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Abstract

Background

Deep learning segmentation requires large datasets with ground truth. Image annotation is

time consuming and leads to shortages of ground truth data for clinical imaging. This study

is to investigate the feasibility of kidney segmentation using deep learning convolution neu-

ral network (CNN) models trained with MR images from only a few subjects.

Methods

A total of 60 subjects from two cohorts were included in this study. The first cohort of 20 sub-

jects from publicly available data was used for training and testing. The second cohort of 40

subjects with renal masses from our institution was used for testing only. A few-shot deep

learning approach using 3D augmentation was investigated. T1-weighted images in the first

cohort were used for training and testing. Cascaded CNN networks were trained using

images from one, three, and six subjects, respectively. Images for the remaining subjects

were used for testing. Images in the second cohort were utilized for testing only. Dice and

Jaccard coefficients were generated to evaluate the performance of CNN models. Statistical

analyses for segmentation metrics among different approaches were performed.

Results

Our approach achieved mean Dice coefficients of 0.85 using a single training subject and

0.91 with six training subjects. Compared to a single Unet, the cascaded network signifi-

cantly improved the results using a single training subject (Dice, 0.759 vs. 0.835; p<0.001)

and three subjects (0.864 vs. 0.893; p = 0.015) in the first cohort, and the results for the sec-

ond cohort (0.821 vs. 0.873; p = 0.008).

Conclusion

Our few-shot kidney segmentation approach using 3D augmentation achieved a good per-

formance even using a single Unet. Furthermore, the cascaded network significantly

improved the performance of segmentation and was superior to a single Unet in certain

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0267753 May 9, 2022 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Guo J, Odu A, Pedrosa I (2022) Deep

learning kidney segmentation with very limited

training data using a cascaded convolution neural

network. PLoS ONE 17(5): e0267753. https://doi.

org/10.1371/journal.pone.0267753

Editor: Zhifan Gao, Sun Yat-Sen University, CHINA

Received: July 8, 2021

Accepted: April 15, 2022

Published: May 9, 2022

Copyright: © 2022 Guo et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Image data for the

first cohort (CHAOS dataset) used in this paper are

publicly available (https://chaos.grand-challenge.

org). Image data for the second cohort cannot be

shared publicly due to legal reasons. Access to

clinical image data for the second cohort requires

approval of the Sponsored Programs

Administration (SPA) at University of Texas

Southwestern Medical Center. To solicit access to

these data, please contact

sponsoredprograms@utsouthwestern.edu.

Funding: IP: NIH grants R01CA154475 The

funders had no role in study design, data collection

https://orcid.org/0000-0002-1173-9666
https://doi.org/10.1371/journal.pone.0267753
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267753&domain=pdf&date_stamp=2022-05-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267753&domain=pdf&date_stamp=2022-05-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267753&domain=pdf&date_stamp=2022-05-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267753&domain=pdf&date_stamp=2022-05-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267753&domain=pdf&date_stamp=2022-05-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267753&domain=pdf&date_stamp=2022-05-09
https://doi.org/10.1371/journal.pone.0267753
https://doi.org/10.1371/journal.pone.0267753
http://creativecommons.org/licenses/by/4.0/
https://chaos.grand-challenge.org
https://chaos.grand-challenge.org
mailto:sponsoredprograms@utsouthwestern.edu


cases. Our approach provides a promising solution to segmentation in medical imaging

when the number of ground truth masks is limited.

Introduction

Magnetic resonance imaging (MRI) plays a critical role in diagnosis, evaluation, and manage-

ment of many kidney-related diseases. Furthermore, the role of MRI is increasingly expanding

with the extraction of radiomic features from imaging data. Indeed, quantitative assessment of

kidney size and morphology or renal mass heterogeneity is possible [1, 2]. Progress in the

application of radiomics is however limited by the need to manually segment areas of interest,

a time-consuming step [2].

Deep learning, and more specifically convolutional neural networks (CNN), represent

state-of-the-art techniques for segmentation in medical imaging [3, 4]. CNN methods extract a

complex hierarchy of image features and achieve superior results compared to traditional

machine learning methods [4, 5]. CNN segmentation methods for medical images including

computed tomography (CT) and MRI were widely used for different organs including brain,

heart, and kidney [6–9]. For example, CNN models achieved excellent results for segmenting

the kidneys on T2-weighted images of MRI exams of patients with adult polycystic kidney dis-

ease [6]. However, construction of such model necessitated the use of 2,000 fully annotated

MRI examinations for training and additional 400 fully annotated MRI examinations for test-

ing [6]. In contrast, training a CNN model using a smaller number of datasets (36 MRI exami-

nations) resulted in substantial decrease in the performance of kidney segmentation [10].

These approaches rely on a large amount of data including source images and ground truth

masks. Since manual segmentation is considered the reference standard, ground truth is usu-

ally obtained after manual delineations of structures of interest by trained personnel (e.g.,

image analysts, radiologists, etc.). Therefore, creating such masks, particularly in special

domains (e.g., MRI), is very costly and time consuming. These challenges can be accentuated

for abdominal MRI examinations where ground truth masks have to be drawn for multiple

image acquisitions and respiratory motion leads to lack of spatial registration between them.

To overcome the limited availability of annotated datasets, few-shot deep learning, a type of

weakly supervised learning, has been proposed [11–13]. With few-shot deep learning, the

CNN model is trained from a few datasets containing supervised information resembling the

way human brain learns. Few-shot semantic segmentation methods incorporate additional

information such as prototype segmentation, object appearances, and human inputs to over-

come the challenges resulting from ground truth scarcity [14–16]. Although some proposed

few-shot segmentation methods have achieved certain success for evaluation of photographs

[17–19], these methods show poor performance on medical images [20]. For the latter, Val-

verde et al. demonstrated the transferability of the trained CNN segmentation model to new

MRI images from different scanners or protocols using one-shot domain adaptation [21].

Chen et al. used one-shot generative adversarial learning to synthesize labeled MR images

from CT images to train a CNN segmentation model for MRI bony structure [22]. In addition,

Zhao et al. demonstrated one-shot CNN segmentation on MR brain images using a learning-

based method for data augmentation, which requires a brain atlas and registration transform

[7]. However, implementation of such methods to body MRI segmentation would be impracti-

cal as the trained models, CT images, or an anatomy atlas is not available. Alternatively, in this

study, 3D augmentation strategies will be applied taking advantage of three-dimensional (3D)
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MRI data using 3D rotations of the imaging data. Image augmentation is a technique to create

more data by altering the existing images for model training to increase its robustness and

avoid overfitting. The image augmentation usually includes geometric transformations, kernel

filters, random erasing, etc. In addition, cascaded networks can further improve the perfor-

mance of CNN models [23, 24]. Cascaded networks offer some advantages for medical image

segmentation [25–27]. Cascaded architecture combines two separate CNN architectures

where the output of the first CNN model is used as an input to the second CNN model to fur-

ther improve the prediction [28].

Our hypothesis is that deep learning kidney segmentation model can be trained with very

limited data by using 3D augmentation. In this study, we investigated the feasibility of kidney

segmentation on MR images using CNN models trained with only a few subjects (� 6) facili-

tated by 3D augmentation and a cascaded network structure.

Materials and methods

MRI datasets

Two cohorts of subjects were included in this study. The first cohort of subjects was from pub-

licly available data, the Combined (CT-MR) Healthy Abdominal Organ Segmentation

(CHAOS) challenge [29]. The CHAOS cohort was used for both training and testing. Axial

two dimensional (2D) T1-weighted (T1w) magnetic resonance (MR) images and ground truth

kidney masks were downloaded from the CHAOS challenge website [29]. A total of 20 sets of

T1w out-phase images and kidney masks from healthy subjects were used to train and test

models for few-shot CNN segmentation. The data sets were acquired on a 1.5T Philips MR

scanner with a matrix size of 256 x 256/288 x 288, and the number of slices between 26 and 50.

The effective slice thicknesses including slice spacing varied between 5.5–9.5 mm. The rest

protocol parameters are shown in Table 1. Two of 20 datasets were contrast-enhanced T1w

Table 1. Summary of imaging information for all subjects.

Items CHAOS cohort RM cohort

Total Number of subjects 20 40

Female/Male — 22/18

Age (years) — 22–80

Manufacturer Philips Philips, Siemens

Scanner Model — Philips: Achieva, Ingenia

Siemens: Aera, Avanto, Avanto_DOT, Prisma

Field strength 1.5T 1.5T and 3T

TR (ms) 110–255 75–180

TE† (ms) 2.3 2.3 (1.5T), 1.15 (3T) for Philips

2.37 (1.5T), 1.23 (3T) for Siemens

Flip Angle (degree) 80 55–80

In-plane resolution (mm) 1.44–2.03 0.512–1.953

Slice Thickness/Gap (mm) 5–9 /0.5 5/1

Field of view (mm2) 375–520 × 375–520 234–460 × 300–500

Bandwidth (Hz/pixel) 523–744 390–1691

CHAOS = Combined (CT-MR) Healthy Abdominal Organ Segmentation

RM = Renal mass.

—represents unavailable information in the CHAOS website.

† represents the echo time for the first echo; the second echo time is doubled.

https://doi.org/10.1371/journal.pone.0267753.t001
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images. This dataset was from publicly available data (https://chaos.grand-challenge.org/) and

exempt from Institutional Review oversight.

The second cohort included 40 subjects who underwent a clinical MRI for evaluation of a

renal mass at our institution (RM cohort). The RM cohort were used for testing only. All sub-

jects were imaged in the supine position in 1.5T or 3T MRI scanners from Philips (Intera,

Achieva or Ingenia, Philips Healthcare, Best, The Netherlands) or Siemens (Aera, Avanto,

Prisma, Siemens Medical Solutions, Erlangen, Germany) from 2016 to 2019. Axial 2D T1w

images were acquired using the two-point Dixon gradient echo sequence with the acquisition

parameters shown in Table 1. A total of 40 sets of 2D T1w out-phase images were used to fur-

ther test the models trained using the CHAOS subjects. 36 patients had 1 renal mass, three

patients had 2 renal masses, one patient had 3 renal masses. All sizes of renal masses were less

than 7 cm. The kidney masks for these 40 datasets were drawn manually by one imaging spe-

cialist (1 year experience doing image segmentation/annotation in clinical trials) using 3D

Slicer software (https://www.slicer.org/). This retrospective study was approved by the UTSW

Institutional Review Board. The need for written informed consent was waived. Imaging infor-

mation for all subjects in two cohorts is summarized in Table 1.

Data preprocessing

In this study, T1w MR images are a stack of acquired 2D slices. There is variant intensity in the

MR images caused by MR field inhomogeneity. A commonly reported approach (N4 bias field

correction) was used for bias field correction [30]. Quantile-based normalization and histo-

gram equalization were used to map intensities of all images into a standard scale between 0

and 255 with better image contrast. Since the slice thickness was larger than the in-plane reso-

lution, interpolation and resampling steps were performed to create an isotropic three-dimen-

sional (3D) dataset (approximately 2×2×2 mm3) prior to data augmentation.

Data augmentation

In this study, augmented transformations included 3D rotation, 3D radial distortion, 2D shear

deformation, denoising or adding noise to images, and intensity inversion. Isotropic 3D data-

sets were rotated in 3D space with different Euler angles for data augmentation. In this study,

uniform distributions of Euler axes and angles were used for 3D rotation of MR images. 13 azi-

muth and 10 polar angles were used to get the axes and 9 uniformly distributed rotation angles

for each axis were used to generate 3D rotation transforms. After removing duplicate rotations,

a total of 765 3D rotations were selected for data augmentation. 3D rotated exampled images

are shown in S1 Fig. Following rotations, one radial distortion and two shear deformations

were applied to images with an augmented factor of six. Two kinds of denoising methods were

used, smoothing recursive Gaussian filter (sigma of 2) and median filter (radius of 2). Three

kinds of noise including additive Gaussian noise (standard deviation: 1% of maximum of image

intensity), salt and pepper noise, and Poisson noise (scale factor of 2) were added to MR images.

The total number of noised-related augmentations was six. Finally, image intensity inversion

was applied to MR images with an additional factor of two. The total number of data augmenta-

tion transformations varied from 9,180 to 55,080 depending on the number of selected subjects.

To save the training time, all the augmented images were generated in advance. All the prepro-

cessing were performed using python with simpleITK (https://simpleitk.org/).

CNN model and training

The proposed CNN model was a cascaded network including two 2D Unet models shown in

Fig 1 [4]. The Unet architecture with a backbone of ResNet34 was used in this study [31]. Unet
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models based on TensorFlow were downloaded from github (https://github.com/qubvel/

segmentation_models). In this study, Unet refers to a Unet architecture with a backbone of

ResNet34. The first network (Unet1) was the standard Unet, in which the inputs had three

channels composed of three slices. The second network (Unet2) was a slightly modified Unet

with four channels composed of three slices and one mask for the third slice. The two Unets

were trained independently. The outputs for both networks were the masks for the central

slice (i.e., the second slice out of three). In training, the input masks in Unet2 were from

ground truth masks. In testing, the masks for all the slices in one subject were predicted first in

step 1 (Fig 1). The best predicted mask for the subject was selected in step 2 based on the maxi-

mum area of masks, which was usually from the central kidney slice. In step 3, the best pre-

dicted mask from Unet1 was used as an input (red) in Unet2 to facilitate the segmentation of

its neighboring slice (green). In step 4, this process was repeated for the next slice (yellow)

until all masks were predicted for the subject.

The two Unets were trained with different number of CHAOS subjects and data augmenta-

tions in five scenarios: 1. One training subject with a slice thickness of 5.5 mm (Fig 2a) and all

noised-related augmentations (N = 55,080); 2. Three training subjects (Fig 2a–2c) with aug-

mentations (N = 18,360) including one Gaussian-noise augmentation; 3. Six training subjects

(Fig 2) after randomly selecting half of images from the augmented dataset (N = 9,180). Total

number of data augmentations, including the number of subjects, was kept similar

(N = 55,080) for the above three scenarios. 4. One training subject (same as in the first sce-

nario, Fig 2a) with fewer augmentations (N = 18,360) including one Gaussian-noise augmenta-

tion; 5. One training subject (another subject with a slice thickness of 9 mm, Fig 2f) and the

same training setting as in the fourth scenario. The last two trainings were performed to evalu-

ate the effect of the slice thickness on the performance of automatic kidney segmentation. All

the data splits between training and testing were performed at the subject level to avoid data

leakage.

Fig 1. Diagram of the framework of two neural networks including Unet1 and Unet2. The inputs for Unet1 are three

consecutive slices in step 1; the best predicted mask (red) was selected based on their area in step 2. The inputs for Unet2 in

step 3 are three consecutive slices and the best-predicted mask (red) for the third slice in step 2. Step 4 repeated step 3 for the

next slice until covering all the slices. Seg1 indicates the output of the first network; Seg2 indicates the output of the whole

network.

https://doi.org/10.1371/journal.pone.0267753.g001
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In addition, to test the reliability and robustness, the trained models using six CHAOS sub-

jects in the above third scenario were further tested using the more heterogenous data in the

RM cohort. All the above information was summarized in Table 2.

Since the kidneys are small objects within the image field of view (FOV) (Fig 2), a loss func-

tion, balanced cross entropy (BCE), was used to ameliorate the effect of class imbalance [32].

Balanced cross entropy is defined as follows [33]:

Loss ¼ � b � Y � log Ŷ
� �
� 1 � bð Þ � Y � log 1 � Ŷ

� �
ð1Þ

Where Y is the ground truth mask; Ŷ is the predicted mask; β is the balancing factor. β was set

equal to 0.7 for this study.

All the augmented images from the selected subjects (1 to 6 depending on the training sce-

nario used) were randomly split into the training and validation sets (70% for training, 30%

for validation). After training, all the images from the remaining subjects (14 to 19) were used

for testing all the trained segmentation networks.

All the trainings were performed on the high-performance computing (HPC) cluster (one

node with one Nvidia v100 GPU, 32G memory). The total data size of the augmented images

including six training subjects was about 2.1 terabytes (TB). The hyperparameters including a

batch size of 100 and the epoch number of 5 were used for the first Unet (Unet1); a batch size

of 50 was used for the second Unet (Unet2) due to the limitation of GPU memory. The best

weights were saved for the prediction. The training time for each CNN model varies from a

few days to two weeks depending on the amount of data used for the training.

Evaluation of kidney segmentation

The best models were used to predict kidney masks of the testing dataset. For the first Unet,

the two different types of prediction, direct vs. augmented, were generated. In the direct pre-

diction, the pre-processing steps in the prediction stage were the same as those steps in the

Fig 2. Selected images from six subjects used for training. a. An image from subject 1 with a slice thickness of 5.5

mm; b. An image from the subject 2 with an indeterminate renal lesion in the right kidney (red arrow) and image

artifacts with a slice thickness of 6 mm; c. Contrast-enhanced image from the subject 3; d. An image with aliasing

artifacts (yellow arrow) from the subject 4; e. An image with different appearance of the kidneys due to abundant hilar

fat in renal pelvis from subject 5; f. An image with blurring due to respiratory artifacts (green arrow) from subject 6.

The slice thickness for images c-f was 9 mm.

https://doi.org/10.1371/journal.pone.0267753.g002
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training stage. In the augmented prediction, MRI images after the aforementioned pre-pro-

cessing steps were further adjusted to nine different window levels for prediction. The pre-

dicted mask with the maximum area was selected for further processing. After all the masks

were generated, one additional post-processing step was performed to extract the largest con-

nected component following the projection from 3D images to 1D signal along the slice direc-

tion. This step eliminated the overestimated parts outside the kidneys and further improved

the results.

Segmentation metrics, Dice and Jaccard coefficients (a.k.a. Intersection over Union (IoU)),

were calculated to compare between the ground truth masks and the predicted masks in the

different trainings. Dice and Jaccard coefficients were defined as follows [6]:

Dice ¼
2TP

2TPþ FPþ FN
ð2Þ

Jaccard ¼
TP

TP þ FP þ FN
ð3Þ

Where TP is true positives; FP is false positives; FN is false negatives.

Statistical analyses, paired and unpaired T-Tests, for segmentation metrics among different

approaches were performed using python with SciPy. A P value <0.05 was considered

significant.

Results

All the results were grouped and presented for different considerations such as the number of

training subjects, types of prediction, and different network models. For convenience of

description, Seg1 refers to the results for the first Unet; Seg2 refers to the results for the whole

cascaded network in Fig 1.

Fig 3 (Scenario 1–3) shows the plots of Dice coefficients of Seg1 prediction of renal segmen-

tation using the first Unet network and different number of training subjects in the CHAOS

cohort. Fig 3a (Scenario 1) shows the results from the model trained using only a single subject

(Fig 2a). Dice coefficients were close to 0.8 for most of 19 testing subjects except for a few

Table 2. Summary of training and testing information for two cohorts.

CHAOS cohort (20 subjects)

Scenarios Training Validation Testing

Number of Subjects Number of Augmentation Number of Subjects Number of Subjects

Scenario 1 1 55,080 1� 19

Scenario 2 3 18,360 3� 17

Scenario 3 6 9,180 6� 14

Scenario 4 1† 18,360 1� 19

Scenario 5 1‡ 18,360 1� 19

RM cohort (40 subjects)

— — 40††

† the subject is the same as the one in Scenario 1.

‡ the subject is different from the one in Scenario 1.

� the subjects are the same as ones in the training.

†† Testing used the trained models from Scenario 3.

—not applicable.

https://doi.org/10.1371/journal.pone.0267753.t002
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subjects with dramatically different image contrast (e.g., subjects 3 in Fig 2c and subject 17

with contrast-enhanced T1w images). However, the segmentation results in Fig 3b (Scenario

2) were dramatically improved by adding two more subjects into the training cohort: one sub-

ject with a large amount of perirenal fat and a kidney lesion (indeterminate based on T1w

alone, Fig 2b) and another subject with contrast-enhanced images (Fig 2c). Fig 3c (Scenario 3)

shows that the segmentation results were further improved by adding three additional subjects

(Fig 2d–2f) into the training set.

The summarized results using different number of subjects are shown in Fig 3d. The mean

Dice coefficients for all the testing subjects reached a value of 0.91 for seg1. In addition, Fig 3

shows that Dice coefficients using different number of training subjects were significantly dif-

ferent in all cases. Dice coefficients using the augmented prediction were substantially larger

than Dice coefficients using the direct prediction for some subjects. However, Dice coefficients

in the two predictions were not significantly different. The difference of Dice coefficients was

reduced as the number of training subjects increased.

Fig 4 (Scenario 1–3) shows the plots of Dice coefficients of Seg1 and Seg2 using different

number of training subjects in the CHAOS cohort. Dice coefficients of Seg2 were significantly

higher than Dice coefficients of Seg1 when using one and three training subjects (p<0.001 and

p = 0.015, respectively). The cascaded network (Seg2) shows a clear advantage over a single

Fig 3. Dice coefficient plots for all subjects using the first deep neural network (Unet1) and two methods, direct

vs. augmented (Augm), in the prediction stage. a. Results from a model trained using subject 1 (1Subj); b. Results

using subjects 1,2, and 3 (3Subj); c. Results using the subjects 1–6 (6Subj). d.) Bar plots illustrate comparative dice

coefficients for the models used in a, b, and c above. Although the training data were from different number of

subjects, the total number of images for training was kept the similar using data augmentation. Direct indicates the

results predicted directly using the trained model; Augm indicates the results predicted after the images are augmented

by adjusting window levels in the prediction stage. Gray areas in a-c indicate the training data sets. � represents

significant difference using unpaired T-Tests. P values from the left to the right are 0.031, 0.016, 0.015, and 0.027,

respectively.

https://doi.org/10.1371/journal.pone.0267753.g003
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Unet (Seg1) in the case using a single training subject. This advantage disappeared when using

six training subjects. Table 3 summarizes the Dice and Jaccard coefficients for the above analy-

ses. Fig 5 shows representative examples of predicted masks of two selected slices (i.e., at the

level of the lower pole and hilum of the kidney) for subject 17 with the lowest Dice coefficient

trained using one subject in Fig 4. When trained using only one subject, both models (Seg1

Fig 4. Comparison between two results (Seg1 vs. Seg2) of Dice coefficients using the different trained models. a.

Dice coefficient plots from a model trained using subject 1 (1Subj); b. Dice coefficients of model using subjects 1, 2,

and 3 (3Subj); c. Dice coefficients of a model using subjects 1–6 (6Subj). d. Bar plots illustrate comparative dice

coefficients for the models a, b, and c above. Although the training data were from different number of subjects, the

total number of images for training was kept the similar using data augmentation. Seg1 indicates the results predicted

using the first network alone; Seg2 indicates the results by using the cascaded network (including two Unets) in Fig 1.

Gray areas in a-c indicate the training data sets. � represents significant difference using paired T-Tests. P values for

1Subj and 3Subj are<0.001 and 0.015, respectively.

https://doi.org/10.1371/journal.pone.0267753.g004

Table 3. Summary metrics for different models.

Metrics: m ± SD [min/max] Seg1 Seg2

Direct Augmented Augmented

Dice 1 Subject 0.693±0.272 [0.032/0.916] 0.759±0.156 [0.318/0.916] 0.835±0.140 [0.314/0.928]

3 Subjects 0.852±0.079 [0.660/0.941] 0.864±0.062 [0.730/0.941] 0.893±0.030 [0.811/0.931]

6 Subjects 0.910±0.022 [0.861/0.946] 0.907±0.026 [0.838/0.946] 0.910±0.022 [0.827/0.949]

Jaccard 1 Subject 0.584±0.258 [0.016/0.845] 0.634±0.181 [0.189/0.845] 0.736±0.160 [0.186/0.865]

3 Subjects 0.750±0.113 [0.493/0.888] 0.766±0.092 [0.575/0.888] 0.809±0.048 [0.682/0.871]

6 Subjects 0.836±0.036 [0.756/0.898] 0.831±0.042 [0.721/0.898] 0.834±0.049 [0.706/0.903]

Shown are the results for the first Unet (Seg1) and the whole cascaded network (Seg2).

Direct indicates the results predicted directly using the trained model; Augmented indicates the results predicted after the test images are augmented by adjusting

window levels. m: mean value; SD: standard deviation.

https://doi.org/10.1371/journal.pone.0267753.t003
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and Seg2) failed to predict kidney masks on both the lower pole and hilum slices (Fig 5a). In

contrast, both models successfully predicted the kidney masks when trained using three or six

subjects (Fig 5b and 5c).

Fig 6 (Scenario 4,5) shows the plots of Dice coefficients of Seg1 for two different single-sub-

ject trainings in the CHAOS cohort, in which two subjects had different slice thicknesses (5.5

mm vs. 9 mm). The results were from the first Unet using the augmented prediction. The

mean Dice coefficients with standard deviations were 0.85 ± 0.10 for the training with 5mm

(subject 1) and 0.56 ± 0.33 for the training with 9 mm (subject 6).

Fig 7 shows the testing results of 40 RM subjects predicted using the model trained using

six CHAOS subjects. Fig 7a shows the plots of Dice coefficient of Seg1 and Seg2 for 40 RM sub-

jects. The mean values of dice coefficients for the Seg1 and Seg2 networks were 0.821 and

0.873, respectively. The standard deviations for Seg1 and Seg2 were 0.115 and 0.027, respec-

tively. Dice coefficients of Seg2 were significantly higher than that of Seg1 (p = 0.008) using a

paired T-Test. The cascaded network (Seg2) shows a clear advantage over a single Unet (Seg1)

in the RM cohort. Differences between the predicted masks and the ground truth were

explained by inclusion of hilar fat in the central kidney, which is consistent with the ground

truth masks in training CHAOS data (Fig 7b). However, the hilar fat was excluded during

manual annotation of the ground truth masks in the RM cohort (Fig 7c).

Discussion

Our few-shot CNN approach obtained high accuracy for kidney segmentation with a mean

Dice coefficient of 0.91 for the CHAOS cohort using six training subjects. The mean Dice

Fig 5. Comparison between two results (Seg1 and Seg2) for two selected images (i.e., at the level of the lower pole

and hilum of the kidney) from subject 17 in Fig 4a using different number of training subjects. a. overlaid images

using one training subject; b. overlaid images using three training subjects; c. overlaid images using six training

subjects; d. overlaid images with ground-truth masks. Subject 17 represents the subject with the lowest Dice coefficient

in Fig 4a. Images were cropped due to the limited space. Red regions represent predicted masks or ground truth masks.

Seg1 indicates the results predicted using the first network alone; Seg2 indicates the results by using the cascaded

network (including two Unets) in Fig 1.

https://doi.org/10.1371/journal.pone.0267753.g005
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Fig 6. Comparison of predicted Dice coefficients between two single-subject models (Seg1) trained using two

different subjects (slice thickness: 5mm vs. 9mm). The dash line represents the results predicted using the model

trained using the images of subject 1 with a slice thickness of 5.5mm; the solid blue line for subject 6 with a slice

thickness of 9 mm. Gray and light blue bars indicate the training data sets in each training (Gray for 9mm. Light blue

for 5mm).

https://doi.org/10.1371/journal.pone.0267753.g006

Fig 7. Testing results from renal mass (RM) cohort. a. Dice coefficient plots for 40 RM subjects predicted by a model

trained using six CHAOS subjects; b. The ground truth masks in CHAOS (red line) included the renal hilar fat (yellow

arrow) (Fig 2a); c. The ground truth masks in the RM cohort (red line) did not include the renal hilar fat (yellow

arrow). However, the predicted mask from the Seg2 network (light blue line) in this representative RM subject

included the hilar fat mass due to training with CHAOS data. The discrepancy in the annotation of ground truth

images between the training dataset (CHAOS cohort) and the testing dataset (RM cohort) resulted in a lower dice

coefficient of 0.869 for this subject. The red arrow points to a small renal mass.

https://doi.org/10.1371/journal.pone.0267753.g007
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coefficient for the CHAOS cohort reached a value of 0.85 using a single training subject, which

compares favorably to a previous reported Dice value of 0.78 for kidney trained using 36 sub-

jects [10]. Our best mean Dice coefficient of 0.91 was close to reported Dice coefficient of 0.96

for kidney segmentation with a model trained using 2000 subjects [6]. Similarly, our results

are comparable to the best Dice coefficient of 0.95 reported for a model trained using all 20

subjects in task 5 of the CHAOS challenge for MRI segmentation of liver, kidney and spleen

[29].

Feng et al. used interactive few-shot learning to achieve a Dice coefficient of 0.58 for kidney

segmentation trained using four CT datasets [20]. Cui at al. achieved a dice coefficient of 0.77

for kidney segmentation on CT images using one-shot segmentation based on distance metric

learning [34]. Although kidney segmentation may be more challenging on MR images than

CT images due to lower spatial resolution of MRI (i.e., blurrier boundaries) and more com-

mon image artifacts, we achieved a higher Dice coefficient, for MRI kidney segmentation, of

0.85 using one-shot training and 0.91 using six-subject training.

In the more heterogeneous RM cohort, our approach achieved a mean Dice coefficient of

0.873 using the model trained using six CHAOS subjects despite the inconsistency of the

ground truth (i.e., inclusion/exclusion of renal hilar fat). Compared with the CHAOS data

acquired on a single MRI scanner, the RM data were acquired on six different MR scanners

from different vendors, field strength, and greater variability of acquisition parameters

(Table 1). Further improvements in segmentation accuracy, as reflected by the Dice coeffi-

cients, are expected with standardization of the image annotation of ground truth datasets.

A major challenge for deep learning models trained using a large dataset is their poor gen-

eralizability across institutions, MRI scanners from different vendors, or different MR

sequences. One CNN segmentation model trained in one institution may fail using similar

data from another institution. Moreover, a CNN segmentation model trained for T1-weighted

images may fail for T2-weighted images. Indeed, the general thought is that CNN models

should be retrained for each new dataset available. However, it is impractical to recreate

ground truth masks for each new large dataset due to unacceptable high cost and time require-

ments. Our results support the idea of using few-shot CNN for training a new model or trans-

ferring a trained model to a new dataset, different than the one originally used to train the

model. In this study, we demonstrate that it is feasible to train CNN models for kidney seg-

mentation with high accuracy using only a few subjects. The selection of subjects in the train-

ing set was performed to enable inclusion of a variety of MR images with different contrast,

the presence of artifacts, or lesions (Fig 2) to reduce underfitting in a trained model. The

images from the rest subjects were used for testing. In addition, we demonstrate that the

trained model using six CHAOS subjects was very reliable and robust in the model testing

using a larger RM cohort with 40 subjects (Fig 7a).

The cascaded network (Seg2) was more stable and consistent showing a clear advantage

over a single Unet (Seg1) for the larger RM cohort (Fig 7a). The performance of Seg1 varied

for different subjects due to residual field inhomogeneity and different image artifacts in Fig 4.

The performance of Seg1 may be superior for central kidney slices compared to those slices

located near the kidney poles in one subject. The best predicted mask of one central slice from

Seg1 was selected to facilitate the segmentation of its neighboring slice to achieve better results

in the second Unet (Fig 1). However, the improvement using the second Unet may be limited

when Seg1 already got favorable outcomes or got very poor outcomes (Fig 4).

The challenge of underfitting is demonstrated in the results from the model trained using

one subject. Underfitting occurs when the training images from a single subject don’t have

enough complexity to represent the images from other subjects correctly. The model trained

using one subject performed well only for certain subjects with images resembling those of the
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training subject; but performed poorly for the other subjects with different image contrast (Fig

3a). Although the proposed augmented prediction partially ameliorated this problem in compar-

ison with the direct prediction, evidence of underfitting remains apparent in those subjects with

different image contrast in Fig 3a. Furthermore, the cascaded network further diminished the

underfitting problem, as shown in Fig 4a. In contrast, by including a few subjects with different

image contrast in the training set, we observed a dramatic improvement in the performance of

the trained model. Indeed, underfitting was greatly reduced and virtually non-existent when

more subjects with different image contrasts were added to the training set (Figs 3 and 4).

Data augmentation increases the number of training datasets by applying a set of transforma-

tion to the images and masks [35] Data augmentation improves the reported performance of

models, especially when training using small datasets [36]. In this study, we exploited 3D features

of MR datasets in data augmentation. Specifically, our 3D rotation augmentation strategy

required interpolation and resampling procedures. As a result, aliasing artifacts arising from

these procedures became more serious as slice thickness increased [37–39]. Although the axial

images may appear somewhat similar, the coronal reconstruction for Subject 6 (i.e., using 9 mm

axial slices) had more profound aliasing and blurring artifacts than the coronal reconstruction

for Subject 1 (i.e. from 5 mm axial slices) as shown in S2 Fig. Consequently, the model trained

using a subject with the thinner slice thickness (5 mm, Subject 1) performed well whereas the

model trained with the thicker slice thickness (9 mm, Subject 6) performed poorly for most sub-

jects (Fig 6). In addition, motion between different slices can cause similar aliasing artifacts even

for subjects with thinner slices. Although motion was not an obvious problem in this study data-

set, it is a major source of suboptimal studies in clinical practice. Thus, subjects with thinner slice

thickness and without motion should be selected for training in future studies.

Limitations

The manual selection of subjects for the training introduces the potential for variability in the

results. However, we observed optimal performance of the model when subjects with slice

thickness of approximately 5 mm were used. In this study, image processing time for data aug-

mentation took up to two days using a high performing computer cluster. To reduce the train-

ing time, the augmented training images have to be generated in advance as these datasets

exceeded 2 TB for approaches using 6 subjects. Despite generating augmented images prior to

training, our training time was up to two weeks using a single GPU with 32 GB memory. The

requirements of a large disk space and a long training time may limit the wide application of

this approach. However, these problems may diminish with further improvements in hard-

ware. Similarly, although the training process was time consuming, it did not require human

supervision and once the model was trained, testing in new subjects is fast. Due to the limita-

tion of disk space and training time, we did not performed training with more than six sub-

jects. However, we anticipate only limited incremental value for adding more training subjects

given the near negligible increase of the Dice coefficient (i.e., 0.003 or 0.33%) when comparing

three to six training subjects (Fig 4). Lastly, our segmentation algorithm did not discriminate

renal parenchyma from small renal masses (i.e., renal masses were included in the predicted

segmentation). Further work is needed to create separate masks of the renal parenchyma and

renal masses. In addition, 3D data were required using our approach since 3D augmentation

was the key technique to generate labeled training images to achieve few-shot segmentation.

Conclusion

We demonstrate the feasibility of MR kidney segmentation using deep learning CNN models

trained with only a few subjects. Our proposed few-shot CNN approach using 3D
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augmentation enabled high-quality segmentation of kidney using T1-weighted MR images.

The cascaded network and the augmented prediction method further improved the perfor-

mance of segmentation. Our approach provides a general solution to segmentation in 3D med-

ical imaging when the number of ground truth masks is limited. Further testing of such

approaches in other imaging modalities and anatomic locations is necessary.
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