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The pathogenic microorganism Listeria monocytogenes is ubiquitous and responsible
for listeriosis, a disease with a high mortality rate in susceptible people. It can persist
in different habitats, including the farm environment, the food production environments,
and in foods. This pathogen can grow under challenging conditions, such as low pH,
low temperatures, and high salt concentrations. However, L. monocytogenes has a high
degree of strain divergence regarding virulence potential, environmental adaption, and
stress response. This review seeks to provide the reader with an up-to-date overview of
clonal and serotype-specific differences among L. monocytogenes strains. Emphasis on
the genes and genomic islands responsible for virulence and resistance to environmental
stresses is given to explain the complex adaptation among L. monocytogenes strains.
Moreover, we highlight the use of advanced diagnostic technologies, such as whole-
genome sequencing, to fine-tune quantitative microbiological risk assessment for better
control of listeriosis.

Keywords: L. monocytogenes, stress genes, genomic islands, diversity, lineages, clonal complexes, low pH,
persistence

INTRODUCTION

Listeria monocytogenes is a Gram-positive, facultative anaerobe, non-spore-forming, and psychro-
and salt-tolerant organism. It is also a facultative intracellular pathogen, both for humans and
animals. In susceptible people, including immunocompromised persons, infants, pregnant women,
and older people, it can cause clinical manifestations with high mortality rates (Desai et al., 2019;
Kayode et al., 2019; Schlech, 2019). Cases of human listeriosis often can be traced back to food
products contaminated during production, on which the microorganism grows to high numbers.
Special concern is in particular given to ready-to-eat (RTE) products, such as salads, deli meat,
or smoked salmon, because these are consumed without a further heating step (Leong et al.,
2015; EFSA Panel on Biological Hazards [Efsa Biohaz Panel]et al., 2018). Given the ubiquitous
distribution of this microorganism, its transmission into food-processing facilities occurs either
via raw materials or via equipment and employees. Once introduced in the facilities, several
factors have been suggested to contribute to the ability of a strain to establish long-lasting
colonization (Holch et al., 2013; Leong et al., 2014; Lakicevic and Nastasijevic, 2017; Stoller
et al., 2019). Some authors hypothesized that a particular feature that makes the control of
L. monocytogenes difficult in the processing environment is its capacity to survive or even to grow
in different stressful conditions and to form biofilms (Gandhi and Chikindas, 2007; Ferreira et al.,
2014; Gahan and Hill, 2014; Ariza-Miguel et al., 2015). The fast ability of L. monocytogenes to
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colonize food-processing facilities and the formation of persisters
of some L. monocytogenes strains in various niches along the
food chain have been described (Berrang et al., 2010; Leong
et al., 2014; Bolocan et al., 2016). This suggests that persister cells
provide reservoirs for contamination, ultimately increasing the
likelihood of infecting humans. An alternative hypothesis is that
there are no strains of L. monocytogenes with unique attributes
but hard-to-reach areas (also known as harborage sites) in food
industry environments and equipment where L. monocytogenes
can reside (Carpentier and Cerf, 2011). Furthermore, tolerance to
sanitizers and disinfectants such as benzalkonium chloride (BC)
was observed in L. monocytogenes isolates from food-processing
environments. This tolerance may be attributed to subinhibitory
concentrations of a disinfectant, which are caused by insufficient
cleaning and improper sanitation, thus probably contributing to
biofilm formation and leading to Listeria persistence (Martínez-
Suárez et al., 2016). The same authors have hypothesized that
these subinhibitory concentrations cause the expression of stress
response genes leading to a reduction in cell permeability to these
compounds. These genetic traits include resistance genes such as
the qacH gene of transposon Tn6188 and the resistance cassette
bcrABC (Elhanafi et al., 2010; Müller et al., 2013, 2014; Zuber
et al., 2019), described in Persistence mechanisms. Moreover, it is
crucial to identify the interactions between stress response and
virulence and to know how this microorganism survives, adapts
to adverse conditions, and triggers genes involved in virulence or
promoting persistence. This would help to explain the observed
inverse correlation between strains with a higher prevalence of
genes involved in BC tolerance, as well as other stress-related
genes, amongst hypovirulent (i.e., low virulence) lineage II strains
(Quereda et al., 2021). All this knowledge may contribute to the
development of new intervention strategies for better control of
the level of L. monocytogenes in the food chain.

LISTERIA MONOCYTOGENES
DIVERSITY AND HETEROGENEITY OF
THE VIRULENCE DETERMINANTS

L. monocytogenes evolves slowly but has been characterized
by a significant level of diversity (Ragon et al., 2008; Orsi
et al., 2011). It can be grouped into four major evolutionary
lineages indicated by the roman numbers from I to IV, by 14
lineage-related serotypes and more than 170 clonal complexes
(CCs),1 geographically and temporally widespread, as defined
by multilocus sequence typing, and whole-genome phylogenetic
analysis (Doumith et al., 2004; Orsi et al., 2011; Haase et al., 2014;
Doijad et al., 2015; Chen et al., 2016; Moura et al., 2016; Bergholz
et al., 2018). It belongs to the genus that currently includes 26
recognized species, of which notably 20 have been described since
2009 (Graves et al., 2010; Leclercq et al., 2010, 2019; Bertsch et al.,
2013; Lang Halter et al., 2013; den Bakker et al., 2014; Weller et al.,
2015; Doijad et al., 2018; Nuñez-Montero et al., 2018; Quereda
et al., 2020; Carlin et al., 2021). Lineage I of L. monocytogenes
encompasses serotypes 1/2b, 3b, 4b, 4d, 4e, and 7, lineage II

1http://bigsdb.pasteur.fr/listeria

includes serotypes 1/2a, 1/2c, 3a, 3c, and 4h, lineage III comprises
serotypes 4a, atypical 4b, and 4c, whereas lineage IV encompasses
serotypes 4a and 4c (Seeliger and Hohne, 1979; Ragon et al., 2008;
Maury et al., 2016; Painset et al., 2019; Yin et al., 2019).

Previous studies have found that some hypervirulent clones
such as CC1, CC2, CC4, and CC6 (all of lineage I and
predominant in Western countries) were strongly associated
with listeriosis, whereas hypovirulent clones, including CC8,
CC9, CC101, CC121, and CC204 (lineage II), were strongly
associated with food product contamination but less with human
infections, in part due to loss-of-function mutations in virulence
genes (Fagerlund et al., 2016; Maury et al., 2016, 2019). In
accordance with that, all CC2 isolates carried a full-length inlA
gene (see later), whereas CC9 and CC121 presented a premature
stop codon mutation in this gene that correlated with reduced
virulence (Gelbíčová et al., 2015; Guidi et al., 2021). Maury
et al. (2019) demonstrated that differences in product associations
among clones might be attributed to adaptation differences
between clones in distinct ecological niches and/or different food
product contamination routes during processing. They showed
that CC1 was more representative for dairy products, whereas
hypovirulent clones, mainly CC9 and CC121, were strongly
associated with meat and fish products and produced more
biofilm in the presence of low BC concentrations. Hypervirulent
strains of L. monocytogenes sequence type (ST) 6 have been
associated with outbreaks, including an outbreak linked to frozen
vegetables in five countries in Europe during 2015–2018, an
outbreak associated with contaminated meat pâté in Switzerland
during 2016, listeriosis outbreak that occurred in South Africa
during 2017–2018 with a 27% mortality rate, and the largest
outbreak of listeriosis in Germany linked to blood sausages in
2018–2019 (Althaus et al., 2017; EFSA and ECDC, 2018; Halbedel
et al., 2020; Thomas et al., 2020). More recently, an outbreak
of listeriosis was caused by the persistence of L. monocytogenes
serotype 4b ST6 (lineage I) in a cheese-processing facility in
Switzerland (Nüesch-Inderbinen et al., 2021).

To cause listeriosis in humans and animals, important genes
must be present in L. monocytogenes genome and expressed
under the appropriate conditions. The inlAB locus and the
pathogenicity islands LIPI-1, LIPI-3, and LIPI-4 encode such
key virulence factors (Gelbíčová et al., 2015; Maury et al., 2016;
Quereda et al., 2018). In particular, inlA and inlB code for
internalin A (InlA) and internalin B (InlB) that bind the host cell
receptors E-cadherin and Met, respectively. The transcriptional
regulator positive regulator factor A (PrfA) controls the
expression of both inlAB and LIPI-1 (Quereda et al., 2018).

LIPI-1, present in all L. monocytogenes, is found between the
genes prs and orfX, is 9-kb long, and consists of six genes, i.e.,
prfA, plcA, hly, mpl, actA, and plcB (Dussurget, 2008). Notably,
Listeria innocua, a non-pathogenic Listeria species, lacks both
LIPI-1 and inlAB genes; however, LIPI-1 and inlA, functional
both in vivo and in vitro, are present in rare, natural, atypical
L. innocua species (Johnson et al., 2004; Volokhov et al., 2007;
den Bakker et al., 2010; Moreno et al., 2012; Moura et al.,
2019). This suggested that L. monocytogenes and L. innocua
likely evolved from a common ancestor where the virulence
loci LIPI-1 and inlAB were both present (Volokhov et al., 2007).
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L. innocua FSL J1-023 is one such aberrant strain, described as
a rare, natural, non-pathogenic, hemolytic-positive, rhamnose
and xylose fermentation-negative strain; its genome sequence
is the reference one for linking horizontal gene transfer
and recombination as drivers in the evolution of Listeria
pathogenicity (Johnson et al., 2004; Lakicevic et al., 2014).
Notably, all L. innocua genomes lack other internalins (i.e.,
inlCEFGHJKP), and this suggested that, unlike inlAB, the former
genes were not present in the common ancestor and acquired at
a later stage by L. monocytogenes (Moura et al., 2019).

As for LIPI-2, this pathogenicity island was discovered in
Listeria ivanovii, a species pathogenic for feedstocks, mostly
ovines and bovines, and humans, though rarely (Guillet et al.,
2010). Originally, it was described as a LIPI specific to L. ivanovii.
It encompasses the smcL gene coding for sphingomyelinase
(involved in phagosome disruption) and 10 genes coding for
proteins of the internalin family (Domínguez-Bernal et al., 2006).
However, recent studies showed that L. monocytogenes isolates,
belonging to a new sub-lineage of the major lineage II with
hypervirulent features (SL626/CC33, serovar 4 h), contain a
truncated LIPI-2, i.e., carrying only smcL and two internalins
genes, namely i-inlF and i-inlE, likely acquired by transposon-
mediated horizontal gene transfer from L. ivanovii (Yin et al.,
2019; Feng et al., 2020).

LIPI-3 is an additional sub-lineage pathogenicity island
encoding listeriolysin S (LLS), a bacteriocin. LLS (coded by
llsA), a hemolytic toxin secreted by L. monocytogenes, is present
only in a subset of isolates from lineage I epidemic strains that
specifically secrete it in the gut (Quereda et al., 2017). Notably,
Quereda et al. (2016) demonstrated that in an orally infected
mouse model, L. monocytogenes lls mutants exhibited reduced
bacterial load in the intestinal content at 6 h post-infection as
compared with the wild-type strain, and the differences were
also evident at 24 and 48 h post-infection and correlated with
the reduced number of intracellular bacteria. Moreover, the same
authors showed that the presence of L. monocytogenes-produced
LLS in the intestine of the infected mice caused a significant
decrease in the occurrence of different bacterial genera, such as
Alloprevotella, Allobaculum, and Streptococcus. These results, for
the first time, provided evidence that LLS plays an important role
in the interaction with other species in the gut microbiota. In
a study conducted by Matle et al. (2020), LIPI-3 was detected
in isolates of which the majority were from lineage I, i.e., CC1,
CC2, CC3, and CC228. Also, Roedel et al. (2019) found LIPI-3
in L. monocytogenes isolates belonging to CC1, CC3, CC4, CC6,
and CC288. Tavares et al. (2020) described single-nucleotide
polymorphism (SNP) of eight LIPI-3 genes (llsAGHXBYDP) of
the four different STs (ST1, ST3, ST218, and ST288) compared
with reference strain F2365 (lineage I). The authors revealed that
LIPI-3 genes are well conserved in ST1 (serogroup IVb), whereas
a number of SNPs were identified in ST3 (serogroup IIb), ST218
(serogroup IVb-v1), and ST288 (serogroup IIb). Within the LIPI-
3 island, llsX is the only gene that is highly conserved among
different LIPI-3-positive L. monocytogenes CC (Figure 1) and
even in atypical hemolytic L. innocua (Figure 1). However, under
acid stress conditions, only reference strain F2365 (4b) presented
expression of llsX comparable with ST3 and ST288 (serogroup

IIb, lineage I) strains, which points to acidic pH as an important
environmental trigger (Clayton et al., 2014).

LIPI-4 pathogenic island is a cluster of six genes encoding a
putative cellobiose family phosphotransferase system and shown
to confer hypervirulence by enhancing invasion of the CNS and
placenta (Maury et al., 2016). It is only found in some isolates
of lineage I, i.e., CC2, CC4, and CC87 (Maury et al., 2016;
Chen et al., 2018, 2020; Hilliard et al., 2018; Painset et al., 2019;
Roedel et al., 2019; Matle et al., 2020; Zhang et al., 2020). It
is known that CC2 has a worldwide distribution, whereas CC4
and CC87 are the most prevalent clones in France and China
(Maury et al., 2016; Zhang et al., 2020). The latter CC was also
responsible for two outbreaks in Guipúzcoa (Northern Spain) in
2013 and 2014 (Pérez-Trallero et al., 2014; Wang et al., 2019).
In addition to LIPI-4, all CC87 strains contained a novel type
II restriction–modification system with unknown significance
(Wang et al., 2019).

Anaerobiosis represents an important trigger for virulence
determinants because, in the gastrointestinal tract, the oxygen
level gradually decreases and favors facultative anaerobic
microorganisms such as L. monocytogenes (Horn and Bhunia,
2018). Indeed, Müller-Herbst et al. (2014) detected 28 non-
essential genes that were upregulated only anaerobically, of which
a subset were virulence-related genes, e.g., inlB and Listeria
adhesion protein that is essential for full virulence (Burkholder
et al., 2009). A complementary screening of an insertion mutant
library of L. monocytogenes demonstrated that F1F0-ATPase
(see FoF1-ATPase, Glutamate decarboxylase, and Arginine and
Agmatine deiminases) is essential for anaerobic proliferation
of L. monocytogenes (Müller-Herbst et al., 2014). Anaerobiosis
also induced an acid tolerance response (Sewell et al., 2015),
providing L. monocytogenes robustness to survive the stomach
acidity and transit to the intestine. According to that, some
CCs are more tolerant to low pH and colonize better the
intestinal lumen (also known as host-associated hypervirulent
clones) than those of hypovirulent CCs (Hingston et al., 2017;
Maury et al., 2019).

All this information highlight that hypervirulent clones (CC1,
CC2, CC4, and CC6) greatly connect with clinical cases, are
predominantly found in lineage I, colonize better in the intestine
lumen, cause listeriosis in a healthy host, and are strongly
associated with dairy products. On the contrary, hypovirulent
clones (e.g., CC9 and CC121), greatly connected with food
and food-related isolates, are predominantly found in lineage
II, causing listeriosis in immunocompromised patients, and are
strongly associated with meat and fish products. All lineages of
L. monocytogenes possess highly conserved LIPI-1 and inlA/B
locus, which fits with the fact that the majority of hypovirulent
clones and other lineage II isolates present truncated InlA,
leading to virulence attenuation. Furthermore, comparative
genomics analysis between hypo- and hypervirulent clones have
uncovered the specific virulence clusters such as LIPI-3 (present
approximately in 50% of lineage I strains) and LIPI-4. Regardless
of these facts, the regulatory authorities consider all strains of
L. monocytogenes to be equally pathogenic (Vázquez-Boland et al.,
2020; Quereda et al., 2021), whereas the food safety risk attributed
to different subgroups differ (Chen et al., 2006).
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FIGURE 1 | Schematic representation of LIPI-3 pathogenicity island. In L. monocytogenes reference strain F2365 and different STs, all LIPI-3 genes display SNPs,
except llsX, which is strongly conserved. SNPs are shown as follows: 0—white; 1—gray; 2—green; 4—dark green; 10–17—blue; 18—black. When color is shaded,
SNPs are present only in one of two ST indicated. Bottom line shows that LIPI-3 is also present in some strains of L. innocua, where sequence identity with
L. monocytogenes reference strain F2365 ranges from 91% (llsP, gray) to 95% (llsY and llsG, violet), 97% (llsX, pink), 98% (llsA and llsD, light blue), and 99% (llsH
and llsB, light green) (adapted from Clayton et al., 2014; Tavares et al., 2020).

LISTERIA MONOCYTOGENES AND
STRESS RESISTANCE GENES

The resistance to environmental stresses such as acidic
environment, nisin, bile acids, and high osmolarity is conferred
to L. monocytogenes by stress resistance determinants located
on the Stress Survival Islet 1 (SSI-1), whereas stress resistance
determinants to alkaline and oxidative stresses are located on the
SSI-2 (Hein et al., 2011; Guidi et al., 2021).

Generally, uncovering the resistance mechanisms to stressful
conditions in food matrices and the environment is regarded as
important to contribute to the development of novel and efficient
measures to prevent contamination through the whole food chain
continuum and control the growth of L. monocytogenes during
food storage (Bucur et al., 2018).

Stress Survival Islets 1 and 2
SSI-1, a five-gene stress survival islet [lmo0444, lmo0445, lmo0446
(pva), lmo0447 (gadD1), and lmo0448 (gadT1)], has an equal
distribution in human clinical isolates and in strains isolated from
food and food-processing environments (Ryan et al., 2010). The
presence of SSI-1, as well as the ability to form biofilms, correlated
with the persistence of L.monocytogenes strains (Keeney et al.,
2018). Notably, the strongest biofilms were formed by strains
from serotype 1/2b, such as CC3 and CC5, the majority of which
contained SSI-1, whereas serotype 4b (such as CC2 and CC6),
most of which do not contain SSI-1, formed the weakest biofilms
(Keeney et al., 2018).

According to Harter et al. (2017), SSI-2, consisting
of the genes lin0464 and lin0465, encoding a putative
transcriptional regulator and an intracellular PfpI protease,
respectively, is predominantly found in the hypovirulent
strains of L. monocytogenes ST121. SSI-2 contributes to
survival upon oxidative and alkaline stress conditions,
thus potentially favoring L. monocytogenes adaptation and
persistence in the food-processing environments. Notably,
in addition to SSI-2, the genome of L. monocytogenes ST121
possesses plasmids and the transposon Tn6188, which were
hypothesized to be responsible for supporting its survival in
food-processing environments (Müller et al., 2014; Schmitz-
Esser et al., 2015; Pasquali et al., 2018). SSI-2 occasionally

is found in other L. monocytogenes strains, such as ST1033
(CC1, serotype 4b).

Interestingly, SSI-2-positive strains were detected in
L. monocytogenes lineage I, lineage III, and also in L. innocua
but with a slightly shorter islet harboring only 1,947 bp (Harter
et al., 2017). Phylogenetic analysis indicated that L. innocua
SSI-2 shares the highest similarity with those of L. monocytogenes
strains ST13 and CC193 that belong to lineage II (i.e., all food
isolates) (Harter et al., 2017).

FoF1-ATPase, Glutamate Decarboxylase,
and Arginine and Agmatine Deiminases
Notably, SSI-1 contains gadD1 and gadT1, which are among
the genes protecting from acid stress. Indeed, the ability
to tolerate a low pH environment is an important feature
of L. monocytogenes because it allows survival in acidic
environments encountered in the gastrointestinal tract of the
host, in the macrophage phagosome, and in natural and food-
processing environments (Gahan and Hill, 2014; Lund et al.,
2014; Arcari et al., 2020; Lund et al., 2020). L. monocytogenes
harbors membrane-associated systems and intracellular systems
to resist acidic environments and to control intracellular pH.
Several mechanisms, schematically depicted in Figure 2, are
known to maintain intracellular pH (pHi) to values compatible
with L. monocytogenes vitality. These include the F0F1-ATPase,
the glutamate decarboxylase (GAD) system, and the arginine
and agmatine deiminases (ADI and AgDI, respectively) (Cotter
et al., 2000; Feehily et al., 2014; Cheng et al., 2017). The F0F1-
ATPase, a multi-subunit enzyme system, is involved in the acid
tolerance response initiation upon mild acidic pH stress. The
GAD system, on the other hand, can affect survival under mild
acid stress but also under harsher acidic conditions (Karatzas
et al., 2012). Notably, the GAD system is also activated under low
oxygen availability, typically encountered by L. monocytogenes
when exposed to food packaging atmosphere (Francis et al., 2007;
Sewell et al., 2015). The system consists of three homologous
glutamate decarboxylases, namely GadD1, GadD2, and GadD3,
and of the cognate glutamate/GABA antiporters GadT1 and
GadT2 (Figure 2). The decarboxylases and the antiporters are
encoded by the relevant genes at three distinct genetic loci.
Four genes are organized in the following operons: gadD1T1
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FIGURE 2 | Schematic representation of most effective systems protecting L. monocytogenes from acidic stress. All systems are activated under mild acidic stress,
with GadD2T2 system mostly effective under extreme acidic stress (adapted from Lund et al., 2020). F0F1-ATPase is shown in blue-green. ArgD/AguD transporter is
shown in purple. A, ArcA (arginine), AguA1 (agmatine) deiminase; B, ArcB/AguB carbamoyl-transferase; C, ArcC/AguC carbamate kinase. GadT1 and GadT2 refer
to glutamate (Glu)/GABA antiporters. GadD1, GadD2, and GadD3 are glutamate decarboxylase isoforms. Orn, ornithine. Put, putrescine. DnaK, chaperone. All
membrane proteins are localized in lipid bilayer of plasma membrane, which also undergoes a decrease in membrane fluidity (downward pointing arrow, on leftmost
side). Multilayered peptidoglycan of cell wall is schematically represented above plasma membrane. Created with BioRender.com.

and gadT2D2, whereas the gadD3 gene, the fifth gene, is an
independent unit (Cotter et al., 2005). In particular, the gadD1T1
operon enhances growth under mildly acidic conditions (see
also Stress survival islets 1 and 2), whereas gadT2D2 plays an
important role in conferring survival under extremely acidic
conditions (Cotter et al., 2001, 2005). The gadD3 gene, positively
regulated by the stationary-phase sigma factor σB, in addition to
being part of the GAD system, was shown to be involved in nisin
resistance (Begley et al., 2010). According to Chen et al. (2012),
gadD2 and gadD3 are present in all L. monocytogenes strains,
whereas gadD1 is present in only 36.6% of the strains, including
all those belonging to serovar 1/2c, and 68.5% of the strains
of serovar 1/2a. Notably, only a small fraction of the strains of
L. monocytogenes serovar 1/2b and lineage III strains (including
J2-071 and HCC23) possess the gadD1 gene. Furthermore, the
gadD1T1 operon is absent in most serotype 4 L. monocytogenes
clinical strains (Cotter et al., 2005).

Paudyal et al. (2020) have shown that casamino acids, peptone,
and tryptone are major GAD system activators resulting in
upregulation of the transcription of gadD2. Furthermore, Paudyal
et al. (2018) demonstrated that maleic acid inhibits the GAD of
L. monocytogenes significantly, enhancing its sensitivity to acidic
conditions, and thus, together with the ability to remove biofilms,
maleic acid has been proposed to make a good candidate for
disinfection regimes.

Moreover, Boura et al. (2020) recently showed a secondary
novel role of the GAD system in protection against oxidative
stress. The authors hypothesized that under oxidative stress
GABA, instead of being exported by the transporter (Figure 2),
is transferred to the GABA shunt enzymes that provide NADPH

to contrast oxidative stress and allow to bypass two missing
steps in the TCA cycle. They also suggested that this knowledge
could find application in food hurdle technology to eliminate
L. monocytogenes.

In addition to the GAD system, also the ADI system can be
activated in response to low pH. This latter system consists of
three enzymatic activities, namely arginine deiminase, ornithine
carbamoyl-transferase, and carbamate kinase, encoded by the
arcA, arcB, and arcC genes, respectively (Cheng et al., 2017).
Through these enzymatic activities, arginine is converted to
ornithine, CO2, and ammonia, with concomitant production of
adenosine triphosphate (Figure 2). It was previously reported
that this gene cluster is present in lineage I and lineage II but
absent from lineage III and non-pathogenic L. innocua and
Listeria welshimeri (Ryan et al., 2009). However, Deng et al.
(2010) showed that the ADI gene cluster is also highly conserved
in lineage IIIB.

The AgDI pathway is a less known system of acid
stress tolerance in L. monocytogenes. AgDI converts agmatine
into putrescine, ammonia, and CO2 and produces adenosine
triphosphate (Chen J. et al., 2011; Soares and Knuckley, 2016).
Cheng et al. (2013) found that L. monocytogenes harbors two
putative AgDIs (aguA1 and aguA2), but only AguA1 functionally
participates in the AgDI pathway and mediates acid tolerance in
L. monocytogenes.

Also, the thiamine uptake system, encoded by the thiT gene
(formerly lmo1429), was shown to be required for full acid
tolerance in L. monocytogenes (Madeo et al., 2012). According to
the authors’ findings, a thiT mutant strain resulted in significantly
higher acid sensitivity than the control strain. It was suggested
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that the acid sensitivity is due to the lack of thiamine that does
not allow the reaction of acetolactate synthase to occur, and
therefore, acetoin synthesis, which involves proton consumption,
is impaired (Madeo et al., 2012).

When different L. monocytogenes strains are exposed to acidic
environments, the acid tolerance displayed varies significantly,
and this might contribute to the observed strains’ differences in
robustness and pathogenicity (Conte et al., 2000). The virulent
reference strains L. monocytogenes EGD-e (1/2a, lineage II),
850658 (4a, lineage III), and 10403S (1/2a, lineage II) were
more resistant to acidic stress than the avirulent M7 (4a, lineage
III), which showed a defect in maintaining pHi homeostasis
(Cheng et al., 2015). Despite the observations mentioned, EGD-e
cannot export GABA and relies exclusively on GadD3, whereas
strain 10403S relies upon GadD2 (Feehily et al., 2014). This
suggested that the GAD system in the commonly used reference
strains originated from separate lines of evolution. Strain-specific
patterns of acid resistance are also recognizable in other datasets
(Ramalheira et al., 2010).

σB Regulon
The sigma factor of RNA polymerase, responsive to general stress,
namely σB, plays an important role in L. monocytogenes, both in
the adaptation to different stress conditions and in virulence. As
shown by many studies conducted using the lineage II reference
strains (mainly the 10403S as mentioned earlier and EGD-e), σB

regulates approximately 300 genes important for virulence and
responses to stresses (Severino et al., 2007; Hain et al., 2008;
Raengpradub et al., 2008). Also, the literature review revealed
that the σB regulon played a significant role in the resistance of
L. monocytogenes strains belonging to lineages I, II, and IIIB and a
limited role in the resistance of the L. monocytogenes lineage IIIA
strain to acid and oxidative stresses (Oliver et al., 2010; Liu et al.,
2019). Similarly, σB plays a significant role in resistance to acid
and salt stresses also in L. innocua (Raengpradub et al., 2008).

A systematic review of the σB regulon in L. monocytogenes
identifies several regulon members that include genes involved,
or putatively involved, in stress response: osmotic (18 genes),
oxidative (14 genes), acid (12 genes), antibiotic (6 genes), bile (3
genes), and others (24 genes) (Liu et al., 2019). However, σB is not
the only alternative sigma factor that has been shown to play a
role in the stress tolerance of L. monocytogenes. Other alternative
sigma factors, including σC (previously implicated in nisin
response), σH , and σL (RpoN), also regulate transcription of genes
important for virulence and response to various stress and growth
conditions (Glaser et al., 2001; Chaturongakul et al., 2011). Some
of the genes needed in the stress responses of L. monocytogenes
are regulated by more than one sigma factor. Overlaps have
been reported between σB and σH , σB and σL, and σC and σB

regulons (Chaturongakul et al., 2011). Notably, the regulation
of SSI-2 (see Stress survival islets 1 and 2) is independent of
the σB, but σH or σL could be involved (Harter et al., 2017).
Interestingly, of the 51 genes classified in the “virulence” group
of the σB regulon, 23 were also classified in the “stress response”
group and 4 in the “metabolism” group (Liu et al., 2019). The
genes that belonged both to the “virulence” and “stress response”
groups included those required for survival and multiplication
under host-imposed stress conditions such as acidic pH and

bile acids in the gastrointestinal tract of the host and those
contrasting oxidative stress in the mammalian host phagosome.
These observations reinforced the hypothesis that stress response
and virulence are strongly associated. Among the 24 genes of the
σB regulon that belong only to the “virulence” group, there is the
gene coding for the PrfA, located in LIPI-1 (see L. monocytogenes
diversity and heterogeneity of the virulence determinants), which
can be transcribed from multiple promoters, regulated by σB, σA,
and PrfA itself (De Las Heras et al., 2011).

Resistance to Nisin and Envelope
Remodeling
Natural antimicrobials, such as nisin (which belongs to the class
I bacteriocins), sakacins, pediocin PA-1, plantaricin BM-1, and
leucocin A (which belong to the class II bacteriocins), can be used
to control L. monocytogenes on RTE foods (Ferreira and Lund,
1996; Nilsson et al., 1997; Franklin et al., 2004; Trinetta et al.,
2010; Woraprayote et al., 2013; Ortiz et al., 2014; Balay et al., 2017;
Xie et al., 2018). However, nisin is the only bacteriocin approved
as a preserving additive in food. It should be highlighted that RTE
foods add up further stress to L. monocytogenes when these foods
are exposed to cold stress, organic acid stress, and osmotic stress,
and some of these environmental stresses may affect bacteriocin
resistance, e.g., nisin resistance increases if L. monocytogenes is
preexposed to acid stress (van Schaik et al., 1999; Bonnet and
Montville, 2005).

VirR, the response regulator of the VirRS two-component
system, with a role in defense against cell envelope stress (Mandin
et al., 2005), is directly controlling nisin resistance. In this specific
case, instead of the receptor histidine kinase VirS, an ABC-
transporter encoded by virAB seems to be responsible for sensing
the stressor (Grubaugh et al., 2018). VirR mediates nisin and
other cell envelope stress resistance by regulating the dltABCD
operon (Kang et al., 2015), which modifies lipoteichoic acids
(Abachin et al., 2002). In addition to VirR, the two-component
systems LiaRS and LisRK were shown to be involved in resistance
to nisin (Cotter et al., 2002; Collins et al., 2012; Bergholz et al.,
2013; Nikparvar et al., 2021). In particular, these two-component
systems regulate the expression of anrAB, dltABCD, lmo2229,
mprF, and telA (Abachin et al., 2002; Gravesen et al., 2004;
Thedieck et al., 2006; Collins et al., 2010a,b, 2012). With the
exception of the latter, all the listed genes have an assigned role
in the biosynthesis/metabolism of components of the membrane
and the cell wall. Using a laboratory cheese model, temperature
and pH were shown to be among the environmental conditions
that affected the sensitivity of L. monocytogenes to nisin, the
efficacy of which was stronger when the cheese was stored
at low temperatures and prepared at pH close to neutrality
(i.e., pH 6 and 6.5), due to the activity of dltA and mprF
(Henderson et al., 2020).

The resistance to nisin varies among the various lineages, with
lineage II strains being more tolerant than lineage I strains. These
differences extended to serotype and CC levels. For example,
serotypes 1/2a and 1/2c were more tolerant than serotype 1/2b,
whereas serotype 4b showed the least tolerance to nisin, as
also supported by studies showing that serotype 1/2a and 4b
strains were more tolerant and sensitive to nisin, respectively
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(Buncic et al., 2001; Katla et al., 2003; Szendy et al., 2019;
Wambui et al., 2020). Comparing clonal types, Wambui et al.
(2020) concluded that CC7 (lineage II, 1/2a) strains displayed
the highest nisin resistance, whereas CC2 (lineage I, 4b) and
CC3 (lineage I, 1/2b) strains showed the lowest nisin resistance
levels, similar to previous observations (Malekmohammadi et al.,
2017). In addition, among CCs belonging to lineage II serotype
1/2a, CC155 was the most nisin tolerant, whereas CC14, CC199,
and CC403 (lineage II, serotype 1/2a) had increased nisin
sensitivity. Differences in the ability to respond to stress among
the L. monocytogenes genotypes are probably linked to differences
in the expression of proteins associated with the membrane,
such as the penicillin-binding proteins coded by the lmo0441,
lmo0540, lmo1892 genes, and lmo2229 as mentioned earlier, as
well as the gene coding for σB, all of which were reported to be
more expressed in lineage II than lineage I (Gravesen et al., 2004;
Begley et al., 2006; Severino et al., 2007).

PERSISTENCE MECHANISMS

In food factories, sanitizer tolerance or resistance and an
enhanced ability to form biofilms have been suggested as typical
strain characteristics contributing to persistence (Norwood and
Gilmour, 1999; Aase et al., 2000; Lundén et al., 2000, 2003;
Borucki et al., 2003; Heir et al., 2004; Pan et al., 2006;
Lourenço et al., 2009). However, the exact mechanisms behind
persistence are not fully understood. Difficulties in eradicating
L. monocytogenes contamination in food-processing settings may
be conferred by the BC tolerance that some strains harbor and
which provides an advantage for survival under stress and in
food-processing settings, allowing the bacteria to persist in the
environment (Mullapudi et al., 2008). A recent publication by
Guérin et al. (2021) reported the capacity of L. monocytogenes
strains to adapt to biocides, in particular ammonium quaternary
compounds (commonly known as quats or QACs), and proposed
the possible link between this adaptation and the selection of
resistance regarding the fluoroquinolone antibiotic ciprofloxacin.
This link was investigated also by others (Martínez-Suárez
et al., 2016; Kode et al., 2021). The current hypothesis is that
dilution in the environment and biodegradation give rise to
QAC concentration gradients, which means that microorganisms
(including L. monocytogenes) become frequently exposed to sub-
inhibitory concentrations of QACs (Martínez-Suárez et al., 2016).
Indeed, Møretrø et al. (2017) measured and found residues
of QACs after sanitation in meat- and salmon-processing
plants in Norway and suggested that this may result in a
growth advantage for L. monocytogenes harboring the QAC
resistance genes (i.e., qacH and bcrABC; see later). Therefore,
the low-level resistance to QACs in L. monocytogenes has been
proposed to be a contributing factor to its environmental
adaptation and persistence. This may explain why the minimal
inhibitory concentration of QAC tolerant strains way below
user concentrations of QAC may still be of practical relevance.
More studies are needed to confirm this hypothesis. Another
study conducted by Castro et al. (2021) demonstrated that
mobile genetic elements (MGEs) support the persistence of

L. monocytogenes on dairy farms and may be spread through the
food industry. It is believed that MGEs are pivotal in increasing
the antimicrobial resistance of L. monocytogenes strains. MGEs
can be exchanged between Listeria and other species leading to
the creation of novel resistance phenotypes (Matereke and Okoh,
2020; Castro et al., 2021).

Several BC tolerance determinants have been identified in
L. monocytogenes, including BC efflux pumps qacH (Tn6188),
bcrABC, and emrE, which are located on MGEs and mostly
present in lineage II isolates, i.e., CC9, CC13, CC14, CC31, and
CC121 (Dutta et al., 2013; Müller et al., 2013, 2014; Ebner et al.,
2015; Kovacevic et al., 2015; Maury et al., 2016; Ortiz et al., 2016;
Zuber et al., 2019). Additional BC tolerance genes have been
identified, such as emrC, identified on a plasmid in some ST6
isolates, qacA and qacC, which are both located on plasmids,
and multidrug resistance Listeria mdrL (lmo1409), negatively
regulated by ladR (lmo1408) (Xu et al., 2014; Kremer et al., 2017;
Jiang et al., 2019). Literature data on the presence of resistance
genes are sometimes contradictory and not always related to all
strains of a particular L. monocytogenes CC. For example, Hurley
et al. (2019) and Chen et al. (2020) did not find emrC in ST6, as
previously described by Kremer et al. (2017) in ST6.

Several very recent investigations showed that gene qacH
can occasionally be present in some different CC primarily of
serotype 1/2a (CC8, CC20, CC31, CC101, and CC121) but also
in serotypes 4b (CC2) and 1/2c (CC9) (Ebner et al., 2015; Meier
et al., 2017; Horlbog et al., 2018; Roedel et al., 2019; Stoller
et al., 2019; Zuber et al., 2019; Wieczorek et al., 2020; Gelbicova
et al., 2021; Guidi et al., 2021; Palaiodimou et al., 2021; Pérez-
Baltar et al., 2021). In general, Cherifi et al. (2018) recommended
that only one genetic determinant should not be taken into
consideration when strain persistence is investigated.

The bcrABC cassette was first described by Elhanafi et al.
(2010) and isolated from L. monocytogenes strains associated with
the 1998–1999 listeriosis outbreak in the United States caused by
hotdog contamination. It consists of a TetR family transcriptional
regulator (bcrA) and two small multidrug resistance genes (bcrB
and bcrC). This cassette is located in the pLM80 plasmid, but
a chromosomal location was also reported. The occurrence of
the bcrABC cassette in non-pathogenic species of Listeria, such
as L. innocua and L. welshimeri, suggests that these species may
be the reservoirs of BC and other resistance determinants that
are transferred to L. monocytogenes by conjugation (Katharios-
Lanwermeyer et al., 2012). The bcrABC cassette was significantly
associated with L. monocytogenes isolates belonging to CC321,
CC155, CC204, and CC199 but can be present in other CCs such
as ST14, CC288, ST9, ST121, CC5, L. welshimeri, and L. innocua
(Meier et al., 2017; Møretrø et al., 2017; Pasquali et al., 2018; Chen
et al., 2020; Naditz, 2020; Cooper et al., 2021; Gelbicova et al.,
2021; Palaiodimou et al., 2021).

Another putative efflux pump gene responsible for increased
tolerance to QACs is the emrE gene. This gene is located on a
mobile genomic island LGI1 and was found in one clone (CC8)
that includes strains implicated in the 2008 deli meat outbreak
in Canada (Kovacevic et al., 2015). Meier et al. (2017) concluded
that the emrE is associated with a serotype 1/2a (CC8) and seems
to be limited to sublineage 8 strains. The expression of emrE was
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found to be upregulated in the presence of BC, demonstrating
that emrE-harboring strains are likely to adapt in food-processing
environments better (Kovacevic et al., 2015).

The link between BC resistance and cadmium (Cd) resistance
in Listeria spp. strains has been reported in several studies
(Mullapudi et al., 2008; Ratani et al., 2012; Korsak and
Szuplewska, 2016). In particular, in L. monocytogenes strains,
five Cd resistance determinants (cadAC efflux systems) were
identified (Chmielowska et al., 2021). The cadA1 gene is
located on the transposon Tn5422 and often plasmid-borne, and
predominates (as operon cadA1C1) in CC3, CC8, and CC121
(Lebrun et al., 1994; Gelbicova et al., 2021). Also, the cadA2 gene
is usually found on plasmids and is typically accompanied by
the bcrABC cassette (Kuenne et al., 2010; Dutta et al., 2013). As
for the genes cadA3, cadA4 (also involved in biofilm formation),
and cadA5, their location is typically on chromosomes, as
part of integrative conjugative elements and genomic islands
(LGI2 and LGI2-1), respectively (Kuenne et al., 2013; Lee et al.,
2017; Parsons et al., 2017, 2019). Notably, LGI2, in addition to
carrying cadA4, also carries a cassette for resistance to arsenic,
which encompasses the arsR1D2R2A2B1B2 operon and the
upstream arsA1D1 (Kuenne et al., 2013). The arsenic resistance
is primarily associated with L. monocytogenes strains belonging to
4b serotype, particularly CC1, CC2, and CC4 hypervirulent clonal
clones (Lee et al., 2017). On the contrary, Cd resistance typically is
found in L. monocytogenes strains belonging to serotypes 1/2a and
1/2b, from food and food-processing environments (Mullapudi
et al., 2008; Ratani et al., 2012). In addition, a specific association
with lineages was found, namely cadA1C1 cassette with lineage II
and cadA2C2 cassette with lineage I. On the other hand, strains
containing both cadA1 and cadA2 were more frequent in lineage
I than in lineage II (Mullapudi et al., 2010).

As said at the beginning of this section, the enhanced ability
to form a biofilm that is hard to remove mechanically and
less sensitive to sanitizers was proposed as a mechanism for
persistence, given that the biofilm provides a clear advantage for
surviving in food-processing or retail environments. However,
other studies have not found a clear link between the biofilm-
forming ability of some isolates and their persistence, and
differences in the experimental setup and in the strains used have
been ascribed as the reasons for the observed different results
(Djordjevic et al., 2002; Holch et al., 2013; Kadam et al., 2013;
Lee et al., 2019). Although some authors reported a correlation
between lineages and biofilm-forming ability, with lineage II
strains presenting higher levels of biofilm production, other
results did not support these findings (Norwood and Gilmour,
2001; Djordjevic et al., 2002; Borucki et al., 2003; Di Bonaventura
et al., 2008; Takahashi et al., 2009; Combrouse et al., 2013;
Bai et al., 2021). Maury et al. (2019) found that hypovirulent
genotypes, CC121 and CC9, were more efficient in biofilm
production than hypervirulent clones (such as lineage I clones:
CC1, CC2, CC4, and CC6) under sub-lethal concentrations of
BC, implying that lineage II hypovirulent clones were associated
with persistence features. Also, Pérez-Baltar et al. (2021) found
that CC121 strains are strong biofilm formers, and some
harbored the transposon Tn6188, related to increased tolerance
to QACs. Interestingly, the lmo0435 homolog biofilm-associated
protein, BapL, putative peptidoglycan bound protein involved

in biofilm formation, but not essential, is truncated in ST121
strains, which belong to CC121 (Jordan et al., 2008; Schmitz-
Esser et al., 2015). Some authors suggested that CC8 strains
possess a strong capacity for biofilm formation, which may
support persistence within food production environments and
subsequent contamination of foods (Verghese et al., 2011; Zuber
et al., 2019). A study done in Canada by Upham et al. (2019)
found that the formation of biofilms is associated with serotype
1/2a isolates in lineage II, as well as the presence of SSI-1. SSI-1,
rare in clinical isolates, has been shown to be associated with a
survival advantage in the environment, thus supporting the link
between SSI-1 and persistence in L. monocytogenes (Hilliard et al.,
2018). Furthermore, SSI-1 was strongly correlated with biofilm
formation and a truncation (stop codon) in inlA (Franciosa et al.,
2009; Keeney et al., 2018). More recent findings confirmed the
influence of SSI-1 and a truncated inlA in increased biofilm levels
in L. monocytogenes (Ciccio et al., 2019).

Regarding niche preference, reasons why the so-called
persistent isolates are recurrently isolated in the same food-
processing premises over long periods remain elusive. Persistent
isolates could belong to specific STs particularly well adapted
to the environmental conditions of the food manufacturing
environment (Knudsen et al., 2017). It is, however, difficult to
pinpoint adaptive traits directly correlated to persistence.

Notably, intra-genotype variation was observed in some CCs,
suggesting that minor genetic variants within a genotype may
impact biofilm phenotype (Lee et al., 2019; Zuber et al., 2019).
Nevertheless, it should be pointed out that next to genetic
determinants, biofilm formation is influenced by factors such
as temperature, nutrient availability, and biofilm formation
maturity (de Oliveira et al., 2010; Barbosa et al., 2013; Kadam
et al., 2013). The limitation of most biofilm studies is that
they have been done in monocultures, which may not be most
relevant, as this bacterium is not alone in the food industry.
Therefore, research on multispecies community might be more
suitable to gain better insights into interactions among different
species within the biofilms and the formation of the biofilm itself.

OPPORTUNITIES OF WHOLE-GENOME
SEQUENCING FOR QUANTITATIVE
MICROBIOLOGICAL RISK
ASSESSMENTS

Whole-genome sequencing (WGS) of strains that have been
isolated from different ecological niches has become more
and more standard practice and demonstrates to be powerful
in outbreak investigations at national and international
levels (ECDC, 2019). These outbreak investigations rely
on cross-sectorial cooperation between epidemiologists,
microbiologists, and bioinformaticians to link clinical isolates
to outbreak isolates. The availability of WGS data gives new
opportunities to explain intraspecific variability and to find
genetic biomarkers that predict microbial behavior. Multilocus
sequence typing and whole-genome phylogenetic analyses
demonstrated that pathogenic subtypes vary in their virulence
and association with food (L. monocytogenes diversity and
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heterogeneity of the virulence determinants), and this intraspecific
variability is relevant for risk assessments in general and,
more specifically, also for quantitative microbiological risk
assessments (QMRA). A QMRA is a structured and quantitative
process for determining the risk associated with microbiological
hazards in a food (CAC, 1999). The basic steps of a QMRA
include hazard identification, exposure assessment, hazard
characterization, and risk characterization, and this formalized
approach has been adopted by regulators globally and is also
used by industry. Various QMRA studies have been performed
for different product/pathogen combinations (e.g., FDA/CFSAN
and USDA/FSIS, 2003; Tirloni et al., 2018; EFSA, 2019) aiming to
characterize and quantify the risk of a pathogen associated with
a product (category). In these studies, the exposure assessment
and hazard characterization steps of QMRAs are performed
for a pathogenic species as a whole. The current advances in
the field of omics technology give opportunities to make use
of the greater understanding of intraspecific variability based
on various recently published bioinformatics tools (Brul et al.,
2012; Den Besten et al., 2018; Haddad et al., 2018; Rantsiou
et al., 2018; Fritsch et al., 2019; Njage et al., 2020). Instead
of considering all-hazard strains of a species as equally likely
to cause disease or equally likely to survive the food chain,
WGS data could give support to rank subtypes with respect to
their virulence potential (Chen Y. et al., 2011; Collineau et al.,
2019) or to groups subtypes with respect to their differences in
robustness or fitness to reach the consumer stage (Den Besten
et al., 2018). The QMRA input distributions can be tailored to
each subgroup accordingly, making it possible to fine-tune the
QMRA output. The studies of Chen Y. et al. (2011) and Fritsch

et al. (2018) illustrate the potential to refine QMRA studies when
considering pheno-genotype associations for specific properties
of L. monocytogenes. The authors described the variability of
L. monocytogenes’ growth characteristics more accurately using
two different distributions for the minimum temperature of
growth (Tmin). For risk characterization, three different groups
of virulence were considered according to the CCs, making
use of reported differences in clinical frequencies of different
CCs (Maury et al., 2016, see also L. monocytogenes diversity and
heterogeneity of the virulence determinants). The QMRA output
showed that CCs that are contributing the most to consumer
exposure were not those that contributed the most to listeriosis
cases. Chen Y. et al. (2011) followed a similar approach for the
hazard characterization step where they attributed different
dose-response models for L. monocytogenes subtypes with genes
encoding a full-length and a truncated InlA, respectively. These
examples of fine-tuning a QMRA highlight the potential impact
of implementing genomic data in QMRA. This field is still young
and relies on high efforts to phenotypically characterize strain
variability. Grouping of strains with shared characteristics is only
possible when subgroups of strains have different phenotypes.
This pushes the need to characterize various aspects of strains,
such as fitness and stress robustness, because these details are
needed to quantitatively describe intraspecific variability in the
exposure assessment part of a QMRA. Also, it is important to
note that routine collection of WGS data is more standardized
across regulatory and public health agencies and more limited
in surveillance by industry (Jagadeesan et al., 2019; Cohn et al.,
2021), and this introduces a bias in isolate characterization,
whereas representative WGS data from food and human isolates

FIGURE 3 | Schematic representation of risk control strategies. Experimental concept to assess risk and monitor diversity among L. monocytogenes strains for
prevention/control of food chain contamination. Created with BioRender.com.
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are critical to assess the likelihood of subtypes to cause disease.
When these challenges are recognized and taken up, it will
open avenues to make use of pheno-genotype associations in the
next generation of QMRA and to incorporate subtype-specific
assessment of public health significance in food control strategies
and regulations.

CONCLUSION AND FUTURE
PERSPECTIVES

The notorious foodborne pathogen L. monocytogenes is
ubiquitous in nature and can be found in soil, in the farm
environment, in the food production environment, and in food
products (Figure 3) (Kallipolitis et al., 2020). As highlighted
in this review, there is a high degree of strain divergence
regarding virulence potential, environmental adaption, and stress
response. In addition, persistent L. monocytogenes subtypes have
the ability to survive and persist for months and even years
in food-processing environments and to keep contaminating
food products. It is, however, difficult to correlate adaptive
traits directly to persistence. Hence, pheno-genotype association
studies are promising approaches to increase our mechanistic
understanding of how this pathogen survives along the food
chain and infects the human host. Notably, most published
studies do not assess the presence/absence of specific genes
(or sets of genes) in all currently known L. monocytogenes
lineages, CCs/sequence types. Hence, experimental and holistic
approaches based on WGS and environmental studies may play

a role in determining the distribution and diversity of Listeria
species. The use of advanced diagnostic technologies such as
WGS can open avenues to fine-tune risk assessments, which
is of great importance in the prevention and control of both
animal and human listeriosis (Den Besten et al., 2018; Rantsiou
et al., 2018). Successful implementation and use of WGS needs,
however, an appropriate and functioning infrastructure and
resources (Grace, 2015), i.e., functional control and an already
established surveillance system to collect isolates and metadata
from clinical, food, and environmental samples (EFSA, 2008;
FAO, 2016). This will support an unbiased assessment of the
likelihood of subtypes to be present in food and to cause disease
to come to risk-based interventions at the intraspecific level.
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