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Discovering transcription-factor targets from chromatin immunoprecipitation microarrays<p>A new method, implemented in software as 'Chipper', is described that  allows genome-wide determination of protein-DNA binding sites from  chromatin immunoprecipitation microarrays.</p>

Abstract

Chromatin immunoprecipitation combined with microarray technology (Chip2) allows genome-
wide determination of protein-DNA binding sites. The current standard method for analyzing
Chip2 data requires additional control experiments that are subject to systematic error. We
developed methods to assess significance using variance stabilization, learning error-model
parameters without external control experiments. The method was validated experimentally,
shows greater sensitivity than the current standard method, and incorporates false-discovery rate
analysis. The corresponding software ('Chipper') is freely available. The method described here
should help reveal an organism's transcription-regulatory 'wiring diagram'.

Background
A major goal in understanding cellular behavior is to reveal
the 'wiring' of transcriptional regulation, through which tran-
scription factors (TFs) bind target-gene promoters to control
gene expression. Promoter regions contain sequence ele-
ments - typically 5 to 12 nucleotides (nt) in length - at which
TFs bind specifically. By enhancing/inhibiting transcription
or recruiting complexes that remodel chromatin structure,
TFs regulate expression of the genes whose promoters they
bind. Chromatin immunoprecipitation (ChIP) is an experi-
mental technique for identifying those regions of DNA bound
by a particular protein, and is, therefore, a useful method for
determining which genes have their promoters bound by a
TF. In outline, the method consists of the following steps. The
TF under study is crosslinked to DNA which is subsequently
extracted and sheared into fragments approximately 400 nt
long (1,000 nt resolution is usually sufficient to assign bind-
ing to the regulation of a specific gene, so it is rare to exceed
this length [1]). The fragments are immunoprecipitated with

an antibody specific to that TF (or to a peptide affinity tag
fused to that TF), whereupon the crosslinks are reversed, the
DNA precipitate amplified, and the intergenic regions (IGRs)
containing the binding site(s) are determined by examining
the relative abundance of each immunoprecipitated DNA
fragment. The combination of ChIP with microarray technol-
ogy is often called 'ChIP-chip' [1] and is referred to here as
'Chip2'. It has turned ChIP into a high-throughput technique
for efficiently mapping gene regulatory networks [2-9].

Two-channel microarrays use hybridization to compare the
abundance of specific nucleic acid sequences in one mixture
to abundance of the same sequences in another control mix-
ture. The choice of control mixture may greatly affect the out-
come of the experiment. A typical choice is fragmented
genomic DNA, which controls for the relative abundance and
non-specific hybridization potential of genomic DNA frag-
ments. Genomic DNA may be purified from 'whole-cell
extract', which itself is sometimes used as a control. As some
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DNA fragments may be 'stickier' than others, a more stringent
and laborious mock control (containing fragments recovered
nonspecifically by immunoprecipitation (IP)) is sometimes
performed, in which the TF does not have a fused affinity tag.

The change in abundance of a particular sequence between
two mixtures is often measured in terms of 'fold-change'
between the two channels (ratio) or, alternatively, the loga-
rithm of fold-change (log-ratio). The IP channel serves as
numerator, while the control is the denominator. The array
surface between regions with spotted DNA is never com-
pletely 'dark', due to the combined effects of residual DNA
fragments bound non-specifically to the array surface, and
the experimentalist's control of the visual amplification
('gain') in the image analysis software. It is customary to sub-
tract this 'background' from each spot because it reveals noth-
ing about the protein-DNA binding. This subtraction raises
the possibility, however, that the denominator could become
negative or zero, in which case the log-ratio is not useful.
Common strategies for handling zero or negative values are
either to threshold or to discard data points altogether, nei-
ther of which is entirely satisfactory. A further, and perhaps
more serious, problem is the practice of interpreting this fold-
change as a measure of significance, when it provides no such
statistical basis. Small random fluctuations in signals close to
background, particularly in the denominator, are amplified,
leading to spuriously high levels of 'fold-change' [10]. In other
words, we should reduce our confidence in a twofold change
between signals that are each near the background noise,
compared to a twofold change between strong signals.
Because we are generally more interested in whether a region
is specifically bound at all than we are in the degree of its
binding (occupancy), there is a need for an accurate measure
of confidence in each measurement.

A statistical approach for analysis of mRNA abundance
microarrays has been developed in which a 'single-array'
error model accounts for variation in the background level for
each microarray, while a 'gene-specific' error model describes
variation of a single gene across replicate arrays. These two
complementary models can be combined to estimate the
error in each log-ratio measurement [10]. A variant of the sin-
gle-array approach (in which there is gene-specific normali-
zation) has been applied to transcription-factor binding site
identification by means of Chip2 in yeast [2]. Unfortunately, it
requires one or more separate control experiments to deter-
mine error model parameters, in which identical nucleic acid
mixtures are compared. This adds to the expense of the exper-
iment; furthermore, error model parameters derived from a
separate microarray are potential sources of systematic error,
since quality can vary between microarrays.

Results and discussion
Here we describe a new approach for assessing statistical sig-
nificance of TF-binding from Chip2 data. We illustrate our

method using a Chip2 analysis of Sko1 (also known as Acr1), a
TF of the basic leucine zipper (bZIP) family (CREB sub-fam-
ily) that regulates the expression of osmotic stress inducible
genes [11-13]. We also use independent confirmation experi-
ments of individual IGRs to validate our method.

Combining replicates
We distinguish two kinds of repeated experiment. When the
same IGR is spotted onto an array in more than one location,
we term these measurements 'duplicates,' and we consider
them as two spatially separated parts of the same 'spot'.
Though other approaches have been described [14], for sim-
plicity we average duplicate signals before analyzing them,
giving us a single value that is less susceptible to physical
blemishes on the slide. When the same IGRs are spotted onto
two or more distinct microarrays, we term them 'replicates.'
We consider each replicate as an independent measurement
of the binding affinity or 'occupancy' of the IGRs.

Variance stabilization
It is common to replicate genome-wide experiments several
times, to improve confidence in the results, which may be
degraded by array imperfections or by handling errors. Addi-
tional replicates can compensate for random error in individ-
ual measurements, and the typical number of replicates is
likely to increase as the cost of microarrays falls [1]. Some-
times the most significantly enhanced IGRs are those with
low signal-to-noise ratio, yet applying log-ratios to such sig-
nals has the potential to introduce many false positives
because minor variations in a small denominator value can
have a large effect on a ratio. A single-array error model can
account for this variation in calculating significance for each
IGR. The log-ratios themselves are difficult to interpret, how-
ever, because two IGRs with the same log-ratio may differ in
significance, and a greater log-ratio does not indicate
increased significance. An alternative approach, the method
of variance stabilization, was described by two groups [15,16]
and made available as part of the BioConductor project [17] in
the package 'vsn' [15]. It uses a regression algorithm that is
robust to outliers to scale and offset each channel independ-
ently, in such a way that the variance between channels is
independent of signal strength. The transformation of the sig-
nal yi in the ith channel (i = 1 for IP, or i = 2 for control) can
be expressed as:

where αi and λi represent the background and noise in the ith
channel, respectively. Because ln(a) - ln(b) = ln(a/b), the dif-
ference between the two transformed channels (∆h ≡ hi - h2) is
then a generalized log-ratio that is asymptotically equivalent
to the log-ratio of the original channels when both are high (yi

>> αi), yet transforms smoothly to the difference between
channels when both are low. This allows direct comparison
between any two datapoints, even when they belong to

h l y yi i i i i i= − + −( ) +
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opposite ends of the microarray's dynamic range. Two IGRs
with the same ∆h are equally significant, and greater ∆h
implies a more significantly bound IGR.

Deriving error model parameters internally
Binding of protein to DNA is a dynamic, stochastic process in
equilibrium. While every TF is likely to be bound to every IGR
at least some fraction of the time, our goal here is to perform
binary classification of the IGRs. We therefore consider IGRs
to fall into two categories: those that are specifically bound by
the TF and those that are not. We wish to compute a p value
that expresses our degree of surprise at seeing a particular ∆h
score for a given IGR, under the null hypothesis that the IGR
is not bound. The 'vsn' package can be used to variance-stabi-
lize each array separately, or all of them simultaneously; we
used the former method. Having computed the inter-channel
variance-stabilized difference (∆h) for each spot, we may plot
a histogram of all scores from a chip. We expect that most
regions are not bound. Therefore, the distribution of ∆h
scores should be largely determined by random binding and
measurement errors [18]. A smaller number of regions are
bound, and those will tend to have positive scores, indicating
higher occupancies in the IP channel than the whole-cell
extract/mock control. Measurements in the negative portion
of the ∆h distribution should, therefore, be more completely
dominated by unbound IGRs. By fitting a parametric curve to
the region of the observed ∆h distribution left of the mode, we
obtain an estimate of the null distribution in the positive
region of the ∆h distribution. This is an essential feature of
our method, because it allows us to estimate the distribution
expected of unbound IGRs without performing an external
control experiment in which an identical mixture is examined
in both channels of a separate microarray. It is this null distri-
bution that permits calculation of significance for each
observed ∆h value. The symmetric nature of the null distribu-
tion is an assumption of our model, and is based on our own
experience and that of others [19].

Specifically, a parametric distribution is fitted by minimizing
the negative log-likelihood of the data to the left of the mode
(found after smoothing the data using gaussian kernel-based
density estimation) [20,21]. Three possible distributions were
initially considered (normal, Cauchy, and Gumbel), but the
normal distribution consistently obtains the best log-likeli-
hood score. Goodness-of-fit for the fitted normal distribu-
tions was verified with a χ2 test, and all passed with p < 10-20.
The ∆h scores from all replicates are standardized (centered
to have zero mean and re-scaled to have unit variance) yield-
ing a score zi = (∆hi - µi)/σi, where µi and σi represent the mean

and standard deviation, respectively, of the ∆h values
obtained from replicate i. Figure 1a-c shows ∆h distributions
for three replicates [22]. We expect the distribution of ∆h
scores to be centered about zero; as shown by the vertical dot-
ted lines in Figure 1, this is true to a very good approximation.
Variance stabilization attempts to transform the data such
that measurement error is uniform for each spot on a given

array, and if replicate arrays were identical, one would expect
to see the same variance in each array; large discrepancies
between arrays might indicate problems with the quality of
some of the arrays. Standardization is necessary to account
for minor (on the order of 10%) differences in variance
between arrays. Standardized scores are averaged to give an

overall score ( ), the distribution of which is shown in Figure
1d. This distribution is again smoothed with a gaussian ker-
nel, and fitted as described above. Finally, a p value for each

IGR is computed on the  score, according to the null
hypothesis that all IGRs are described by this fitted normal
distribution, that is, they are not bound by the TF.

Experimental verification of our dataset and evaluation 
of p value accuracy
The distribution of computed p values is shown in Figure 2a.
It clearly shows near-ideal behavior: uniform distribution
across most of the interval (0,1) arising from the vast majority
of unbound IGRs, and a peak close to p = 0, arising from
bound IGRs. Figure 2b shows the distribution of q values. As
expected, most IGRs have a high q value, consistent with the
assumption that most are unbound. False discovery rates, as
represented by q values [23], are particularly useful when the
goal is discovery of TF-bound IGRs. For example, the q values
for Sko1 (see Additional data file 1) indicate that scientists
willing to accept a list of targets in which 33% are false posi-
tives should examine the top 224 entries using a more-accu-
rate experimental method, while those only willing to tolerate
a false-positive rate of 20% should restrict themselves to the
top 91.

We independently validated 35 target genes spread widely
across the top 350 in our list using targeted ChIP analysis.
Considering only the 35 targets for which follow-up testing
was performed, ranking of IGRs by the p values of Lee et al.
[2] (see Additional data file 4) shows an ability similar to our
method ('Chipper') at placing true positives above false posi-
tives. When considering all IGRs, however, there is little cor-
relation between rank by our method and rank by the Lee et
al. approach. In other words, top-ranking targets by one
method are not top-ranking by the other. Thus, although our
validation experiments are consistent with Chipper achieving
the same sensitivity at a lower false-positive rate, it is also
possible that the two methods are each adept at identifying
different subsets of targets. The discrepancy may be due to
some systematic error in determination of the parameters of
the error model. As the error model parameters are not pro-
vided explicitly with their data, we could not investigate this
possibility further. Inaccurate determination of error-model
parameters can lead to unjustified confidence in differences
based on noisy measurements. Therefore, in the task of rank-
ing IGRs by the likelihood of being TF-bound, Chipper is on
par and complementary to the Lee et al. approach and may
outperform it. Furthermore, the Chipper algorithm uses an
internally determined error model and thus is not subject to

z

z
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systematic errors that may arise via the separate control
experiments required of the methods in Lee et al. [2]. Below
we show that Chipper allows increased sensitivity at a given
significance threshold.

Chip2 experiments cannot distinguish the strand on which
binding occurs, only the location at which it takes place.
When binding is assigned to an IGR less than 2,000 nt in size,
which happens to separate two genes on opposite strands, it
is not possible to determine, on the basis of Chip2 alone,
which one is the target of a TF. For example, as illustrated in
Table 1, FAA1 and COT1 are divergently transcribed genes
separated by a 1,800 nt IGR. The IGR is split into FAA1-prox-
imal and COT1-proximal IGR segments. The primers used for
targeted ChIP (about 200 nt) are smaller than the sheared
fragments used in the microarray experiments (500 nt),

which gives them a greater spatial resolution. As the primers
are designed for a specific promoter, and amplified by
polymerase chain reaction, they are strand-specific. Only
FAA1 is found to bind Sko1 in a targeted ChIP experiment, yet
because both IGR segments overlap Sko1-bound fragments in
the Chip2 experiment, a spurious positive result is generated
for COT1. We score correctly identified IGRs as true positives,
even when only a single gene is verified in the targeted exper-
iment. The Sko1 data, along with further study of Sko1 targets,
are published elsewhere in the context of a focused study of
Sko1 [22].

False discovery rate analysis
A common measure of significance used in hypothesis testing
is the p value. In large-scale experiments like these, random
chance can cause some IGRs to have p values that will be

Three replicate two-channel Chip2 experiments performed on Sko1 [22] were variance-stabilizedFigure 1
Three replicate two-channel Chip2 experiments performed on Sko1 [22] were variance-stabilized. (a-c) Distributions of the ∆h values obtained. Shaded 
gray areas indicate kernel-smoothed densities estimated from data. Magenta curves estimate the distribution of scores expected of unbound intergenic 
regions (IGRs) by fitting a normal distribution to the negative ∆h side of the distribution. Sufficient statistics (mean, variance) of each fitted distribution are 

used to standardize the ∆h distributions to a score zi for each replicate. (d) The distribution of the average score  over all three replicates. We 

computed a p value for each IGR under the null hypothesis that it is unbound, using the curve fitted to the negative portion of the empirical  
distribution.
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considered significant. Multiple hypothesis corrections (that
is, corrections for the fact that a hypothesis is being tested
multiple times, once for each IGR) are a popular approach in
which the significance threshold is raised (or the p value low-
ered) as a function of the number of IGRs. Bonferroni-type
[24] corrections are often conservative, in that many positives
may be classified as non-significant ('false negatives'). This is
borne out in our analysis of Sko1 Chip2 data, in which, after
multiple-hypothesis correction, only a small number of IGRs
(<10) were significant, at an experimentwise p value = 0.05 or
lower (equivalent to p = 1.06 × 10-5 before multiple-hypothe-
sis correction). However, the motivation of most Chip2 users
is not to cautiously establish a list of binding sites that are
known with near-certainty. The attraction of Chip2 is its high-
throughput nature, which allows the experimentalist to rap-
idly generate a list of potential binding sites for subsequent
study. A relatively recent alternative to the p value is the q

value, which is a measure of false discovery rate (FDR) that
has proven useful when the aim of an experiment is hypothe-
sis generation rather than hypothesis testing [23,25,26].
Despite the fact that Chip2 experiments are typically used for
hypothesis generation, no previously reported analysis of
Chip2 experiments has employed an FDR approach. Figure 3
shows that the q values computed from our p values (broken
line) agree quite well with our empirical FDR (solid line). As
the first verified false positive ranks just above 100, our
empirical FDR is zero to that point. Thereafter, it tracks the
computed FDR quite closely until all true positives have been
discovered.

Validation with publicly available datasets
We obtained the raw data used by Lee et al. [2] and compared
the p values produced by our algorithm with the published p
values. The 7,200 IGRs were ranked using the appropriate

Observed distributions of p and q valuesFigure 2
Observed distributions of p and q values. (a) The distribution of p values for the same data as in Figure 1. They are relatively uniformly distributed on the 
interval (0,1), except for a slight peak close to p = 0, indicating a small fraction of specifically bound intergenic regions (IGRs). (b) Corresponding q values, 
but with a log scale on the vertical axis. As one descends the ranked list of IGRs the q value rapidly approaches unity. That most IGRs have q close to 1 is 
expected given that the list of tested IGRs is long, and the number of true targets is generally small.
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score for each method, and the ranked lists were evaluated for
the presence of targets annotated as bound by the TF of inter-
est in the Yeast Proteome Database (YPD) [27,28]. Data for
two TFs (Ino4 and Sko1) are shown in Figure 4, and analysis
of another six TFs is shown in Additional data file 5. In Figure
4a we show the receiver-operating characteristic (ROC) curve
for Ino4, which tracks the sensitivity of an algorithm (its abil-
ity to find true positives (TPs)) as a function of its tendency to
turn up false positives (FPs). An optimal algorithm would
rank all TPs at the top. Its ROC curve would begin at the lower
left-hand corner (FP = 0, TP = 0), move vertically to the upper
left-hand corner (FP = 0, TP = 1), and then across the top of
the chart to the upper right-hand corner (FP = 1, TP = 1). As
this is a hypothesis-generation technique, only those targets
near the top of a ranked list are likely to be of interest; we
therefore show only the region from FP = 0 to FP = 0.1. The
ranking performance of each algorithm is good in this case,
and there appears little to choose between methods: either
one can achieve a sensitivity of almost 1.0 with a false-positive
rate of about 0.05.

In practice, however, it is common to consider only those
IGRs passing a standard threshold of significance (p < 10-3 in
Lee et al. [2] and Harbison et al. [8]). Therefore, we evaluated
the same data, but rather than focusing on simple ranking
ability, we examined the p value of each call (results for Ino4
shown in Figure 4b). We constructed the graph by choosing a
significance threshold (α) and asking what fraction of the
known true positives exceed the threshold (that is, have p val-
ues less than α). At α = 1, any algorithm will have perfect sen-
sitivity because it calls all IGRs significant; this comes at the
cost of specificity, as it is unable to distinguish between true

and false positives. The p values reported by Lee et al. [2] are
shown in green, those by our method are shown in black. The
vertical dotted line indicates a threshold α7 = 10-3 at which we
would expect approximately 7 out of 7,200 intergenic regions
to achieve significant scores purely by chance, even if none
were bound by the TF. The vertical dashed line indicates the
threshold α1 = 1.6 × 10-4, which we expect to be exceeded by
chance for only one out of 7,200 IGRs. The unshaded area to
the right of α1 indicates the region in which fewer than one
IGR would be expected to exceed the threshold by chance.
The higher an algorithm's sensitivity in this region (that is,
the more true positives it puts here), the better. As we
decrease the threshold, the sensitivity decreases slowly at
first, for both methods. For the p values of Lee et al. [2], there
is then a rapid reduction in sensitivity. At an α threshold such
that only one false positive is expected, our method can
recover more than half the known targets while Lee et al. [2]
find none.

In Figure 4c, we show an ROC curve for the transcription fac-
tor Sko1, for which nine targets are annotated in the YPD. The
error model of Lee et al. [2] ranks the targets slightly better
than our method of average z scores. Yet, as shown in Figure
4d, for any given significance threshold, our algorithm
returns more of those targets. Ino4 showed the most striking
improvement in sensitivity (Figure 4b) for all TFs examined.
However, for each of the eight TFs we examined (Figure 4 and
Additional data file 5) our method called an equal or greater
number of targets significant at the level of α1 than did the
method of Lee et al. [2]. Thus, for all TFs examined, our
method yields sensitivity either markedly better than or sim-
ilar to that of the de facto standard method.

Table 1

Divergently transcribed genes, grouped in pairs of which at least 
one is a target of Sko1, according to a targeted ChIP assay

Gene Promoter Target?

FAA1 -827/-576 Yes

COT1 -1,743/-1,561 No

PUT4 -617/-372 Yes

CIN1 -1,007/ - No

RPI1 -606/-451 Yes

RHO3 -1,611/-1,336 No

SPO20 -449/-211 Yes

SOK2 -1,896/- No

Promoter distances are measured in nucleotides from the start codon 
of gene 1. Both genes of a pair are counted as positives in evaluating 
the algorithm described here, since distinguishing members of these 
pairs is beyond the resolution of Chip2 experimental technology. ChIP, 
chromatin immunoprecipitation.

Agreement between predicted and empirical false-discovery rate for Sko1Figure 3
Agreement between predicted and empirical false-discovery rate for Sko1. 
The broken curve shows q values computed from the ranked list of p 
values, using QVALUE software [32]. The solid curve shows the false-
discovery rate (FDR) computed using only targeted chromatin 
immunoprecipitation experiments (35 targets).
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Conclusions
We have developed a method for analyzing results from chro-
matin-immunoprecipitation/microarray (Chip2) experi-
ments that computes p values without needing a separate
control for developing a model of measurement error. The
method proposed here successfully combines multiple repli-
cates (separate arrays) and duplicates (same array) to pro-
duce a single overall p value for each IGR. By using variance
stabilization rather than log ratios, we eliminate the need to
threshold low-signal spots obtaining an alternative measure,
∆h, which interpolates between a difference and a log-ratio
and is monotonically related to significance. In addition, by
averaging the resulting z score over replicates, an IGR that
scores highly in a single replicate, but has no usable data in
other replicates, may score well in the overall rankings. This

is desirable in hypothesis generation: the algorithm should
not be conservative, rather it should be sensitive and provide
accurate p values by which the false positive rate can be
judged. The p values produced by our algorithm behave as
one would expect p values to: a broadly uniform distribution
over the full range, but with enrichment near p = 0. Experi-
mentalists can use the q values computed from these p values
to generate a short list that is customized to their tolerance for
false discoveries. We have evaluated our algorithm using the
transcription factor Sko1 by performing targeted ChIP on 35
selected genes. Additionally, we have compared performance
of our algorithm with that of a previous error model [2], using
data from a public database of transcription-factor targets
[28,29]. Generally, discrimination of true positives, as meas-
ured by ROC curves, is comparable for both methods. How-

Performance of our algorithm on publicly available Chip2 data [2] is evaluated using the Yeast Proteome Database collection of transcription factor targets [28,29] and compared with another popular means of computing p values [2]Figure 4
Performance of our algorithm on publicly available Chip2 data [2] is evaluated using the Yeast Proteome Database collection of transcription factor targets 
[28,29] and compared with another popular means of computing p values [2]. (a) Receiver-operating characteristic curves for our method (black, 
'Chipper') and that of Lee et al. [2] (green, 'Lee') using three replicate experiments for the transcription factor Ino4, made publicly available by Lee et al. (b) 
Sensitivity as a function of significance threshold. The broken line represents the performance of choosing potential targets at random. (c,d) Analogous 
curves for the transcription factor Sko1. FP, false positive; TP, true positive.
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ever, our method returns targets with more significant p
values. We find that the observed false-discovery rate on
these putative targets generally tracks that predicted by the q
values, therefore validating the accuracy of the p values and q
values produced by our method. To parameterize error mod-
els, the method presented here requires no external control
microarray experiments (which may introduce systematic
error), giving it a distinct advantage over others in current
use. Software implementing the algorithm is available either
in web-based form for online use, or for download by non-
commercial users, from our website [30].

Materials and methods
Chip2 analysis on Sko1 was performed using three microar-
rays, each with duplicate spots. Genomic DNA was used as a
negative control. We used targeted ChIP experiments on 35
putative targets of Sko1 to validate how well our algorithm
finds TF binding sites. We selected targets distributed
throughout the top-ranking 350 IGRs. Primers were specifi-
cally designed for each IGR, and each region was assayed
three times both with and without the hemagglutinin (HA)
epitope tag, and the results averaged. The POL1 open reading
frame (ORF) and an ORF-free region were used as negative
controls, since Sko1 is not expected to bind there. Each IGR
was scored according to the ratio of its IP efficiency with the
HA epitope tag compared to that of POL1 ORF (non-specific
control). Based on prior experience, we chose a threshold of
2.0, above which we considered Sko1 to have bound to the
IGR, and below which we considered it not to have bound. By
this criterion, we found 21 bound IGRs, with the remaining 7
tested IGRs not bound. (The number of IGRs tested is less
than the number of target genes because some IGRs are asso-
ciated with more than one gene.) Of those scoring >2.0, we
found that six (ICY1, HOR7, YPR127W, DPM1, POS5, and
RSN1) also scored highly (above 2.0) without the tag, indicat-
ing that they bind non-specifically. In fact, only POS5 scored
in the top 100 by our method. Further details on Chip2 analy-
sis of Sko1 and validation experiments are published else-
where in the context of a focused study of Sko1 [22]. The
complete dataset is available from the Gene Expression
Omnibus (GEO) [31] under series accession number
GSE3335.

Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 is a tab-delimited
file containing the results of our analysis for all IGRs studied
in our experiments. Additional data file 2 contains a detailed
description of the comparison between the targets of Sko1
identified by Chipper when applied both to the data presented
here and to other Chip2 data [2], and previously published p
values using a single-array error model [2]. Additional data
files 3 and 4 are figures illustrating these comparisons. Addi-
tional data file 5 is a figure comparing the two methods as

applied to results from six additional transcription factors.
Additional data file 6 lists the IGRs identified as targets [29].
Additional data File 1A tab-delimited file containing the results of our analysis for all intergenic regions studied in our experimentsA tab-delimited file containing the results of our analysis for all intergenic regions studied in our experiments.Click here for fileAdditional data File 2A detailed description of the comparison between the targets of Sko1 identified by Chipper when applied both to the data presented here and to other Chip2 data [2], and previously published p values using a single-array error model [2]A detailed description of the comparison between the targets of Sko1 identified by Chipper when applied both to the data presented here and to other Chip2 data [2], and previously published p values using a single-array error model [2].Click here for fileAdditional data File 3A figure illustrating the comparisons made in Additional data file 2A figure illustrating the comparisons made in Additional data file 2.Click here for fileAdditional data File 4A figure illustrating the comparisons made in Additional data file 2A figure illustrating the comparisons made in Additional data file 2.Click here for fileAdditional data File 5A figure comparing the two methods described in Additional data file 2 as applied to results from six additional transcription factors.A figure comparing the two methods described in Additional data file 2 as applied to results from six additional transcription factors.Click here for fileAdditional data File 6A list of the intergenic regions identified as targets [29]A list of the intergenic regions identified as targets [29].Click here for file
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