set. Thus, for designing better anolytes, it is
suggested to increase the delocalization of negative partial
charge in the phenazine derivatives.
The redox potential of phenazine derivative depends on the

type of functional group, the position of attachment, and the
number of functional groups. Two types of functional groups
have been investigated in this study: (i) electron-donating, and

(ii) electron-withdrawing. The redox potential of parent
phenazine without any functional group is −1.74 V. When
the redox potential of the derivative decreases (i.e., less than
−1.74 V) after the attachment of functional groups, then it is
called a negative shift. Similarly, if it increases, it is called a
positive shift. The shift is quantified as the difference between
the redox potential of phenazine derivative and parent
phenazine. After sorting phenazine derivatives based on the
redox potential, it was observed that electron-donating groups
show a negative shift, whereas electron-withdrawing groups
show a positive shift. Thus, the shift corresponding to electron-
donating groups is negative and electron-withdrawing groups is
positive. The redox potentials of phenazine derivatives were
computed using the approach discussed in Section 2.1.
Equation 2 shows that functional groups stabilizing the anionic
form of phenazine derivatives have high redox potential. In
contrast, those that destabilize the anionic form have low redox
potential. Therefore, electron-withdrawing groups show a
positive shift as they stabilize the anionic form, and electron-
donating groups show a negative shift as they destabilize the

Figure 10. Examples from the training-set showing the effect of charge delocalization on “PEOE_VSA1.” Values of “PEOE_VSA1” and DFT redox
potentials in volts are also shown. Mol IDs were assigned to identify derivatives from the corresponding data set.

Figure 11. Examples showing positive and negative shifts with respect to parent phenazine. DFT redox potentials and shifts in volts are also shown.
Mol IDs were assigned to identify derivatives from the corresponding data set.

Figure 12. Examples showing the effect of similar type of functional groups on the redox potential. DFT redox potentials and shifts in volts are also
shown. Mol IDs were assigned to identify derivatives from the corresponding data set.
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anionic form. A few examples showing positive and negative
shifts with respect to parent phenazine are shown in Figure 11.
In the case of derivatives with multiple functional groups, if

all groups are similar, then shift also corresponds to their type.
For example, when the derivative contains all electron-
donating groups, it shows a negative shift. Similarly, the shift
is positive when the derivative contains all electron-with-
drawing groups. A few examples having similar types of
functional groups are shown in Figure 12.
When derivatives contain more than one functional group

that differ in their type, the shift is determined by the group
showing the highest absolute shift in the corresponding single
functional group derivative. For example, derivative A in Table
6 contains −NH2, an electron-donating group which has a shift
of −0.11 V and −Cl, an electron-withdrawing group which has
a shift of 0.13 V. The absolute of the shift for −Cl is more than
−NH2; therefore, derivative A shows a positive shift of 0.03 V,
supporting our claim. A similar analysis is applicable to
derivative B, which also shows a positive shift. Derivative C
contains −N(CH3)2 and −CH3, two electron-donating groups,
and −CO(NH2), an electron-withdrawing group. An absolute
shift of −N(CH3)2 is −0.24 V, which is the highest among all
three groups. Therefore, derivative C shows a negative shift of
−0.09 V. Derivative D contains −OCH3 and −C6H5, two
electron-donating groups, and −CHO, one electron-with-
drawing group. However, derivative D shows a positive shift as
the absolute shift of −CHO is more than both electron-
donating groups. Thus, the redox potential of phenazine
derivatives containing multiple functional groups is determined
by the relative strength of electron-donating or electron-
withdrawing power of the functional groups.
The effect of position on the redox potential of single

functional group derivatives has been studied by Mavrando-
nakis and co-workers.27 They showed that the position does
not have a significant effect for electron-withdrawing groups.
However, electron-donating groups which are capable of intra-
molecular hydrogen boding show more negative shift when

attached at position 2 compared to position 1. The position
numbers in phenazine derivatives are shown in Figure 13. They

also investigated the effect of the number of functional groups
on redox potential. It was shown that the addition of more
electron-withdrawing groups shifts the redox potential
continuously toward positive values. However, this effect is
less significant for electron-donating groups. The difference
between the phenazine derivative with four amino groups and
eight amino groups is very small (∼0.05 V). The difference
between phenazine derivative with four cyano groups and eight
cyano groups is ∼1.23 V.

3.5. Identification of Promising Phenazine Deriva-
tives for the Anolyte. In this section, we identify the top five
promising candidates for the anolyte using the trained ML
models. Models developed in this study are based on features
that do not require electronic structure calculations. Therefore,
these models could screen millions of molecules in a
significantly small amount of time. Then, experimentation or
DFT calculations could be performed on the reduced number
of molecules to identify the best redox-active molecules, saving
computational and experimental costs. Using this hybrid DFT-
ML approach, we have identified promising phenazine
derivatives for the anolyte in RFBs. These promising
candidates would provide a good starting point for the
experimentalists. Electron-donating molecules with negative
redox potential are preferred candidates for the anolyte. As
KRR and SVR are stable models, the predictions here are
based on them. The values of redox potentials are averaged
over 100 independent iterations of data splitting and model
training. Table 7 lists the top five phenazine derivatives from

Table 6. Examples Showing the Effect of Absolute Values of Single Functional Group Shift on the Redox Potential of
Derivatives Containing Different Types of Functional Groupsa

aDFT redox potentials and shifts in volts are also shown. Mol IDs were assigned to identify derivatives from the corresponding data set.

Figure 13. Numbering of the positions in phenazine derivatives.
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the external test-set with the most negative redox potentials
obtained from DFT and two ML models. Four out of five
predictions from KRR and SVR match with DFT predictions.
The top five promising candidates from multiple functional
groups test-sets are shown in Tables S3−S5 Supporting
Information.

4. CONCLUSIONS

In this study, four ML models were employed to predict the
redox potentials of phenazine derivatives in DME using DFT.
Models were trained on a small data set of 151 phenazine
derivatives having only one type of functional group per
molecule (20 unique functional groups). The trained models
achieved high accuracies (R2 > 0.74) on internal and external
test-sets containing diverse phenazine derivatives. We also
showed that despite being trained on derivatives with a single
type of functional groups, models were able to predict the
redox potentials of the derivatives containing multiple and
different types of functional groups with good accuracies (R2 >
0.7). Feature selection and hyperparameter optimization using
the validation set were critical strategies for performance
improvement. Feature selection removed the unnecessary and
noisy features. Hyperparameter optimization using an external
validation set helped improve the generalizability of the
models. The addition of 15 derivatives from two functional
group test-sets in the training-set improved the accuracy on
three functional group test-sets. It was observed that the
“PEOE_VSA1” descriptor was the most important molecular
feature as it contains information related to molecular size and
the partial charges. Deeper analysis showed that one should
not rely only on the model performance but also investigate
the stability and reliability of the models. Through the
structure−functional relationship, we observed that the redox
potential of derivatives containing multiple functional groups is

influenced by the functional group having either strong
electron-donating or strong electron-withdrawing power.
Models developed in this study are based on features that do
not require electronic structure calculations. Therefore, these
models could screen millions of molecules in a significantly
small amount of time. Then, experimentation or DFT
calculations could be performed on the screened candidates
to identify the best molecules, saving computational and
experimental costs. Using this hybrid DFT-ML approach, we
have identified promising phenazine derivatives for the anolyte
in RFBs. These promising candidates would provide a good
starting point for the experimentalists. This study shows that it
is possible to develop reasonably accurate ML models for
complex quantities such as redox potential using small and
simple data sets.
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