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Abstract: Trifluoromethylselenylated compounds are emergent compounds with interesting
physicochemical properties that still suffer from a lack of efficient synthetic methods. We recently
developed an efficient one-pot strategy to generate in situ CF3SeCl and use it in various reactions.
Herein, we continue our study of the reactivity scope of this preformed reagent. Cross-coupling
reactions with aromatic and heteroaromatic boronic acids have been investigated. The expected
products have been obtained, using a stoichiometric amount of copper, with moderate yields.
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1. Introduction

Fluorinated compounds play a more and more important role in various fields of application.
Among all the fluorinated substituents, the CF3 group occupies a particular place due to its specific
properties [1–13]. Furthermore, the association of this CF3 moiety with chalcogens leads to new
fluorinated substituents with very interesting electronic and physicochemical properties. This has
been well illustrated by CF3O- and CF3S-molecules [14–18], especially due to their high lipophilicities
(Hansch–Leo parameters: πR(OCF3) = 1.04, πR(SCF3) = 1.44) [19] which contribute to their favoring of
membrane permeation and, consequently, increase their bioavailability. In the series of chalcogens, the
CF3Se group has been less investigated. However, selenylated compounds also play an important role
in various fields of application, from materials to life sciences [20–31]. This is illustrated, for example,
by the drug Ebselen [32–35]. Furthermore, the Hansch–Leo lipophilicity parameter of the CF3Se group
has been recently measured to πR(SeCF3) = 1.29 [36].

Despite the strong interest in this group, synthetic methods to obtain trifluoromethylselenylated
molecules are still limited. Trifluoromethylation of selenylated compounds has recently been
investigated for the first time [37–49]. Although this strategy gave good results, the preliminary
preparation of selenylated adducts can be a drawback. Late stage direct trifluoromethylselenolation
appears to be the most versatile approach. Nucleophilic reactions have been the most investigated,
with a large panel of organic compounds from nucleophilic substitutions onto halogen compounds
or diazonium salts, to cross-coupling reactions with halogen substrates or boronic acids [50–64].
Nevertheless, this approach required the preparation of CF3Se− anions using a stoichiometric amount
of selenium metal. Electrophilic trifluoromethylselenolations have been less described. The only
available reagent for such reactions is CF3SeCl, which is volatile, potentially toxic and, until recently,
difficult to synthesize [65,66].

To favor a safe and easy handling of this reagent, we have recently described an efficient procedure
to generate in situ this species from benzyl trifluoromethyl selenide (1). This strategy has already been
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applied to electrophilic aromatic substitutions [67] and reactions with Grignard reagents and lithium
alkynides [36].

2. Results and Discussion

In our objective to extend the scope of the reactivity of CF3SeCl, following our one-pot strategy,
we decided to study the trifluoromethylselenolation of boronic acids.

The reaction was first optimized with biphenyl boronic acid (2a). All the attempts are summarized
in Table 1.

Table 1. Coupling reaction between CF3SeCl, generated in situ, and boronic acid 3a.
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Entry [Cu] Ligand a Base Solvent 3a (%) b

1 CuI (1 eq.) L1 (2 eq.) K2CO3 (1 eq.) CH3CN 5
2 Cu(OAc)2 (1 eq.) L1 (2 eq.) K2CO3 (1 eq.) CH3CN 23
3 Cu(OAc)2 (1 eq.) L1 (2 eq.) - CH3CN 0
4 Cu(OAc)2 (1 eq.) - K2CO3 (1 eq.) CH3CN 4
5 Cu(OAc)2 (1 eq.) L1 (1 eq.) K2CO3 (1 eq.) CH3CN 40
6 Cu(OAc)2 (1 eq.) L2 (1 eq.) K2CO3 (1 eq.) CH3CN 14
7 Cu(OAc)2 (1 eq.) L3 (1 eq.) K2CO3 (1 eq.) CH3CN 3
8 Cu(OAc)2 (1 eq.) PPh3 (1 eq.) K2CO3 (1 eq.) CH3CN 0
9 Cu(OAc)2 (1 eq.) L4 (1 eq.) K2CO3 (1 eq.) CH3CN 6
10 Cu(OAc)2 (1 eq.) L5 (1 eq.) K2CO3 (1 eq.) CH3CN 3
11 Cu(OAc)2 (1 eq.) L6 (1 eq.) K2CO3 (1 eq.) CH3CN 0
12 Cu(OAc)2 (1 eq.) L7 (1 eq.) K2CO3 (1 eq.) CH3CN 0
13 Cu(OAc)2 (1 eq.) L1 (1 eq.) Cs2CO3 (1 eq.) CH3CN 70
14 Cu(OAc)2 (1 eq.) L1 (1 eq.) K3PO4 (1 eq.) CH3CN 48
15 Cu(OAc)2 (1 eq.) L1 (1 eq.) CsF (1 eq.) CH3CN 6
16 Cu(OAc)2 (1 eq.) L1 (1 eq.) Et3N (1 eq.) CH3CN 0
17 Cu(OAc)2 (1 eq.) L1 (1 eq.) Pyridine (1 eq.) CH3CN 0

18 c Cu(OAc)2 (1 eq.) L1 (1 eq.) Cs2CO3 (1 eq.) CH3CN 37
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a See Figure 1 for ligand structures. b Yield was determined by 19F-NMR spectroscopy by using PhOCF3 as
an internal standard. c 50 ◦C instead of r.t. d Addition of 7 eq. of H2O.

The use of CuI as a catalyst with bipyridine L1 led to the expected compounds with a very low
yield (Entry 1). With Cu(OAc)2, a better yield was observed, but was still low (Entry 2). In order to
improve this encouraging result, the base or ligand first had to be removed. Without the base, the
reaction failed, although a small amount of 3a was observed without L1 (Entries 3–4). This led us to
reduce the quantity of the ligand, and 40% of 3a was then formed (Entry 5). Next, various other ligands
(Figure 1) were screened without success (Entries 6–12); bipyridine L1 remained the more efficient.
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The influence of the nature of the base was then explored. A good yield was obtained with 
Cs2CO3, whereas K3PO4 led to a similar result to that of K3CO3 (Entries 13–14). Surprisingly, CsF, often 
used in cross-coupling reactions with boronic acid, provided a low yield (Entry 15). Organic nitrogen 
bases appeared to be deleterious for the reaction (Entries 16–17). This could be explained by a 
competitive copper coordination between these bases and L1. At higher temperatures, no improvement 
was observed but, on contrary, this resulted in a decrease of yield (Entry 18). This may be due to the 
outgassing of the highly volatile CF3SeCl reagent.  

Catalytic amounts of copper (II) and ligand were then tested, but lower yields were observed 
(Entries 19–20). Again, heating proved to be deleterious (Entry 21). Inspired by our previous work with 
a sulfur series [68], some water (7 eq.) was added resulting, in this case, in a non-significant effect 
(Entry 22). Consequently, stoichiometric conditions (Entry 13) remained the better ones. 

These conditions were applied to other aromatic boronic acids (Scheme 1). 
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results were observed. 

Figure 1. Ligands used in Table 1.

The influence of the nature of the base was then explored. A good yield was obtained with Cs2CO3,
whereas K3PO4 led to a similar result to that of K3CO3 (Entries 13–14). Surprisingly, CsF, often used in
cross-coupling reactions with boronic acid, provided a low yield (Entry 15). Organic nitrogen bases
appeared to be deleterious for the reaction (Entries 16–17). This could be explained by a competitive
copper coordination between these bases and L1. At higher temperatures, no improvement was
observed but, on contrary, this resulted in a decrease of yield (Entry 18). This may be due to the
outgassing of the highly volatile CF3SeCl reagent.

Catalytic amounts of copper (II) and ligand were then tested, but lower yields were observed
(Entries 19–20). Again, heating proved to be deleterious (Entry 21). Inspired by our previous work
with a sulfur series [68], some water (7 eq.) was added resulting, in this case, in a non-significant effect
(Entry 22). Consequently, stoichiometric conditions (Entry 13) remained the better ones.

These conditions were applied to other aromatic boronic acids (Scheme 1).
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Only moderate yields were obtained with substituted aromatic compounds, whatever the donor
or acceptor electronic character of the substituents. In heteroaromatic series, the same moderate results
were observed.

When these lukewarm results were obtained, some amounts of CF3SeSeCF3 were detected as well
as homocoupling products from the boronic reagents. This could be rationalized by the high reactivity
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of CF3SeCl, which leads to a competition between the kinetically low coupling reaction and the more
rapid dimerization. The homocoupling reaction could then come from the lack of CF3SeCl for the
expected reaction. Despite the use of an excess of preformed CF3SeCl, no better results were observed.
Furthermore, during the preliminary formation of CF3SeCl, one equivalent of benzyl chloride was also
formed, which could possibly disturb the cross-coupling reaction.

3. Materials and Methods

Commercial reagents were used as supplied. Reagent 1 was synthesized following procedures
described in the literature [36,67]. Anhydrous solvents were used as supplied. NMR spectra were
recorded on a Bruker AV 400 (Billerica, MA, USA) spectrometer at 400 MHz (1H-NMR), 101 MHz
(13C-NMR), and 376 MHz (19F-NMR), or on a Bruker AV 300 spectrometer at 300 MHz (1H-NMR)
and 282 MHz (19F-NMR). Multiplicities are indicated as follows: s (singlet), d (doublet), t (triplet),
q (quartet), p (quintet), sext (sextet), m (multiplet), b (broad). All coupling constants are reported in Hz.

3.1. Synthesis of Benzyl Trifluoromethyl Selenide (1)

To a dry round-bottom flask equipped with a magnetic stirrer, benzylselanocyanate (13.7 g, 70.0 mmol,
1.0 equiv.) and dry THF (140 mL) were added. The flask was evacuated and refilled with nitrogen
three times, and then trifluoromethyl trimethylsilane (TMSCF3) (20.7 mL, 140 mmol, 2.0 equiv.) was
added. The reaction mixture was cooled to 0 ◦C, and then tetrabutylammonium fluoride (TBAF) in
THF 1 M (14.0 mL, 14.0 mmol, 0.2 equiv.) was added dropwise. After 10 min at 0 ◦C under nitrogen, the
reaction was allowed to warm to 23 ◦C and was stirred for 7 h. The conversion was checked by 19F-NMR
with PhOCF3 as an internal standard. The reaction mixture was then partitioned between water and
pentane, and the aqueous layer was extracted with pentane. The combined organic layers were washed
with brine, dried over MgSO4, filtered through a pad of silica (rinsed with pentane) and concentrated to
dryness (under moderate vacuum). The crude residue was purified by chromatography (pentane: 100)
to afford the desired product 1 as a colorless liquid (11.7 g, 70% yield). 1H-NMR (300 MHz, CDCl3):
δ = 7.37−7.27 (massif, 5H), 4.26 (s, 2H). 19F-NMR (282 MHz, CDCl3): δ = −34.47 (s, 3F). The results are
in accordance with the literature [38].

3.2. Typical Procedure

Solution A: To a flame-dried flask equipped with a magnetic stirrer, BnSeCF3 (1) (0.40 mmol,
1.1 equiv.), SO2Cl2 (0.40 mmol, 1.1 equiv.) and anhydrous acetonitrile (1 mL) were added under
nitrogen. The reaction mixture was stirred for 6 h at 20 ◦C.

Solution B: To a flame-dried flask equipped with a magnetic stirrer, biphenylboronic acid 2
(0.36 mmol, 1 equiv.), copper (II) acetate (0.36 mmol, 1 equiv.), bypirydine (L1) (0.36 mmol, 1 equiv.)
and cesium carbonate (0.36 mmol, 1 equiv.) were added under nitrogen.

Solution A was then poured into solution B by syringe and the mixture was stirred at 20 ◦C for 16 h.
Conversion was checked by 19F-NMR with PhOCF3 as an internal standard. The reaction mixture
was partitioned between CH2Cl2 and water. The aqueous layer was extracted with CH2Cl2 and the
combined organic layers were washed with brine, dried over MgSO4, filtered and concentrated to
dryness. The crude residue was purified by flash chromatography to afford the desired product 3.
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Synthesis of 4-[(trifluoromethyl)selanyl]-1,1′-biphenyl (3a). Eluent for flash chromatography: cyclohexane/ 
AcOEt 98:2. 1H-NMR (300 MHz, CDCl3) δ = 7.83 (m, 2H), 7.65−7.60 (massif, 4H), 7.50 (m, 2H), 7.42 (m, 
1H). 19F-NMR (282 MHz, CDCl3) δ = −36.05 (s, 3F). The results are in accordance with the literature [57]. 
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AcOEt 98:2. 1H-NMR (300 MHz, CDCl3) δ = 7.83 (m, 2H), 7.65−7.60 (massif, 4H), 7.50 (m, 2H),
7.42 (m, 1H). 19F-NMR (282 MHz, CDCl3) δ = −36.05 (s, 3F). The results are in accordance with the
literature [57].
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Synthesis of 3-[(trifluoromethyl)selanyl]quinoline (3e). Eluent for flash chromatography: cyclohexane/ 
Et2O 8:2. 1H-NMR (300 MHz, CDCl3) δ = 9.14 (s, 1H), 8.65 (d, J = 1.8 Hz, 1H), 8.21 (d, J = 8.7 Hz, 1H), 
7.86 (m, 2H), 7.67 (m, 1H). 19F-NMR (282 MHz, CDCl3) δ = −35.50 (s, 3F). The results are in accordance 
with the literature [53]. 

 
Synthesis of 3-[(trifluoromethyl)selanyl]-1-benzothiophene (3f). Eluent for flash chromatography: 
cyclohexane/toluene 98:2. 1H-NMR (300 MHz, CDCl3) δ = 8.02 (d, J = 7.7 Hz, 1H), 7.96 (s, 1H), 7.92  
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4. Conclusions 

In our study of its reactivity scope, we have demonstrated that CF3SeCl, in situ preformed, could 
react with boronic acids to perform trifluoromethylselenolation of aromatic or heteroaromatic 
compounds. However, moderate yields were generally observed due to the overly high reactivity of 
CF3SeCl and the presence of generated benzyl chloride. This points out the major issue of this one-pot 
strategy; the subsequently formed benzyl chloride may limit this approach by inducing side-reactions. 
Furthermore, the high reactivity of CF3SeCl, which can easily dimerize, could also constitute a 
drawback with reactions which are kinetically too low. This underlines the necessity of developing 
new reagents, that are isolable, easy to handle and have a modular reactivity that is easier to control. 
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Synthesis of 1-bromo-4-[(trifluoromethyl)selanyl]benzene (3b). Eluent for flash chromatography: pentane
100%. 1H-NMR (300 MHz, CDCl3) δ = 7.60 (m, 2H), 7.53 (m, 2H). 19F-NMR (282 MHz, CDCl3)
δ = −36.03 (s, 3F). The results are in accordance with the literature [61].
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In our study of its reactivity scope, we have demonstrated that CF3SeCl, in situ preformed,
could react with boronic acids to perform trifluoromethylselenolation of aromatic or heteroaromatic
compounds. However, moderate yields were generally observed due to the overly high reactivity of
CF3SeCl and the presence of generated benzyl chloride. This points out the major issue of this one-pot
strategy; the subsequently formed benzyl chloride may limit this approach by inducing side-reactions.
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