
ORIGINAL RESEARCH
published: 19 July 2022

doi: 10.3389/fnins.2022.918793

Frontiers in Neuroscience | www.frontiersin.org 1 July 2022 | Volume 16 | Article 918793

Edited by:

Guoqi Li,

Tsinghua University, China

Reviewed by:

Dongsuk Jeon,

Seoul National University, South Korea

Yukuan Yang,

Tsinghua University, China

*Correspondence:

Chen Li

chen.li@manchester.ac.uk

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 12 April 2022

Accepted: 14 June 2022

Published: 19 July 2022

Citation:

Li C, Ma L and Furber S (2022)

Quantization Framework for Fast

Spiking Neural Networks.

Front. Neurosci. 16:918793.

doi: 10.3389/fnins.2022.918793

Quantization Framework for Fast
Spiking Neural Networks

Chen Li 1*, Lei Ma 2,3 and Steve Furber 1

1 Advanced Processor Technologies (APT) Group, Department of Computer Science, The University of Manchester,

Manchester, United Kingdom, 2 Beijing Academy of Artificial Intelligence, Beijing, China, 3National Biomedical Imaging Center,

Peking University, Beijing, China

Compared with artificial neural networks (ANNs), spiking neural networks (SNNs) offer

additional temporal dynamics with the compromise of lower information transmission

rates through the use of spikes. When using an ANN-to-SNN conversion technique there

is a direct link between the activation bit precision of the artificial neurons and the time

required by the spiking neurons to represent the same bit precision. This implicit link

suggests that techniques used to reduce the activation bit precision of ANNs, such

as quantization, can help shorten the inference latency of SNNs. However, carrying

ANN quantization knowledge over to SNNs is not straightforward, as there are many

fundamental differences between them. Here we propose a quantization framework for

fast SNNs (QFFS) to overcome these difficulties, providing a method to build SNNs with

enhanced latency and reduced loss of accuracy relative to the baseline ANN model. In

this framework, we promote the compatibility of ANN information quantization techniques

with SNNs, and suppress “occasional noise” to minimize accuracy loss. The resulting

SNNs overcome the accuracy degeneration observed previously in SNNs with a limited

number of time steps and achieve an accuracy of 70.18% on ImageNet within 8 time

steps. This is the first demonstration that SNNs built by ANN-to-SNN conversion can

achieve a similar latency to SNNs built by direct training.

Keywords: spiking neural networks, fast spiking neural networks, ANN-to-SNN conversion, inference latency,

quantization, occasional noise

1. INTRODUCTION

Deep spiking neural networks (SNNs) use the revolutionary techniques developed for deep learning
while retaining biological fidelity, with the objective of achieving power-efficient, low-latency, and
high-performance computing. Their performance, and specifically their inference accuracy, has
improved significantly over recent years, driven by the motivation to prove that SNNs are as
functional as their artificial neural network (ANN) counterparts. Emerging techniques show that
lossless SNN accuracy is possible (Diehl et al., 2015; Rueckauer et al., 2017; Sengupta et al., 2019;
Deng and Gu, 2021; Li et al., 2021c).

With this success in the pursuit of inference accuracy, considerable scholarly attention has
shifted to the aspect of inference latency, referred to as fast SNN research in this paper (Ho
and Chang, 2020; Deng and Gu, 2021; Hwang et al., 2021; Li et al., 2021a). Fast SNNs are
achieved either by conducting more efficient ANN-to-SNN conversion or by training the SNNs
directly. Nevertheless, with the reduction in latency comes degradation in accuracy, resulting in
the well-known accuracy-latency trade-off in SNNs.

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.918793
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.918793&domain=pdf&date_stamp=2022-07-19
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:chen.li@manchester.ac.uk
https://doi.org/10.3389/fnins.2022.918793
https://www.frontiersin.org/articles/10.3389/fnins.2022.918793/full

Li et al. Fast Spiking Neural Networks

Here we aim to build fast SNNs while avoiding accuracy loss.
In particular, we choose an ANN-to-SNN conversion technique
to minimize accuracy loss while applying a novel quantization
framework to push latency below 10 time steps, for the first
time. Thus, we demonstrate a highly effective method to build
state-of-the-art ultra-fast, high-accuracy SNNs.

The key contributions of this paper are listed below.

• Performance: We overcome the accuracy loss problems
previously seen in fast SNNs after conversion from ANNs, and
achieve a state-of-the-art accuracy and latency. Specifically, on
ImageNet we achieve the accuracy of 70.18% in 8 time steps
and 74.36% in 10 times steps.

• Information compression: The fast SNNs are generated by
compressing activation precision. We discuss how to achieve
extremely low-bit activation compression (down to 2 bits) and,
more importantly, how to ensure the compatibility of this
technique with SNNs.

• Noise suppression: We identify a new type of noise in spiking
neurons, which we call “occasional noise,” and show that it
is the main obstacle to achieving competitive accuracy for
fast SNNs. An effective approach is proposed to suppress its
negative effect on SNN performance.

• Framework: A comprehensive quantization framework for
fast SNNs (QFFS) is built including the proposed information
compression, noise suppression techniques, and other
techniques. This framework enables SNNs to be built with
both high inference accuracy and low inference latency.
Beyond that, further improvements in accuracy, latency, and
biological plausibility are possible based on this framework.

2. RELATED WORK

The inference latency of SNNs has continued to reduce over the
last 5 years (Rueckauer et al., 2017; Sengupta et al., 2019; Ho and
Chang, 2020; Lu and Sengupta, 2020; Deng and Gu, 2021; Hwang
et al., 2021). The early demonstration of SNNs on ImageNet
needed about 2,000 ms to get competitive accuracy (Sengupta
et al., 2019). Rueckauer et al. (2017) applied a modified integrate-
and-fire (IF)model and analog input to facilitate the accuracy and
latency of SNNs. The 0.1–1% outliers were discarded to further
reduce the SNN latency.

The modified IF model and analog input were then widely
used in SNN research, and there was a surge of interest in further
shortening the inference latency of the SNNs. Hwang et al. (2021)
and Deng and Gu (2021) used a pre-charged membrane potential
and bias shift, respectively to eliminate the systematic error
during ANN-to-SNN conversion. Another contribution of Deng
and Gu (2021) is they used clipped ReLU during ANN training
to match the response curve of SNNs better. Ho and Chang
(2020) applied clipped ReLU during ANN training as well, but
the clipping point in each layer is trainable. Through these efforts,
ANN-to-SNN conversion has become increasingly effective, and
the inference latency of the SNNs has reduced to about 30 time
steps. However, the accuracy loss after conversion is considerable
when the latency is pushed down toward 10 time steps.

Another parallel method to achieve fast SNNs is to train
the SNNs directly by surrogate gradients. Using this method,
the inference latency can be pushed to several time steps.
Nevertheless, direct training is hindered by the huge memory
budget during training and the accuracy degeneration during
inference (Fang et al., 2021).

The research into ANN quantization is extraordinarily
prosperous, pursuing low computation and memory budgets
for deploying Tiny Machine Learning applications on edge
devices (Warden and Situnayake, 2019). The standard methods
are post-training quantization and quantization-aware training
(Krishnamoorthi, 2018). Using these two approaches, most
neural network models can achieve lossless accuracy with 8-
bit precision compared with the corresponding full precision
models. Further reduction of the precision mainly relies on
modifying gradients (Esser et al., 2019). The extreme situation
is using 1-bit weights and activations to conduct inference, an
approach called binary neural networks (BNNs) (Qin et al., 2020).

Research into applying quantization to SNNs is comparably
limited. Quantization techniques are primarily adopted to
compress the model footprint of the SNNs, and these techniques
have been applied to weights, neuronal parameters, and neuronal
state to deploy SNN algorithms on memory-constrained
neuromorphic hardware (Schaefer and Joshi, 2020; Chowdhury
et al., 2021; Lui and Neftci, 2021).

Meanwhile, several studies have explored the effectiveness of
using quantization techniques to promote fast SNNs (Bu et al.,
2021; Mueller et al., 2021; Wu et al., 2020). However, these
methods either fail to scale to ImageNet, or suffer severe accuracy
degradation. The main challenge for fast SNNs—preventing
accuracy drop when pushing down the inference latency—has
not been dealt with. The main differences between our research
and these studies are:

• We conduct a comprehensive analysis of occasional noise and
provide a corresponding noise suppression method, which is
shown to be crucial to achieving competitive accuracy for
SNNs within strictly limited time steps.

• Our research enables building SNNs with 2-bit precision and
loss-less accuracy (while other research uses 4-bit to 8-bit
quantization and suffers serious accuracy loss). Also, some
key modifications to the standard quantization techniques
are emphasized in this paper to better fit the dynamics of
spiking neurons.

• Other methods usually apply analog neurons instead of
spiking neurons in the output layer of the SNNs, to improve
the resolution of the output layer so keeping competitive
accuracy on tasks such as ImageNet. Our method shows
the possibility of achieving an accuracy higher than 70% on
ImageNet with spiking neurons in the output layer.

3. MOTIVATION

The motivation for this research is to develop a practical method
to reconcile the accuracy-latency trade-off in SNNs. Currently,
there are two dominant methods to build SNNs: ANN-to-SNN
conversion, and direct training with surrogate gradients. Which

Frontiers in Neuroscience | www.frontiersin.org 2 July 2022 | Volume 16 | Article 918793

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Li et al. Fast Spiking Neural Networks

FIGURE 1 | The accuracy and latency of SNNs built by different methods:

Spike-Norm (Sengupta et al., 2019), TS (Deng and Gu, 2021), RMP (Han

et al., 2020), TCL (Ho and Chang, 2020), QCFS (Bu et al., 2021) DS (Li et al.,

2021b), SEW (Fang et al., 2021), DIET-SNN (Rathi and Roy, 2020), and QFFS

proposed in this paper. ANN-to-SNN conversion delivers high accuracy, and

direct training delivers low latency. The proposed QFFS approach pushes the

latency, when using ANN-to-SNN conversion, to a level similar to that using

direct training. Also, our method shows about 2.5% higher accuracy than the

best accuracy achieved by direct training.

method is chosen depends on the requirements of the SNNs
under different application scenarios. Generally, ANN-to-SNN
conversion features high accuracy, while direct training features
low latency. In other words, an accuracy-latency trade-off arises
with current SNNs.

To illustrate this, we show the accuracy and latency of SNNs
using these two methods in Figure 1, grouped by different
symbols. It is obvious that these two methods are currently
distinguished from each other and have distinct working zones.
To date, there is no approach to building SNNs with latency
matching that using direct training and accuracy equivalent to
that using ANN-to-SNN conversion. The purpose of this paper
is to push the bounds of both of these methods, to promote
the reconciliation of the accuracy-latency trade-off in SNNs.
Specifically, we focus on improving the latency of ANN-to-
SNN conversion, for the first time to a level close to that of
direct training. As a result, the latency gap between these two
methods can be closed, while ANN-to-SNN conversion will
show clear advantages in training (lower memory budget and
shorter training time) and in inference (higher accuracy) than
direct training.

4. MATERIALS AND METHODS

4.1. Method Overview
Considering a rate-coded SNN built using the ANN-to-SNN
conversion technique (Diehl et al., 2015; Rueckauer et al., 2017),

the accuracy of the SNN, Acc(SNN), is given by

Acc(SNN) = Acc(ANN)− Loss(conversion) (1)

where Acc(ANN) is the accuracy of the full precision ANN,
Acc(SNN) is the accuracy of the SNN, and how close this is to
the full ANN accuracy depends on Loss(conversion), which is
the accuracy loss introduced by ANN-to-SNN conversion. If we
quantize the ANN prior to conversion then this becomes

Acc(SNN) = Acc(Quant ANN)− Loss(conversion) (2)

where Acc(Quant ANN) is the accuracy of the quantized ANN.
After this modification, the target accuracy of the SNN becomes
Acc(Quant ANN). Benefitting from the recent advances in ANN
quantization techniques, Acc(Quant ANN) is increasingly close
to Acc(ANN) even when the bit precision is strictly constrained.
Hence, the baseline accuracy of the SNN, Acc(Quant ANN), is
maintained in principle.

Minimizing the ANN-to-SNN conversion loss
Loss(conversion) is crucial to ensuring that the SNN approaches
this baseline accuracy. We minimize the loss by analyzing the
neuronal dynamics of spiking neurons to find the origin of the
accuracy loss and eliminate it (Sections 4.3, 4.4).

As for the inference latency, we empirically show that the
inference latency of the SNN and the activation bit-width
of the ANN are correlated after ANN-to-SNN conversion,
so a fast SNN can be built by using a quantized ANN.
This is covered in the following section, where we describe
the applied ANN quantization techniques and highlight the
modifications to the standard quantization techniques to ensure
compatibility with SNNs.

Another issue we address in this paper is the simulation
of max pooling in SNNs. We propose a practical SNN max
pooling method to improve the accuracy of the SNN compared
with that using average pooling, without compromising its
event-based nature.

The exploration of these aspects forms a quantization
framework for fast SNNs (QFFS) as shown in Figure 2. How this
framework delivers further improvements in SNN performance
is discussed at the end of the paper. The detailed equations
related to the ANN-to-SNN conversion and Quant-ANN-to-
SNN conversion are provided in Section 4.6.

4.2. Information Compression During
Training
4.2.1. Implementing Quantization Training
The inference accuracy of SNNs increases with the simulation
time step but, in essence, it increases with the amount of
information transmitted by uniform spike trains. After sufficient
information has been accumulated, a comparatively reliable
“decision” can be made, and this point in time is defined as
the inference latency of the SNN. For example, to transmit 8-bit
information, at least 255 ms is required in a rate-coded SNN with
a 1 ms time resolution. If temporal coding is used, the required
length of time is also related to the target information bit-width.
Thus, reducing the required information bit-width is the key to
achieving fast SNNs.

Frontiers in Neuroscience | www.frontiersin.org 3 July 2022 | Volume 16 | Article 918793

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Li et al. Fast Spiking Neural Networks

FIGURE 2 | The general ANN-to-SNN conversion diagram and the approach we propose to achieve fast SNNs.

When using an ANN-to-SNN conversion technique, the
required bit precision of the SNN is determined by the activation
bit precision of the ANN. So the problem becomes that of
building a quantized ANN with an activation bit-width as low
as possible while maintaining high accuracy.

During the last decade, ANN quantization techniques have
been at the center of much attention, and the standard
quantization methods (post-training quantization and
quantization-aware training) have increasingly matured.
For instance, there are well-developed and easily accessed
APIs in PyTorch to conduct ANN quantization by these two
methods. Though these APIs are easy to access, these two
standard methods are not suitable for this research, as they fail
to achieve competitive accuracy in extremely low bit precision
such as 2 bits. Hence, the first obstacle is to choose a more
effective quantization method than the standard post-training
quantization and quantization-aware training. This obstacle
is also part of the reasons why early attempts to use ANN
quantization to promote fast SNNs either failed to scale to
challenging datasets (such as ImageNet) or suffered high
accuracy loss in fast SNNs (e.g., 6% on ImageNet).

The ANN quantization technique chosen in this paper is
based on LSQ (Esser et al., 2019). LSQ defines the gradients
of the quantization step size to prevent activations from being
too close to quantization transmission points. It can enable
network quantization down to 2 bits while minimizing the
accuracy loss introduced by quantization. This quantization
accuracy loss equals Acc(ANN) − Acc(Quant ANN), which is
the accuracy difference between the full-precision ANN model
and the quantized-ANN model. According to the original LSQ
paper, this accuracy loss is about 3.2% for 2-bit ANN and 1.1%
for 3-bit ANN on ResNet-50. How to reduce this accuracy
loss is discussed in Section 6. Additionally, LSQ is not open-
sourced, and our implementation has not achieved a similar
accuracy to that claimed in that paper. For example, our
2-bit and 3-bit ANN quantization results on ImageNet are
1.5% and 2.3% lower than the reported results in the LSQ

TABLE 1 | The main differences between general quantization techniques and the

quantization techniques for fast SNNs.

Standard quantization Quantization for fast SNNs

Position Network input, network

output, ReLU, arithmetic

ReLU

Procedure Fake quantization

training-convert to integer

model

Fake quantization training

- run on the backend with

integer arithmetic

accelerator

Operation Rounding Grounding

Granularity Per tensor, per channel Per tensor

Benefits Speed up inference and

reduce memory budget

Reduce inference latency

paper, respectively. This suggests that there is further scope for
improving our methods.

4.2.2. Modifications to Promote Compatibility With

SNNs
As the quantized ANN will be converted into an SNN in the
future, the ANN quantization technique should be compatible
with the properties of SNNs.

We list the modifications to the general ANN quantization
technique in Table 1. We only apply activation quantization
during training and leave the input, weights, and biases as
floating-point. In the standard quantization procedure, the
model generated by fake quantization training will be converted
to an integer model and run on different backends. Here we
only apply the fake quantization training and then convert the
model to an SNN. The granularity of activation quantization is
the tensor. There are two modifications we found crucial to the
final SNN performance:

Frontiers in Neuroscience | www.frontiersin.org 4 July 2022 | Volume 16 | Article 918793

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Li et al. Fast Spiking Neural Networks

Firstly, many quantization techniques including the applied
LSQ leave the output layer in floating-point to render better
accuracy, e.g., 4% higher on ImageNet than that quantizing
the output layer. However, modeling floating-point with spiking
neurons is expensive. It needs either many time steps to generate
enough spikes to reach the same precision, or to use integrate-
but-not-fire neurons in the SNN and represent the high-
precision information by the neurons’ membrane potentials.
These two solutions will damage the inference latency or
biological plausibility of the built SNNs. In this research, we
explore the sensitivity of SNN performance to the activation
precision in the output layer, and choose an optimal precision
to promote competitive accuracy and latency.

Secondly, the integrate-and-fire mechanism in spiking
neurons corresponds to rounding down rather than rounding to
nearest which is generally used in ANN quantization. To address
this issue, we can either change to use the rounding down during
the quantization training, or stick to using rounding to nearest
during quantization and compensate for it later. Considering
that the quantization method is fine-tuning an already trained
full-precision model, rounding down during quantization will
introduce a systematic error resulting in a considerable accuracy
loss, especially for low-precision quantization. Here we stick to
using rounding to nearest during quantization and compensate
for it in the SNN by pre-charging the membrane potential
(Hwang et al., 2021).

4.3. Occasional Noise
The types of noise causing accuracy loss during ANN-to-SNN
conversion are summarized for the first time in Diehl et al.
(2015), where three kinds of noise—sub-threshold noise, supra-
threshold noise, and rate-coding noise—are illustrated. Some
research categorizes these as errors rather than noise. Here, we
stick to calling them noise, to emphasize their randomness and
uncertainty.

Here we argue that there is a fourth kind of noise, which we
call occasional noise. Occasional noise refers to the phenomenon
that occasional spikes are generated in spiking neurons where
they should not be. For example, consider an artificial neuron
with an input of 0.4, and the threshold of the corresponding
spiking neuron is 1 with a simulation period of 10 time steps.
During this simulation period, the average input value is 0.4 and
the neuron should generate 4 spikes in 10 time steps, in the
simplest situation. However, the inputs of a spiking neuron are
weighted spikes, with random timing. Possible situations include:

• The input of this spiking neuron is –1 in the first 9 time
steps and 13 in the last time step. Here the number of spikes
generated is 1 instead of 4.

• The input is 1 in the first 8 time steps and –2 in the last 2 time
steps. Then the summed input is 8*1 + 2*(–2) = 4, which is
correct, but the generated spike count is 8 instead of 4.

These erroneously generated spikes will propagate through the
network and cause an accuracy drop in the SNN. To verify
this, We trained ANNs with different activation quantization
precision, and evaluated their accuracy after converting to SNNs.
As shown in Figure 3, the SNN accuracy is far from the baseline

FIGURE 3 | ANN accuracy after quantization training with different bit

precisions, and SNN accuracy without handling the occasional noise. The

model is VGG-16 and the dataset is ImageNet. The ANN-to-SNN conversion

is based on the approach proposed in this paper to facilitate the conversion of

low-bit activations.

ANN accuracy for all activation precisions higher than 1 bit.
Note that a 1-bit SNN can complete inference in one time step,
then its function is equivalent to a 1-bit ANN so its conversion
accuracy loss is zero. However, no temporal information was
utilized during its inference, so the network is no longer spiking
and is out of the scope of fast SNNs. The following section will
discuss how this noise may be suppressed to achieve lossless
Quant-ANN-to-SNN conversion.

4.4. Handling Occasional Noise and the
Other Three Noise Types
To achieve lossless Quant-ANN-to-SNN conversion, occasional
noise and the other three types of noise need to be handled. We
will briefly introduce how to cope with the other three types of
noise in the following section, as these three noise types have
been researched for years. Then we will focus on illustrating the
proposed approach to handle occasional noise.

4.4.1. Handling the First Three Noise Types
By using analog inputs and the modified IF neuron, rate-coding
noise is eliminated, and the dropped supra-threshold signal is
recovered by the reset-by-subtractionmechanism in themodified
IF model (Rueckauer et al., 2017).

Sub-threshold noise is the residual membrane potential of
spiking neurons after simulation which may cause the output of
spiking neurons to be lower than the expected value (Diehl et al.,
2015). The solutions proposed in previous research are either bias
shift (Deng and Gu, 2021) or pre-charged membrane potential
(Hwang et al., 2021). We choose to use pre-charged membrane
potential to reduce the amplitude of this noise. After applying the
pre-charged membrane potential, the sub-threshold noise shares
the same amplitude and patterns as the quantization error in

Frontiers in Neuroscience | www.frontiersin.org 5 July 2022 | Volume 16 | Article 918793

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Li et al. Fast Spiking Neural Networks

FIGURE 4 | (A) The response curve of the modified IF model with the maximum spike count bound of 3; (B) adding pre-charged membrane potential to (A); (C) the

response curve of a 2-bit quantified ANN; (D,E) are the sub-threshold noise of (A,B), respectively, compared with clipped ReLU; (F) is the quantization error of (C)

relative to clipped ReLU.

the ANN, so the sub-threshold noise is canceled out. Detailed
illustrations are in Figure 4.

4.4.2. Handling Occasional Noise
To avoid the negative impact of occasional noise, it is necessary
to identify its pattern of occurrence. Occasional noise only occurs
when:

• The membrane potential of a spiking neuron after the
simulation is negative, but at least one spike has been
generated during the simulation. This means that more spikes
were generated than there should have been.

• The membrane potential of a spiking neuron after the
simulation is higher than the threshold, which means that the
generated spike count is lower than expected.

The spiking neurons that fit either of these two situations
are considered to suffer the impact of occasional noise. Here we
provide a feasible solution to mitigate the occasional noise. The
main feature of our proposed method is that it can compensate
for the occasional noise during the simulation instead of after
the simulation. In other words, the event-based nature of SNNs
is maintained.

To handle the first situation, we add a mechanism for
generating negative spikes in spiking neurons to compensate for
the incorrectly emitted positive spikes: A negative spike will be

generated when the membrane potential is smaller than zero
and the total spike count generated by this neuron is greater
than zero. These two prerequisites correspond to the two features
listed in the first situation. After a negative spike is generated,
the membrane potential will increase by a value equal to its
threshold, which is opposite to the reset mechanism of the
positive spike. A maximum spike count is set to mimic the
maximum quantization value in activation-quantized ANNs. The
pseudo-code of this spiking model is given in Algorithm 1.
There are two parameters in this spiking model that need to
be defined, the threshold of the spiking neurons th and the
Maximum spike count limitation Z_max. How these parameters
can be determined is illustrated in Section 4.6. The simulation
time of the SNN is extended correspondingly to enable these
newly-generated spikes to propagate to deep layers.

In order to deal with the second situation, we simply extend
the simulation time to allow the spike to emit.

4.5. Event-Based Max Pooling
Max pooling is problematic for rate-coded SNNs due to their
fundamentally different ways of representing information. In
ANNs, information is represented by activation values, while
in rate-coded SNNs, information is represented by the number
of accumulated spikes over time. In each time step, only
a limited amount of information is carried by a spike, so

Frontiers in Neuroscience | www.frontiersin.org 6 July 2022 | Volume 16 | Article 918793

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Li et al. Fast Spiking Neural Networks

Algorithm 1 The spiking neuronal model.

Input: Spiking neuron’s input x
Parameter: Spiking neuron’s voltage u, Current time-step t, Time
window T, Threshold th, Generated spike count Z, Maximum
spike count Z_max, Heaviside step function 2

Output: Generated spike z

1: LET u−1 = 0, z−1 = 0,Z−1 = 0
2: for t ∈ [0,T] do
3: ut = ut−1 − zt−1th+ x
4: if (ut ≥ th)and(Zt−1 < Z_max) then
5: zt = 2(ut − th)
6: else if (ut ≤ 0)and(Zt−1 > 0) then
7: zt = −2(−ut)
8: else

9: zt = 0
10: end if

11: Zt = Zt−1 + zt
12: end for

Algorithm 2 Event-based max pooling.

Input: The accumulated spike counts of spiking neurons before
the max pooling layer Z
Parameter: Max poolingmax_pooling, the output ofmax pooling
M, Current time-step t, Time window T
Output: Generated spike z

1: LET z−1 = 0,M−1 = 0
2: for t ∈ [0,T] do
3: Mt = max_pooling(Zt)
4: zt = Mt −Mt−1

5: end for

simply conducting max pooling on a spike for each time step
will introduce considerable accuracy loss. Using winner-take-all
mechanisms to model max pooling is more biologically plausible,
yet sometimes the winner may not be the one with the maximum
activation value.

Here we discuss this problem and provide a practical approach
to implement max pooling in SNNs. Basically, max pooling in
ANNs is picking themaximum value from a series of values in the
previous layer. These values are represented as spike counts if the
SNNs are rate-coded, so the output of the max pooling should be
the maximum value of these spike counts. Note that spike counts
need to be recorded after all spikes are generated, to prevent the
miscounting of spikes. For example, when calculating the max
pooling in a layer of a SNN, assuming the time window of this
SNN is T, and the totally accumulated spike counts recorded at
time T is ZT , then the max pooling outputMT would be

MT = max_pooling(ZT) (3)

wheremax_pooling is the max pooling operation. The limitation
of this method is obvious. The max pooling output can only be
obtained at time T after all spikes have been generated in the
previous layer, which violates the event-based nature of SNNs.

To protect the event-based nature of SNNs, we add some
modifications to the method above: for each time step t, the max
pooling on spike counts Zt are recorded as

Mt = max_pooling(Zt) (4)

The output of max pooling at time t is defined as

zt = Mt −Mt−1 (5)

Using this approach, a max pooling output spike zt is generated
only when Mt changes, which keeps the event-based nature of

SNNs. All generated spikes
∑T

t=1 zt during the simulation will be
the target max pooling outputMT , which is explained below:

According to Equation (5), the accumulated spike output of

max pooling
∑T

t=1 zt would be

T∑

t=1

zt =

T∑

t=1

(Mt −Mt−1)

= (MT −MT−1)+ (MT−1 −MT−2) · · · (M0 −M−1)

= MT + (−MT−1 +MT−1)+ (−MT−2 +MT−2) · ··

(−M0 +M0)−M−1

= MT −M−1

We can see that all intermediate terms are canceled out, and the
last termM−1 is 0, so this equation becomes

T∑

t=1

zt = MT (6)

The result equals that in Equation (3) from conducting max
pooling on spike counts.

Access to the spike count and the calculation of the difference
are uncomplicated and can be implemented in PyNN (Davison
et al., 2009) and PyTorch-based SNN simulation platforms such
as snnTorch and SpikingJelly, which offer compatibility with our
method. Also, the nature of event-based computing in SNNs is
preserved in our proposed method.

4.6. Quantization Meets ANN-to-SNN
Conversion
This section provides detailed equations relating to the general
ANN-to-SNN conversion and the proposed Quant-ANN-to-
SNN conversion. At the end of this section, we show that Quant-
ANN-to-SNN conversion is a special form of the general ANN-
to-SNN conversion.

4.6.1. ANN-to-SNN Conversion
In an ANN, the information processing in the artificial neurons
in layer l can be modeled as

yl = a(W lyl−1 + Bl) (7)

Frontiers in Neuroscience | www.frontiersin.org 7 July 2022 | Volume 16 | Article 918793

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Li et al. Fast Spiking Neural Networks

where a(·) is the ReLU activation function,W l and Bl denote the
weight and the bias in layer l, yl is the output of layer l, and yl−1

is the output of layer l− 1 (which is also the input to layer l).
Meanwhile, the integrate-and-fire model used in an SNN is

defined as

ult = ult−1 + W̃ lzl−1
t thl−1 + B̃l − zlt−1th

l (8)

zlt = 2(ult − thl) (9)

where ult and u
l
t−1 are themembrane potential of spiking neurons

in layer l at time t and t − 1 respectively, W̃ l is the weight and

B̃l is the bias. 2 denotes the Heaviside step function. thl is the
threshold in layer l. zlt is the output spike in this layer at time t.
Note that the reset mechanism in this spiking neuronal model is
the reset-by-subtraction rather than the reset-to-zero.

When conducting ANN-to-SNN conversion based on the

data-based normalization, the SNN parameters W̃ l, B̃l and thl are
calculated by

W̃ l =
λl−1W l

λl
(10)

B̃l =
Bl

λl
(11)

thl = 1 (12)

where λl and λl−1 are the maximum ANN activation value in
layer l and the previous layer l− 1.

4.6.2. Quant-ANN-to-SNN Conversion
In an activation-quantized ANN, the activation function is
defined by

yl = sl × ⌊clip(
W l · yl−1 + Bl

sl
, 0, 2b − 1)⌉, (13)

where sl is the quantization step size in layer l, and it is the
only parameter that is not predefined but is learned during
quantization training. b is the activation bit precision so 2b − 1 is
the maximum quantization value in this ANN. clip(a, b, c) clips a
with the value below b set to b and the value above c set to c. ⌊a⌉
rounds a to the nearest integer. This process comprising scaling,
clipping, rounding and re-scaling is applying a fake quantization
to ANN activation.

After conducting Quant-ANN-to-SNN conversion, the
applied spiking neuronal model is described in Algorithm 1, or
defined by the equations below:

ult = ult−1 + W̃ lzl−1
t thl−1 + B̃l − zlt−1th

l (14)

zlt = 2(ult − thl)2(Z_max− Zl
t−1)− 2(−ult)2(Zl

t−1) (15)

Zl
t = Zl

t−1 + zlt (16)

The meaning of these items is in Algorithm 1. 2(ult −

thl)2(Z_max − Zl
t−1) determines whether a spike is generated,

where 2(Z_max − Zl
t−1) prevents emitting more spike than

Z_max. −2(−ult)2(Zl
t−1) identify the occasional noise and

compensate it by generating a negative spike. The SNN
parameters are calculated by

W̃ l = thl−1W l (17)

B̃l = Bl (18)

thl = (2b − 1)sl (19)

Z_max = 2b − 1 (20)

By using the spiking neuronal model described in Equations (14–
16) and normalizing SNN parameters by Equations (17–20), a
lossless Quant-ANN-to-SNN conversion can be achieved.

4.6.3. Connection Between ANN-to-SNN Conversion

and Quant-ANN-to-SNN Conversion
The connection between ANN-to-SNN conversion and Quant-
ANN-to-SNN conversion is illustrated below. Equations (17–
19) are significantly different from the data-based normalization
(Equations 10–12). However, one characteristic of spiking neural
networks is that the function of an SNN will be unchanged after
scaling weights, bias, and spiking thresholds simultaneously. If
we scale these parameters by 1/(2b − 1)sl simultaneously, these
equations become

W̃ l =
(2b − 1)sl−1W l

(2b − 1)sl
(21)

B̃l =
Bl

(2b − 1)sl
(22)

thl = 1 (23)

We can see that these equations becomemore similar to the data-
based normalization (Equations 10–12). For instance, (2b − 1)sl

in Equation (21) corresponds to λl in Equation 10, and they
are both the maximum output value in an ANN layer. This
shows the internal correspondence of our method to traditional
ANN-to-SNN conversion techniques.

5. EXPERIMENTS

5.1. Experimental Setup
We conduct quantization training based on pre-trained full
precision VGG-16 and ResNet models. The networks were
trained by stochastic gradient descent with the loss function
of cross-entropy and the exponential decay scheduler. Detailed
hyper-parameters are in Table 2. We chose 2-bit activation
precision in all hidden layers for CIFAR-10 and ImageNet in
quantization training to render the best SNN latency. Notably,
the output layer is 3-bit, and the reasons for this choice are

Frontiers in Neuroscience | www.frontiersin.org 8 July 2022 | Volume 16 | Article 918793

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Li et al. Fast Spiking Neural Networks

discussed in the following sections. Both ANN quantization
training and SNN implementation are carried out with PyTorch.

In SNN simulation, the network input is analog-coded
(Rueckauer et al., 2017) and the time resolution is 1ms. The
adopted neuronal model was described in Algorithm 1. The
maximum spike count is limited to 2b − 1 in hidden layers
and 2b+1 − 1 in the output layer, which corresponds to the
maximum quantization states during quantization training. b is
the activation bit precision during ANN quantization training

and is chosen as 2. The weight W̃
l
, the bias B̃

l
, the threshold thl

and the maximum spike count limitation Z_max in layer l are
determined by

W̃1 = thl−1W l (24)

B̃1 = Bl (25)

TABLE 2 | Hyper-parameters of ANN quantization training.

Learning rate 0.01

Momentum 0.9

Weight decay 0.0005

Epoch 40

Batch size 32

Other technique Data augmentation

thl = (2b − 1)sl (26)

Z_max = 2b − 1 (27)

whereW l, Bl and sl are the weight, the bias and the quantization
step size in layer l which are learned during ANN quantization
training (Esser et al., 2019). The membrane potential of the
spiking neurons in all layers is pre-charged by 0.5th at the first
time step to eliminate systematic errors relative to the quantized
ANNs (Hwang et al., 2021).

Bias in the SNNs is modeled by constant current injection
into the spiking neurons (Rueckauer et al., 2017). After time step
2b − 1, both the bias and the network input are shut down,
so only the spikes caused by occasional noise can be passed
through the network.

5.2. Benchmark Results
The following benchmark results are on ResNet models. More
results on VGG-16 models are in Section 5.6.

After converting quantized ANNs to SNNs, an accuracy of
93.14% is achieved within 4 time steps on CIFAR-10 and an
accuracy of 70.18% is reached within 8 time steps on ImageNet.
Compared with previous work on ANN-to-SNN conversion, the
inference latency of the SNNs is shortened significantly while
retaining competitive accuracy as shown in Table 3.

Note that in fast SNN research, sometimes the SNN accuracy
will be higher than the ANN accuracy. This phenomenon

TABLE 3 | Benchmarking SNNs built by ANN-to-SNN conversion on CIFAR-10 and on ImageNet.

Method Dataset Architecture Acc(ANN)(%) Acc(SNN)(%) Latency (ms)

RNL+RIL (Ding et al., 2021) CIFAR-10 ResNet-18 93.06 91.96 64

RNL+RIL (Ding et al., 2021) CIFAR-10 VGG-16 92.82 91.15 64

TCL (Ho and Chang, 2020) CIFAR-10 ResNet-20 91.58 91.22 35

TCL (Ho and Chang, 2020) CIFAR-10 VGG-16 93.25 92.6 20

QCFS (Bu et al., 2021) CIFAR-10 ResNet-20 91.77 91.62 16

QCFS (Bu et al., 2021) CIFAR-10 ResNet-18 96.04 94.82 8

QCFS (Bu et al., 2021) CIFAR-10 VGG-16 95.52 94.95 8

TS (Deng and Gu, 2021) CIFAR-10 ResNet-20 92.32 92.41 16

TS (Deng and Gu, 2021) CIFAR-10 VGG-16 92.09 92.29 16

QFFS (This work) CIFAR-10 ResNet-18 93.12 93.14 4

QFFS (This work) CIFAR-10 VGG-16 92.44 92.64 4

Spike-Norm (Sengupta et al., 2019) ImageNet VGG-16 70.52 69.96 2500

Spike-Norm (Sengupta et al., 2019) ImageNet ResNet-34 70.69 65.47 2000

RMP (Han et al., 2020) ImageNet VGG-16 73.49 73.09 4096

RMP (Han et al., 2020) ImageNet ResNet-34 70.64 69.89 4096

TCL (Ho and Chang, 2020) ImageNet VGG-16 73.22 70.75 30

TCL (Ho and Chang, 2020) ImageNet ResNet-34 70.85 70.37 250

QCFS (Bu et al., 2021) ImageNet VGG-16 74.29 72.85 64

QCFS (Bu et al., 2021) ImageNet ResNet-34 74.32 72.35 64

TS (Deng and Gu, 2021) ImageNet VGG-16 72.4 70.97 64

QFFS (This work) ImageNet ResNet-50 70.15 70.18 8

QFFS (This work) ImageNet VGG-16 69.88 69.69 8

QFFS with analog output (This work) ImageNet ResNet-50 72.81(74.07) 72.91(74.36) 5(10)

QFFS with analog output(This work) ImageNet VGG-16 71.88(73.08) 72.10(73.10) 4(8)

Frontiers in Neuroscience | www.frontiersin.org 9 July 2022 | Volume 16 | Article 918793

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Li et al. Fast Spiking Neural Networks

FIGURE 5 | The relationship between ANN-to-SNN conversion loss and SNN

inference latency on ImageNet.

usually appears when an SNN is converted from an ANN whose
activation function is clipped ReLU, or when the dataset is less
challenging such as CIFAR-10. This has been reported in several
studies but an adequate explanation is still lacking (Deng and
Gu, 2021; Ding et al., 2021). Our research also shows higher
SNN accuracy than that in the ANN in some experimental
settings—the extreme case is that the accuracy of a SNN is
about 0.3% higher than its ANN accuracy, as shown in Table 3.
The reason may be that the applied ANN activation function
contains a clipped point such as in the clipped ReLU. Another
potential reason may be the difference in information processing
mechanisms between ANNs and SNNs. ANNs calculate the
activation function by multiplication, while SNNs calculate
outputs using their integrate-and-fire mechanism. Thus, even if
a perfect ANN-to-SNN conversion is conducted, a value in the
ANNmay be represented as a slightly different value in the SNN.

We also benchmark the required time steps to achieve lossless
ANN-to-SNN conversion on ImageNet; (see Figure 5). The y-
axis represents the accuracy gap to the baseline ANN accuracy
before the conversion. The horizontal axis is the required number
of time steps of the SNNs, which is converted into the equivalent
bit resolution at the bottom. What stands out in this figure is that
our proposed quantization framework for fast SNNs only needs
13 time steps—about 4 bits of information—to reach lossless
accuracy, while other methods need at least 500 time steps, or
9 bits of information, to achieve lossless accuracy. This highlights
the merit of applying information compression techniques to
SNNs and the effectiveness of the proposed Quant-ANN-to-SNN
conversion paradigm.

5.3. Bit Precision During Quantization
Training
Figure 6 illustrates the impact of the activation precision during
quantization training on the accuracy and latency of SNNs on

FIGURE 6 | The impact of the activation precision during the quantization

training of ResNet-50 on the performance of SNNs on ImageNet.

FIGURE 7 | The impact of the activation precision in hidden layers during the

quantization training of ResNet-50 on the performance of SNNs on ImageNet.

ImageNet. As shown in the figure, higher activation precision
during quantization training will offer higher accuracy in the
SNNs, while the number of time steps required by the SNNs is
extended. Hence, there is an accuracy-latency trade-off inside the
Quant-ANN-to-SNN conversion technique.

Some SNN research keeps the output layer as floating-point
and suggests that this promotes inference accuracy. For a fair
comparison with this kind of research, we also report the
performance of SNNs built using this paradigm. As shown in
Figure 7, using full precision in the output layer during ANN
quantization training obviously improves the inference accuracy
and latency of the SNNs. Particularly, the 2-bit SNN reaches
72.91% in 5 time steps, and the 3-bit SNN reaches 74.36% in 10
time steps.

5.4. Bit Precision in the Output Layer
The results in the previous section show that the network
accuracy is very sensitive to the bit precision in the output
layer. For instance, changing the output layer from 2-bit to
floating-point gives a 4% accuracy improvement on ImageNet.
In this section, we provide more fine-grained results on the
bit precision in the output layer. Also, we discuss improving

Frontiers in Neuroscience | www.frontiersin.org 10 July 2022 | Volume 16 | Article 918793

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Li et al. Fast Spiking Neural Networks

inference accuracy without sacrificing biological plausibility, in
particular without using analog neurons in the output layer of
the SNNs.

We mentioned that the SNN converted from a 2-bit ANN
needs about 7 time steps to reach the highest accuracy as shown
in Figure 6, which means that most of the information has been
transmitted to the output layer in 7 time steps. Seven time
steps can represent 3 bits of information from a rate-coded
spiking neuron in theory, while the bit precision of the output

FIGURE 8 | The impact of the activation precision in the output layer during

ANN quantization on the performance of SNNs on ImageNet. The network

architecture is ResNet-50.

TABLE 4 | Ablation studies on ImageNet.

Index Setting Accuracy(%)

1 Default 0.01

2 1 + Negative spike 10.64

3 2 + Simulation time step extension 67.29

4 3 + Max pooling 68.69

5 4 + More bits in the output layer 70.18

layer is only 2 bits. This gap motivates us to further utilize
the information representation ability of spiking neurons by
adjusting the precision of the output layer.

We keep the bit precision in all hidden layers as 2-bit, and
adjust the bit precision in the output layer during quantization
training. As shown in Figure 8, higher precision in the output
layer brings higher accuracy but longer latency. What stands out
in this figure is the case with 3-bit bit precision: its accuracy
improves 1.49% while its latency is only extended by 1 time
step compared with the case with 2-bit precision. Meanwhile, its
latency is 2 times shorter than the case with 4-bit precision. With
that in mind, we choose 2-bit in all hidden layers and 3-bit in the
output layer during quantization training to build high-accuracy,
low-latency SNNs.

5.5. Ablation Studies
We decompose the effect of our methods using an ablation study
as shown in Table 4. The default setting is the SNN converted
from a 2-bit quantized ANN. After applying the mechanisms
of generating negative spikes and extending the simulation
time to let the newly generated spikes propagate, the accuracy
reaches 67.29%. Using max pooling in the network increases the
SNN accuracy to 68.69% compared with using average pooling.
Another 1.49% accuracy improvement comes from using 3-bit
quantization in the output layer.

5.6. Results on VGG-16
The SNNs applying the VGG-16 network architecture achieved
an accuracy of 92.62% in 4 time steps on CIFAR-10 and an
accuracy of 69.69% in 8 time steps on ImageNet. The results on
the impact of bit precision, the bit precision in the hidden layers,
and the bit precision in the output layer are shown in Figure 9.

6. DISCUSSION AND FURTHER
IMPROVEMENTS BASED ON QFFS

By establishing a bridge from ANN quantization precision to
SNN inference latency, we achieved state-of-the-art inference
latency in SNNs. This demonstration significantly improves

FIGURE 9 | The impact of the bit precision in (A) all layers, (B) all hidden layers, and (C) the output layer on SNN accuracy and latency. The output precision in (B) is

floating-point; the precision of hidden layers in (C) is 2 bits. The dataset is ImageNet and the network architecture is VGG-16.

Frontiers in Neuroscience | www.frontiersin.org 11 July 2022 | Volume 16 | Article 918793

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Li et al. Fast Spiking Neural Networks

the performance of rate-coded SNNs, and should facilitate
future SNN implementations on edge devices for ultra-fast,
event-based computing. SNNs encoded by temporal coding
may also benefit from this research as, in these encoding
schemes, the amount of information to be encoded is crucial
as well.

This study offers a fresh perspective on how to generate
more rapid progress on SNNs: in our proposed quantization
framework for fast SNNs, the first step is selecting one
effective technique (instead of developing an SNN algorithm
from scratch). The remaining three steps in QFFS are making
the knowledge transmission from ANNs to SNNs smoother.
Considering the prosperity in current ANN research, we
believe this research concept will continue to work in the
near future.

This research provides a novel method to achieve
lossless ANN-to-SNN conversion within several time steps.
Furthermore, we have built a framework to facilitate future
improvements in fast SNN research: The accuracy can be
increased by improving the first step in QFFS, which is
quantizing the ANN activation as shown in Figure 2. The
method we chose to conduct quantization training is LSQ.
However, quantization training techniques are developing
rapidly, and there are other effective methods being proposed
after LSQ. We suggest that the progress in ANN quantization
techniques can promote accuracy improvements in fast SNN
research through the bridge built by our proposed framework.

The four identified types of noise are the main cause of the
degradation in accuracy and the extension in latency. In this
research, the noise suppression measures are considered only
after the ANN-to-SNN conversion. An alternative method is to
suppress noise before conducting the ANN-to-SNN conversion.
For example, it may be helpful if some constraints can be added
during quantization training to make SNNs robust to occasional
noise. In this case, the noise could be suppressed more effectively,
and the latency of SNNs may be improved.

Furthermore, occasional noise is suppressed by modifying
spiking neuronal models (the third step in Figure 2). It is
worthwhile to study how to use more biologically plausible
mechanisms to suppress occasional noise in the future, thereby
further improving the proposed QFFS.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://image-net.org/, and on the website of
CIFAR-10: https://www.cs.toronto.edu/~kriz/cifar.html.

AUTHOR CONTRIBUTIONS

CL developed the methods, under the supervision of SF. LM
provided GPU resources and funding during CL’s visit to
BAAI. All authors contributed to the article and agreed to
the submission.

FUNDING

This research has received funding from the European
Union’s Horizon 2020 Framework Programme for Research
and Innovation under the Specific Grant Agreement No.
945539 (Human Brain Project SGA3). This work was
supported in part by National Key R&D Program of China
(Nos. 2020AAA0105200, 2021ZD0109802).

ACKNOWLEDGMENTS

This research was inspired by Pete Warden’s presentation about
the robustness of ANN activation quantization for outliers, and
was carried out when CL was visiting BAAI. CL thanks Wenyao
Wang in BAAI for helpful comments and review. CL thanks
Edward Jones, Luca Peres, Zhaofei Yu, and Jianhao Ding for
helpful discussions.

REFERENCES

Bu, T., Fang, W., Ding, J., Dai, P., Yu, Z., and Huang, T. (2021). “Optimal ann-snn

conversion for high-accuracy and ultra-low-latency spiking neural networks,”

in International Conference on Learning Representations.

Chowdhury, S. S., Garg, I., and Roy, K. (2021). Spatio-temporal pruning

and quantization for low-latency spiking neural networks. arXiv preprint

arXiv:2104.12528. doi: 10.1109/IJCNN52387.2021.9534111

Davison, A. P., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski, D., et

al. (2009). Pynn: a common interface for neuronal network simulators. Front

Neuroinform. 2, 11. doi: 10.3389/neuro.11.011.2008

Deng, S., and Gu, S. (2021). Optimal conversion of conventional artificial

neural networks to spiking neural networks. arXiv preprint arXiv:2103.00476.

doi: 10.48550/arXiv.2103.00476

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015). “Fast-

classifying, high-accuracy spiking deep networks through weight and threshold

balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN)

(Killarney: IEEE), 1–8.

Ding, J., Yu, Z., Tian, Y., and Huang, T. (2021). Optimal ann-snn conversion for

fast and accurate inference in deep spiking neural networks. arXiv preprint

arXiv:2105.11654. doi: 10.24963/ijcai.2021/321

Esser, S. K., McKinstry, J. L., Bablani, D., Appuswamy, R., and Modha, D.

S. (2019). Learned step size quantization. arXiv preprint arXiv:1902.08153.

doi: 10.48550/arXiv.1902.08153

Fang, W., Yu, Z., Chen, Y., Huang, T., Masquelier, T., and Tian, Y. (2021). Deep

residual learning in spiking neural networks. arXiv preprint arXiv:2102.04159.

doi: 10.48550/arXiv.2102.04159

Han, B., Srinivasan, G., and Roy, K. (2020). “RMP-SNN: residual membrane

potential neuron for enabling deeper high-accuracy and low-latency

spiking neural network,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (Seattle, WA: IEEE),

13558–13567.

Ho, N.-D., and Chang, I.-J. (2020). TCL: an ann-to-snn conversion

with trainable clipping layers. arXiv preprint arXiv:2008.04509.

doi: 10.1109/DAC18074.2021.9586266

Hwang, S., Chang, J., Oh, M.-H., Min, K. K., Jang, T., Park, K., et al. (2021).

Low-latency spiking neural networks using pre-charged membrane potential

and delayed evaluation. Front. Neurosci. 15, 135. doi: 10.3389/fnins.2021.

629000

Krishnamoorthi, R. (2018). Quantizing deep convolutional networks for

efficient inference: a whitepaper. arXiv preprint arXiv:1806.08342.

doi: 10.48550/arXiv.1806.08342

Frontiers in Neuroscience | www.frontiersin.org 12 July 2022 | Volume 16 | Article 918793

https://image-net.org/
https://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1109/IJCNN52387.2021.9534111
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.48550/arXiv.2103.00476
https://doi.org/10.24963/ijcai.2021/321
https://doi.org/10.48550/arXiv.1902.08153
https://doi.org/10.48550/arXiv.2102.04159
https://doi.org/10.1109/DAC18074.2021.9586266
https://doi.org/10.3389/fnins.2021.629000
https://doi.org/10.48550/arXiv.1806.08342
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Li et al. Fast Spiking Neural Networks

Li, Y., Deng, S., Dong, X., Gong, R., and Gu, S. (2021a). A free lunch from ann:

towards efficient, accurate spiking neural networks calibration. arXiv preprint

arXiv:2106.06984. doi: 10.48550/arXiv.2106.06984

Li, Y., Guo, Y., Zhang, S., Deng, S., Hai, Y., and Gu, S. (2021b). “Differentiable

spike: rethinking gradient-descent for training spiking neural networks,” in

Advances in Neural Information Processing Systems, 34.

Li, Y., Zeng, Y., and Zhao, D. (2021c). Bsnn: towards faster and better

conversion of artificial neural networks to spiking neural networks with

bistable neurons. arXiv preprint arXiv:2105.12917. doi: 10.48550/arXiv.210

5.12917

Lu, S., and Sengupta, A. (2020). Exploring the connection between

binary and spiking neural networks. Front. Neurosci. 14, 535.

doi: 10.3389/fnins.2020.00535

Lui, H. W., and Neftci, E. (2021). Hessian aware quantization of spiking

neural networks. arXiv preprint arXiv:2104.14117. doi: 10.1145/3477145.

3477158

Mueller, E., Hansjakob, J., Auge, D., and Knoll, A. (2021). “Minimizing inference

time: optimization methods for converted deep spiking neural networks,” in

2021 International Joint Conference on Neural Networks (IJCNN) (Shenzhen:

IEEE), 1–8.

Qin, H., Gong, R., Liu, X., Bai, X., Song, J., and Sebe, N. (2020).

Binary neural networks: a survey. Pattern Recognit. 105, 107281.

doi: 10.1016/j.patcog.2020.107281

Rathi, N., and Roy, K. (2020). Diet-snn: direct input encoding

with leakage and threshold optimization in deep spiking neural

networks. arXiv preprint arXiv:2008.03658. doi: 10.48550/arXiv.2008.

03658

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks for

image classification. Front. Neurosci. 11, 682. doi: 10.3389/fnins.2017.00682

Schaefer, C. J., and Joshi, S. (2020). “Quantizing spiking neural networks with

integers,” in International Conference on Neuromorphic Systems 2020, 1–8.

doi: 10.1145/3407197.3407203

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in

spiking neural networks: VGG and residual architectures. Front. Neurosci. 13,

95. doi: 10.3389/fnins.2019.00095

Warden, P., and Situnayake, D. (2019). Tinyml: Machine Learning With

Tensorflow Lite on Arduino and Ultra-Low-Power Microcontrollers.

O’Reilly Media.

Wu, J., Xu, C., Zhou, D., Li, H., and Tan, K. C. (2020). Progressive tandem learning

for pattern recognition with deep spiking neural networks. arXiv preprint

arXiv:2007.01204. Available online at: https://arxiv.org/abs/2007.01204

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Li, Ma and Furber. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 13 July 2022 | Volume 16 | Article 918793

https://doi.org/10.48550/arXiv.2106.06984
https://doi.org/10.48550/arXiv.2105.12917
https://doi.org/10.3389/fnins.2020.00535
https://doi.org/10.1145/3477145.3477158
https://doi.org/10.1016/j.patcog.2020.107281
https://doi.org/10.48550/arXiv.2008.03658
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1145/3407197.3407203
https://doi.org/10.3389/fnins.2019.00095
https://arxiv.org/abs/2007.01204
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Quantization Framework for Fast Spiking Neural Networks
	1. Introduction
	2. Related Work
	3. Motivation
	4. Materials and Methods
	4.1. Method Overview
	4.2. Information Compression During Training
	4.2.1. Implementing Quantization Training
	4.2.2. Modifications to Promote Compatibility With SNNs

	4.3. Occasional Noise
	4.4. Handling Occasional Noise and the Other Three Noise Types
	4.4.1. Handling the First Three Noise Types
	4.4.2. Handling Occasional Noise

	4.5. Event-Based Max Pooling
	4.6. Quantization Meets ANN-to-SNN Conversion
	4.6.1. ANN-to-SNN Conversion
	4.6.2. Quant-ANN-to-SNN Conversion
	4.6.3. Connection Between ANN-to-SNN Conversion and Quant-ANN-to-SNN Conversion

	5. Experiments
	5.1. Experimental Setup
	5.2. Benchmark Results
	5.3. Bit Precision During Quantization Training
	5.4. Bit Precision in the Output Layer
	5.5. Ablation Studies
	5.6. Results on VGG-16

	6. Discussion and Further Improvements Based on QFFS
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

