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Oral premalignant lesions (OPLs) are the precursors to oral cavity cancers, and have
variable rates of progression to invasive disease. As an intermediate state, OPLs have
acquired a subset of the genomic alterations while arising in an oral inflammatory
environment. These specific genomic changes may facilitate the transition to an
immune microenvironment that permits malignant transformation. Here, we will discuss
mechanisms by which OPLs develop an immunosuppressive microenvironment that
facilitates progression to invasive cancer. We will describe how genomic alterations and
immune microenvironmental changes co-evolve and cooperate to promote OSCC
progression. Finally, we will describe how these immune microenvironmental changes
provide specific and unique evolutionary vulnerabilities for targeted therapies. Therefore,
understanding the genomic changes that drive immunosuppressive microenvironments
may eventually translate into novel biomarker and/or therapeutic approaches to limit the
progression of OPLs to potential lethal oral cancers.
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INTRODUCTION

Oral squamous cell carcinomas (OSCCs) involving the tongue, cheek, gums, and other sites of the
mouth are the most common form of head and neck cancer (HNSCC), responsible for over 377,000
new cases and 177,000 deaths per year worldwide (1). Up to 50% of people developing OSCCs die
from this disease. Even with cure, OSCCs are often treated with surgery, chemotherapy and
radiation leading to substantial adverse impact on cosmesis, function, and quality of life.

The precursors to OSCC are oral premalignant lesions (OPLs) that affect approximately 4.5% of
the world’s population (2). Another commonly used term for these lesions is oral potentially
malignant disorders (OPMD). Because we are focusing on the progression of these lesions to cancer
in both human and mouse systems we will use the term OPL throughout this review. OPLs include a
variety of distinct pathological entities including leukoplakia, submucous fibrosis, and lichen planus.
OPL remains a diagnostic dilemma with limited preventative and therapeutic options. Even though
the majority of OPLs regress, up to 30% of OPL ultimately progress through increasingly severe
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grades of dysplasia to oral cancer. The overall annual risk of
transformation of leukoplakia (the most common variety in the
US) to invasive cancer is 1- 3% per year (3). Since OPLs often
present with multifocal lesions across the oral mucosa, patients
are subjected to frequent biopsies until a cancer is detected and is
surgically removed. At present, diagnosis of OPL requires a
physical biopsy in order to distinguish OPL from early OSCC.
Consequently, clinicians have few if any noninvasive biomarkers
to predict which OPL are at high risk of progression to invasive
cancer (4). Furthermore, the only existing treatment for OPL is
excision of the lesion with a margin of surrounding healthy
tissue. Nevertheless, it is often not practical to remove the entire
OPL because OPLs may encompass a large region of the oral
cavity while still at variable risk for progressing to invasive
disease. Consequently, the diagnostic and therapeutic
dilemmas in treating OPLs provide impetus to better
understand the biological and immunological underpinnings of
this disease.

Representing an intermediate phase during the evolution of
normal mucosa into malignant cancer, OPLs have acquired only
a subset of the genomic alterations necessary to develop into
OSCC. In addition to genomic changes occurring in OPL, OPLs
frequently arise in an oral inflammatory environment caused by
exogenous factors such tobacco and/or alcohol use, poor
dentition and by endogenous factors including auto-immune
diseases. It is likely that the genomic alterations cooperate and
co-regulate the immune microenvironment in OPLs to facilitate
the progression of OPLs to invasive cancer (1, 5). Namely,
specific genomic changes may facilitate the transition to an
immune microenvironment that permits malignant
transformation. Conversely, inflammatory changes in the
immune microenvironment may promote genomic instability
within OPLs. Here, we will discuss the how OPLs develop an
immunosuppressive microenvironment that facilitates
progression to invasive cancer. We will then describe how
genomic alterations and immune microenvironmental changes
co-evolve and cooperate to promote OSCC progression. Finally,
we will describe how the genomic context of premalignant
Frontiers in Immunology | www.frontiersin.org 2
lesions may provide specific and unique evolutionary
vulnerabilities for targeted therapies. Pursuit of such paradigms
may eventually translate into novel biomarker and/or
therapeutic use.
THE EVOLUTION OF THE
IMMUNOSUPPRESSIVE
MICROENVIRONMENT IN OPL

As mutations and other genetic alterations accumulate, OPL
become progressively infiltrated with immune suppressive
myeloid cells including MDSC, M2 tumor-associated
macrophages (TAM) and regulatory T cells (Treg; Figure 1).
Furthermore, M2 macrophage polarization, Treg infiltration,
and expression of the immune checkpoint ligand PD-L1 are
associated with increased risk of future malignant transformation
(6–9). Despite this progressive accumulation of immune
suppressive features, OPL are often strongly infiltrated with
CD8+ T lymphocytes (10, 11), suggesting that reversing the
immunosuppressive microenvironment of high-risk OPL has
the potential to unmask anti-lesion immunity capable of
inducing immune regression prior to development of invasive
cancer. Here, we will describe the inflammatory and immune
changes that occur during OPL progression as well as possible
genetic mechanisms drive the cross-talk between the genomic
and immune changes.

The transition from OPL to invasive cancer requires that
dysplastic lesions escape recognition from infiltrating cytotoxic T
lymphocytes (TILs). TILs are increased in OPLs and predict
histological grade in dysplastic lesions (12–14). Comparing
lichen planus with oral dysplastic lesions, Flores-Hidalgo et al.
demonstrated that CD8+ T cells tracked the malignant
transformation zones in dysplastic lesions (15). Similarly,
Gannot et al. demonstrated increased CD4+, CD8+ and
CD19+/CD20+ lymphocyte infiltration in dysplastic lesions
compared to normal epithelium indicating that dysplastic
lesions are accompanied by increased cytotoxic and helper T
FIGURE 1 | Schema for immune/inflammatory microenvironment evolution during OPL progression. OPL are often strongly infiltrated with CD8+ T cells. Early low
grade dysplasias also demonstrate tumoricidal and/or M1 TAMs. As dysplastic lesions progress, increased immunosuppressive M2 TAM, Treg, MDSCs and
immunosuppressive molecules including PD-1/PD-L1 and A2AR. Created with BioRender.com.
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cells as well as B cells (16). Since these studies only quantified
infiltrating lymphocytes, it remains unclear if these TILs are
functional and target the dysplastic epithelial cells or more
indicative of the general inflammatory microenvironment.
However, other reports showed infiltrating plasms cells and
other B lymphocytes decreased with high grades of dysplasia
and less differentiated OSCCs (17). Similarly, in a 4-
nitroquinoline 1-oxide (4-NQO) chemical carcinogenesis
mouse model, lymphocytic infiltration was associated with
dysplastic and invasive lesions (18).

The role of CD8+ T cell infiltrating OPLs remain unclear.
Similar to invasive disease, it remains unclear what antigens these
cytotoxic lymphocytes recognize. Over 40% of progressing OPLs
expressed at least one of the shared MAGE cancer testis antigens
(19). Similarly, common shared antigens such as NY-ESO-1 and
MUC1 have been observed in murine OPL (20). Although on
average OPL has 167,809 variants per sample, there did not appear
to be any differences in mutational burdens between progressing
and non-progressing premalignant lesions using a small series of
13 patients (21). Furthermore, the role of neo-antigens form by
somatic mutations as targets for infiltrating lymphocytes in OPL
remains understudied. Finally, some of these TILs may represent
bystander T cells that do not recognize cognate antigens in OPL as
seen in other cancers (22). Therefore, OPL does express tumor
antigens but the specificities of the TILs remain understudied.

Given the increased lymphocytic infiltration observed in
OPLs and OSCCs, immunosuppressive mechanisms are likely
required to facilitate the progression of normal epithelium to
dysplasia and invasive cancer. To this end, Zhao et al.
demonstrated increased regulatory T cells (Tregs), as measured
by CD4+CD25+FoxP3+ markers, were sequentially increased in
the lymph nodes and in the peripheral blood of rats with
worsening grades of dysplasia and OSCC (23). Similarly,
increased Tregs and decreased IFNg signaling were observed in
the development of oral leukoplakia, oral lichen planus and
OSCCs (24). Immunosuppressive molecules may also prevent
infiltrating lymphocytes from clearing pre-malignant lesions. A
meta-analysis of 9 studies demonstrated that PD-L1 may be
enriched in OPL as 48.25% of lesions expressed PD-L1 which
was on average 1.65-fold greater than normal mucosa (25). PD-
L1 expression in both epithelial cells and tumor associated
macrophages (TAMs) was also correlated with malignant
transformation (7). In a 4-NQO model of chemical
carcinogenesis, Chen et al. observed a nearly 2-fold increase in
PD-1 expression on infiltrating CD8+ and CD4+ T cells. PD-1
inhibition reduced MDSCs as well as downregulated PD-1 on
TIL that was associated with a 2.27-fold increase in activated TIL
(26). Finally, upregulation of the adenosine receptor (A2AR) also
likely suppresses anti-tumor lymphocytes as A2AR expression
correlated with pathological grade, lymph node status (27).
Consequently, OPLs may recruit immunosuppressive Tregs
and/or express immunosuppressive checkpoint molecules such
as PD-L1 to evade potential rejection by cytotoxic lymphocytes.

Oral dysplastic lesions may also recruit immunosuppressive
myeloid cells to evade immune recognition. In many types of
solid tumors, TAMs and MDSCs correlated with poor
Frontiers in Immunology | www.frontiersin.org 3
prognosis and progression to invasive cancers (12, 16, 28–
31). OPL progression has been associated with increased
MDSC and TAM infiltration as well as the polarization of
TAM from so-called M1 (tumor-suppressing) to M2 (tumor-
promoting) phenotypes in murine models and human cancers.
Both pro-tumorigenic M2 tumor associated macrophages
(TAM) and myeloid-derived suppressor cells (MDSC) may
be a key regulator for governing these pro-tumorigenic and
anti-tumorigenic immune responses in OPL by suppressing
adaptive T cell immunity and by producing inflammatory
cytokines to promote tumor proliferation and angiogenesis
(24). Abnormal proliferation of epithelial cells may promote
TAM and myeloid cell infiltration. Kawsar et al. demonstrated
that human beta-defensin 3 (hBD-3) but not hBD-1 or hBD-2
colocalized to proliferating basal cells in normal epithelium as
well as in dysplastic lesions. Furthermore, the increased hBD-3
in dysplastic lesions increased macrophage recruitment in oral
dysplastic lesions as well as increased macrophage chemotaxis
in vitro (32). Consequently, epithelial proliferation that is
intrinsic in OPL recruit immunosuppressive myeloid subsets.

Paradoxically, TAMs in OPLs have been shown to display
both tumoricidal macrophages and tumorigenic functions. In 58
OPLs and 258 OSCCs, Wang et al. demonstrated that increase
CD163+ M2 TAMs were associated with OSCC progression and
survival (33). Similarly, Kouketsu et al. found increasing
numbers of M2 TAMs, using both the CD163 and CD204
markers for the M2 phenotype, and regulatory T cells with
higher grades of OPL (8). Yagyuu et al. demonstrated that
dermal M2 macrophages, identified by the CD163 marker,
correlated with increased dysplasia (7). However, some groups
indicate that TAMs may inhibit OPL regardless of M1 or M2
phenotype. Bouaoud et al. used immune cell deconvolution and
en r i c hmen t a l g o r i t hms f o r RNAs eq a s w e l l a s
immunohistochemistry on OPL to observe that M2
macrophages were associated with dysplasia and OSCC even
though 3 M2 TAM signatures were associated with better oral
cancer-free survival (34). By contrast, Mori et al. demonstrated
that the M2 canonical marker CD163 may identify TAMs with
an inflammatory rather than immunosuppressive phenotype.
CD163+ TAMs in OPLs displayed increased STAT1 and
CXCL9 expression suggesting an inflammatory tumoricidal
phenotype (31). The authors stipulated that this M1 phenotype
was likely driven by TH1 CD4+ T cells producing IFN to drive
this anti-tumorigenic phenotype (35). This contrasts with other
reports demonstrating that CD163+ TAMs in oral dysplasia
expressing immune suppressive cytokines such as IL-10 (36).
One possibility to rectify these observations is that the TAM
phenotype transitions from a tumoricidal M1-like phenotype to
a tumorigenic M2-like phenotype during OPL progression. In
201 OPL specimens, Weber et al. examined both M1 and M2
TAM phenotypes using the canonical markers CD68 and
CD163, respectively (37). Increased TAM infiltration, TAM
localization to the epithelial compartment and M2 polarization
was associated with progression of OPL to invasive cancer.
Therefore, TAM phenotypes may represent a dynamic state as
OPLs progress to invasive lesions.
January 2022 | Volume 13 | Article 840923
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Several environmental and/or immune changes may dictate
the dynamic changes in TAM phenotype during OPL
progression. One potential mediator linking this immune
switch during OPL progression is inducible nitric oxide
synthase (iNOS), which recruits MDSCs and TAMs as well as
polarizes TAMs to the pro-tumorigenic M2 subtype (38–40).
iNOS has multiple pleiotropic and contradictory roles in
promotion and suppression of cancer development. iNOS is a
well-described driver of oncogenic signaling and immune
evasion mechanisms in established cancers.

However, iNOS can also act as a mechanism of M1
macrophage anti-tumor activity, and when expressed in CD4+

T cells can inhibit their differentiation to Treg (41) or Th17 cells
(42). These contradictory roles for iNOS highlight the
importance of assessing iNOS function in a cell type and
context specific manner. iNOS expression and immune
suppressive myeloid populations (M2 macrophages and
MDSC) have both been shown to increase during progressive
stages of dysplastic transformation and to be associated with
future risk of transition to invasive cancer. iNOS can play
different pro-tumor and anti-tumor roles depending on timing
of expression and in which cell types. iNOS is known to be
expressed by M1 (anti-tumor) TAMwhere it exerts a tumoricidal
function through inducing tumor cytolysis. We have also shown
that iNOS expression in myeloid cells acts paradoxically as a
negative feedback mechanism to suppresses M1 macrophage
polarization (43). However, iNOS (along with Arginase and
PD-L1 expression) is a major immune suppressive mechanism
of MDSC. We have also shown an important role for tumor-
expressed iNOS in orchestrating the induction of tumor-
infiltrating myeloid cells and acquisition of MDSC suppressive
function in established cancer (39, 44). The apparent paradoxical
pleiotropy and cell type specificity of iNOS expression and
function highlights the importance of distinguishing between
tumor- and myeloid cell-expressed iNOS functions.

In addition, linking environmental risk factors with TAM
phenotypes in OPLs, Zhu et al. demonstrated that cigarette
smoke extract increased M2 macrophage OPL infiltration and
polarization, increased immunosuppressive cytokines including
arginase-1 and IL-10 and decreased pro-inflammatory markers
TNFa and iNOS (45). Furthermore, this group proposed that
smoking activated glutamine transport and metabolism in TAM
to promote epithelial proliferation and inhibit apoptosis.

Myeloid derived suppressor cells (MDSCs) which have been
shown inhibit anti-tumor immunity also correlate with OPL
progression. Both CD33+ tumor infiltrating and circulating
MDSC are increased in oral leukoplakia patients with increasingly
severe dysplasia (9, 46). In a chemical carcinogenesis model of OPL,
P. gingivalis colonization, common in oral cancer patients, further
increased MDSC accumulation which was associated with increases
in the chemokines CXCL2 and CCL2 as well as the cytokines IL-6
and IL-8 (47). Treating aged mice with 4-NQO increased oral
dysplasia that was associate with increased MDSCs and Tregs in
tongue lesions that was in part dependent on dectin-1, a surface
pattern receptor involved in fungal immunity (48). Although Wen
et al. suggested that granulocytic MDSCs mediated local immune
Frontiers in Immunology | www.frontiersin.org 4
suppression, the direct lineage of these MDSCs remains unclear.
Therefore, MDSCs represent another immunosuppressive
mechanism to facilitate the progression of OPLs.

Other myeloid and/or granulocytic cell types may have lesser
appreciated roles for OPL progression. The inflammatory
microenvironment evoked by neutrophils may facilitate OPL
progression. Elevated neutrophil-to-lymphocyte ratios have been
associated with poor survival in multiple head and neck cancer
subsites including OSCC conferring a 1.56-fold worse survival
(49). Furthermore, OSCCs displayed significantly elevated
neutrophil infiltration and TNFa in patients’ saliva (50).
Chadwick et al. demonstrated that TNFa was necessary for
OPL formation and progression in a 4-NQO model of oral
carcinogenesis (50). OPLs displayed increased neutrophil
infiltration that was lost with TNFa blockade. Furthermore,
eosinophils infiltration was elevated in OSCC compared to
dysplastic lesions suggesting that eosinophils may be necessary
for malignant transformation (51). Similarly, both mast cells and
eosinophil infiltration were increasingly elevated during the
progression from normal epithelium to dysplasia to invasive
cancer (52–55). Currently, it remains unclear how other
granulocytic cells alter the tumor microenvironment to
facilitate the development pre neoplastic lesions and their
transition to invasive cancer. Hydroxy radical species produced
by granulocytes and myeloid cells has been shown to cause DNA
damage in vitro, which may enhance the number of genomic
lesions necessary for OPLs to become cancer (56). Furthermore,
neutrophils and/or other granulocytic cells can induce immune
suppression in various cancers (57, 58). Therefore, the myeloid
and granulocytic cell populations may contribute to OPL
progression by both promoting the genetic changes necessary
for malignant transformation as well as directly suppressing
cytotoxic T cells that would otherwise clear abnormal cells.
REGULATION OF THE IMMUNE
MICROENVIRONMENT BY GENOMIC
CHANGES IN OPLs

OSCC progression model describes the step-wise evolution of
normal epithelium to hyperplasia to dysplasia to cancer
(Figure 2). Large scale profiling has identified the most
common genomic alterations that occur in OSCC (59), but
modern genomic tools have not been used to understand the
detailed evolution of those alterations during OPL progression.
Early studies in OPL lesions examined loss of heterozygosity
(LOH) at 10 microsatellite markers by PCR analysis and
identified 9p (CDKN2A), 3p, and 17p (TP53) loss as the
earliest events and 11q, 13q (RB1), 14q loss and others as
relatively later events (Figure 2) (60). This general order of
events was also identified in recent whole genome sequencing
analyses of bulk HNSCC tumor samples that mapped the
evolutionary history of the tumors (5). These studies identified
many of the most common genomic alterations in OSCC (TP53
mutant, CDKN2A mutant/LOH, NOTCH1 mutant) as early
events that can be detected in OPL.
January 2022 | Volume 13 | Article 840923
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Early studies of the genomic landscape of HNSCC led by our
group and others and confirmed by The Cancer Genome Atlas
(TCGA), demonstrated that mutations and deletions of the TP53
and CDKN2A are the tumor suppressor genes most frequently
altered somatically in HNSCC, as TP53 and CDKN2A alterations
are seen in up to 85% and 58% respectively of non-human
papilloma virus associated (HPV negative) HNSCC (61–63).
This highlights the importance of TP53 and CDKN2A
alterations are the most frequent genetic events occurring in
the early stage of HNSCC development (63).

Another important concept to understand regarding to the
early genomic alterations in OPL is field cancerization (64). Field
cancerization is where genomic alterations are present
throughout regions of histologically normal epithelium. These
abnormal epithelial cells may not be macroscopically visible and
only detectable under a microscope. In these cases, HNSCC may
appear to occur de novo. Alternatively, patches of abnormal
epithelium, which can occur in individuals with OPL lesions
such as leukoplakia or erythroplakia, with macroscopically
detectable lesions. The concept of field cancerization also helps
describe the multicentric nature of HNSCC that either frequently
recur after complete excision or new primaries that arise along
the respiratory tract epithelium. may occur over time. as
abnormal epithelial cells may not be.

LOH and TP53 mutations have been detected in histologically
normal oral epithelium and demonstrate that field cancerization
can occur with OPL and OSCC. NOTCH1 mutations are
frequently detected in histologically normal sun exposed skin
epithelium. Because of the similarities between cutaneous SCC
mutation profiles and the biology of squamous epithelium, it is
likely NOTCH1 mutations will also be detected in tobacco
exposed oral epithelium. The sum total of these mutations is to
drive abnormal cellular proliferation and invasion by disarming
the self-destruct signals that are activated by uncontrolled
Frontiers in Immunology | www.frontiersin.org 5
proliferation. Unfortunately, there are still many gaps in our
knowledge about how these genomic alterations drive
OPL progression.

Transcriptomic analysis demonstrated the possibility to select
for gene expression profiles of OPL more prone to malignant
transformation. Saintigny et al. used gene expression microarrays
to identify a 29 gene signature that predicted the progression of
OPL to invasive cancer. However, many of these genes were not
canonical drivers of carcinogenesis suggesting that this gene
signature reflected changes of genes expression that did not
likely cause malignant transformation. Sathasivam et al. used a
42 targeted gene Nanostring panel to identify an 11 gene
expression signature associated with malignant progression
(65). Importantly, this signature employed genes commonly
altered during HNSCC carcinogenesis including TP53,
NOTCH1 and CDKN2A which increases the likelihood of this
signature being robust across multiple cohorts. To this end, this
signature was validated using an external OPL dataset with a
Hazard Ratio of 2.3. Overall, transcriptomic changes likely reflect
the malignant phenotypes that arise in OPLs during
malignant progression.

The genetic changes occurring in OPL may also dictate immune
microenvironmental changes that promote malignant progression.
Using immune cell deconvolution of gene expression datasets from
OPL, 2 different OPL subtypes were identified: (1) an immune
subtype with increased T cell and immune cell infiltrate and (2) a
classical subtype with LOH at 3p14, 17p13 and TP53. However, the
progression to invasive cancer was not known in these subtypes
(10). One study using multiplex immunofluorescence in 188 OPL
patients found that OPL with high risk LOH displayed increase
epithelial PD-L1 expression and increased TAM PD-L1 expression.
Furthermore, PD-L1 expression was associated with increased
cancer progression (66). Therefore, global genomic changes that
drive OPL progression also likely dictate immunosuppressive
FIGURE 2 | Current OPL progression model. Schematic diagram showing the relative timing of genomic events during OPL progression. The stages are labeled
early, middle, and late because the data are not well associated with specific histology. LOH, loss of hetorozygosity; WGS, whole genome sequencing; SNV, single
nucleotide variant; CNA, copy number alteration. Modified from Califano and Gerstung. Created with BioRender.com.
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changes in the microenvironment that are necessary for malignant
progression. In addition to chromosomal changes associated with
the immune microenvironment, specific genes, which are
commonly mutated in OSCCs, have been implicated in dictating
immune changes in OPLs and invasive cancers. The major drivers
of OSCC and their impact on the immune microenvironment are
detailed below (Figure 3):

TP53
Studies have shown that TP53 alterations result in biallelic loss of
wild-type TP53 function. These alterations can include mutations
in one or both alleles, mutation of one allele and deletion of the
other allele, mutation of one allele conferring a dominant-negative
impact on the wild-type allele, or mutations which provide new
functions to TP53, termed “gain-of-function” (GOF). The GOF
properties impact cellular processes including proliferation,
metabolism, invasion, metastasis, inflammation, drug resistance,
and survival through transcription-dependent or -independent
mechanisms (63, 67–74). Different studies have shown that TP53
is frequently mutated in oral premalignant lesions and is associated
with progression to invasive carcinoma (75–78). Premalignant
epithelial cells expressing mutant TP53 increased the production
and secretion of inflammatory mediators. Mutant p53 mice
exposed to dextran sulfate sodium developed severe chronic
inflammation and persistent tissue damage. These mice
displayed a rapid onset of dysplastic lesions that progress to
Frontiers in Immunology | www.frontiersin.org 6
invasive carcinoma with an increased NFkB activation compared
to wild-type mice, recapitulating features observed in human
colitis-associated colorectal cancer (79). Furthermore, TP53 also
mediated an immune escape mechanism for dysplastic lesions by
recruiting tumor associated macrophages, which maintained the
immunosuppressive state within the tumor microenvironment
(80). In this model, GOF mutant TP53 correlated with increased
iNOS, NF-kB activation leading the increased production of
multiple cytokines including IL-6, CXCL5, TNF-a and CCL2.
Mutant TP53 also directly interacts with NF-kB to modulate the
diverse transcriptional regulators in response to chronic immune
signaling (81). These biological mediators generated an
inflammatory microenvironment that further increased cell
survival of the transformed cells, as well as promoted
angiogenesis and evasion of protective immune responses (82).

Other studies have demonstrated that loss of p53 and
cooperation of KRAS in cancer cells can modulate the tumor-
immune microenvironment to avoid immune destruction.
Inactivation of p53 promotes the infiltration of suppressive
myeloid CD11b+ cells and Tregs with an increased expression
of CCR2-associated chemokines and macrophage colony-
stimulating factor (M-CSF), leading to attenuated T cell
responses (83). A recent study, demonstrates that TP53
missense mutations generates immune-excluded tumor
microenvironments in pancreatic ductal adenocarcinoma
(PDCA) mouse model, these findings correlate with clinical
FIGURE 3 | Mutational changes that potentially alter the tumor microenvironment. Schematic diagram showing the common mutational changes in OPL can impact
the immune microenvironment. TP53 mutants can activate NF-kB or inhibit the STING pathway to alter cytokine expression, increase TAM recruitment, increate Treg
recruitment. CDKN2A mutants has been associated with immunogenic cold tumors through currently unknown mechanisms. NOTCH1 mutants was associated with
altered MMP expression and decreased TAM infiltrations. Created with BioRender.com.
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data in PDAC patients with a poor survival outcome (84). Since
p53 plays an important role in modulating the tumor immune
microenvironment, p53 mutations in OPLs suggest an important
immunosuppressive role to evade immune rejection.

Recently, it has been reported that mutant p53 interferes with the
cGAS-STING signaling pathway a cytoplasmic DNA sensing
machinery that activates the innate immune response. Only
mutant p53, binds to TANK-binding protein kinase 1 (TBK1)
and prevents the protein complex between TBK1, STING, and
IRF3, which is required for the transcriptional activation of IRF3.
This innate immune signaling alteration by mutant p53 alters
cytokine production, resulting in immune evasion (85). We have
characterized the 4-Nitroquinoline 1-oxyde (4NQO) oral
carcinogenesis in C57BL/6 mouse model to study the role of
mutant p53 in the alteration of immune infiltrates at different
stages of oral cancer. This carcinogenesis model exhibits similar
histological, molecular and chromosomal alterations as observed in
human oral carcinogenesis (86, 87). We and others have recently
reported that 4NQO induced oral lesions expressing mutant Trp53-
R172H contain a higher infiltration of FoxP3+ T regulatory cells
(Tregs) compared to Trp53 wild-type mice (88, 89). It is known that
Tregs are suppressors of antitumor responses that disrupt the
maturation of dendritic cells (DC) and prevent the activation of
CD4+ effector and CD8+ cytotoxic cells in the tumor
microenvironment (90). This strongly indicates that the
oncogenic activity of Trp53 influence the environment to
promote a higher infiltration of immune suppressor cells not only
at early stages but also are detected in invasive carcinoma.
Furthermore, we detected that the protein levels of STING were
significantly lower in OPLs expressing mutant Trp53-R172H
compared with wild-type Trp53. In addition, we observed a
significant reduction of infiltrated DC cells in OPLs expressing
mutant p53 (88). While infiltrating immune cells retain wild-type
p53 and have normal STING, mutant p53 OPLs have decreased
immune cell infiltration and may not compensate for reduced
STING expression in lesions with mutant TP53. Thus, OPLs with
an altered cGAS-STING signaling will prevent the secretion of type
I interferons (IFN), which are induced early during tumor
development (91, 92). IFNs activate dendritic cells (DCs) and
promote induction of adaptive CD4+ and CD8+ T-cell antitumor
immune responses (93).

These studies indicate that early genomic alterations in the
Trp53 gene of oral epithelial cells promote immunosuppressive
pathways that disrupt antitumor immunity mechanisms,
preventing the activation of innate and adaptive immune
response and leading to high-grade lesions promoting oral
neoplastic progression.

CDKN2A
CDKN2A controls the cell cycle by inhibiting the ability of cyclin
D-CDK 4/6 to phosphorylate the retinoblastoma protein (pRb)
(94). pRb phosphorylation by the cyclin-CDK 4/6 leads to the
dissociation of the pRb/E2F complex and progression of the cell
into S phase (95, 96). The release of E2F activates CDKN2A
transcription, as CDKN2A levels increase, its binding to CDK4
and CDK6 increases, inhibiting the kinase activity of cyclin D-
CDK 4/6 (97). CDKN2A has been classified as a tumor
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suppressor, methylation studies have detected promoter
hypermethylation of CDKN2A in oral and oropharyngeal
cancer tissue as well in OPL; therefore CDKN2A inactivation is
in part due to promoter methylation (98–102). Recently, The
Cancer Genome Atlas (TCGA) data shows that 57% of HPV-
negative HNSCC contains a mutation or loss of the CDKN2A
gene (59), this demonstrates that additional genomic alterations
on CDKN2A others than methylation are involved at early
events of oral cancer development.

Other studies indicate that loss of CDKN2A significantly
correlates with immune deserts, defined by a profile of 394
immune transcripts (103). These pieces of evidence suggest
that low CDKN2A expression both impacts the number and
the activity of the intratumoral immune cells. Additionally, some
tumors lose CDKN2A expression as a result of the deletion of
chromosome 9p21 locus. Interestingly, the deletion of adjacent
genes including the a and b interferon cluster have been linked
with decreased infiltration of immune cells and decreased cGAS-
STING signaling in melanoma (104, 105). Recently,
immunogenic analysis of clinical specimens from TCGA study
and immune checkpoint trials across various cancer types and
demonstrates 9p21 loss as a ubiquitous genomic correlate of the
“cold” tumor-immune phenotype and primary resistance to
immune checkpoint therapy (106, 107). Recently, Cdkn2a null
mice exposed with 4NQO developed faster and more
pronounced oral lesions compared to control mice; and
proliferation of tumor cells with Cdkn2a gene deletion was
associated with the progression of OSCC in mice (108). More
studies are necessary in this mouse models to confirm the role of
Cdkn2a in the immune surveillance mechanism of OPLs.

Yet, little is known about the interplay of mutant p53 and
inactivation Cdkn2a genes in the immune evasion mechanism in
OPLs that evolves into tumor progression and invasion. An
interesting study involving double mutant mice revealed that a
combined p53 gain of function and Cdkn2a inactivation
generates a more aggressive skin cancer phenotype with a
shorter survival and was associated to metastasis compared to
single mutant mice (109). Furthermore, Cdkn2a suppresses the
oncogenic activity of mutant p53 that promotes malignant
progression in squamous cell carcinoma. In the same study,
they analyzed HNSCC HPV-negative patients with co-occurring
gain of function p53 mutations and CDKN2A homozygous
deletions. Here, the survival of patients was much shorter than
that of patients with tumors in which p53 mutations did not
contain CDKN2A homozygous deletions, or that of patients with
tumors in which homozygous CDKN2A deletions co-existed
with loss-of-function mutations in p53 (109). We speculate that
co-occurrence of the genomic alterations in TP53 and CDKN2A
in OPLs might have a worst outcome and higher probability to
develop into invasive carcinoma.

NOTCH
Another potential mutation that also alters the tumor
microenvironment is loss or mutation of the NOTCH1
oncogene, which is mutated in 19% of head and neck cancers
and regulates macrophage recruitment and M1/M2 macrophage
polarization (59). Copy number alterations in NOTCH1 have
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been observed during the transition of premalignant lesions to
invasive disease (110). Notch1 loss induces the expression of
matrix metalloproteinases, cytokines and chemokines to alter the
tumor microenvironment (111). In multiple cancers, Notch
family member expression was associated increased infiltration
of CD4+ T cells, macrophages, neutrophils and dendritic cells
(112, 113). Similarly, we have observed that NOTCH1 loss in an
autochthonous model of oral pre-malignant lesions alters the
cytokines/chemokines driving immune cell infiltrate and
correlates with loss of TAM infiltration. By contrast, Notch
signaling in immune cells also dictates the extent of
tumorigenic versus tumoricidal immune responses. Notch1
signaling promotes M1 TAM differentiation and inhibits
MDSCs indicating that Notch1 signaling in immune cells
promotes anti-tumor immunity in cancers (114–116).
Consequently, global impact of NOTCH activity in OPLs is
likely a competition between epithelial expression of NOTCH1
to regulate immune cell trafficking as well as myeloid NOTCH
activity which determines TAM, MDSC and other immune
cell phenotypes.
REVERSING IMMUNOSUPPRESSION
IN OPL

While experimental studies have identified pharmacologic or
molecular targeted therapies capable of reducing risk of OPL
progression to cancer, there are no preventive therapeutics in
routine use. Consequently, there remains an unmet need to better
understand the biological and immunological features that can
differentiate pre-invasive disease from invasive cancer which can
also be exploited to prevent progression to malignancy.

Targeting immunosuppressive molecules may serve as an
effective strategy to treat oral dysplasia and prevent malignant
progression. Treatment with PD-1 blockade decreased the
incidence of dysplastic lesions and invasive OSCC in a
carcinogen induced 4-NOQ OPLs model (88). The Heymach
group further compared several different checkpoint inhibitors
including CD40, PD-1, CTLA04 and OX40, on OPL progression
during oral carcinogenesis. Of these inhibitors, CD40 treatment
caused the greatest reduction in OPL and OSCC tumor incidence
which was associated with increased memory CD8+ T cells and
M1macrophage infiltration (117). Furthermore, inhibition of the
adenosine receptor, A2AR, inhibited tumor growth, reduced
Treg populations and increased CD8+ T cell infiltration in oral
carcinogenesis models (27). Similarly, carotenoid or tocopherol-
based treatment was associate with increased in cytotoxic
lymphocytes and TAM in murine OPLs (118, 119). Activation
of the IFN pathway via STING has also shown to inhibit the
growth of HNSCC tumor models; however, expression of the
STING pathway is not altered in oral dysplasia or pre-malignant
lesions (120). Therefore, in pre-clinical models, checkpoint
blockade, inhibition of the adenosine receptor and/or
activation of the STING pathway reduced OPL incidence.

However, risk of systemic immunotherapies patients may
outweigh the benefits in OPL patients that are healthy and may
Frontiers in Immunology | www.frontiersin.org 8
not develop invasive disease. One alternative to this treatment
dilemma is local and controlled immunotherapy delivery to
prevent oral cancer development. An ideal drug carrier should
have satisfactory biocompatibility, biodegradability and controlled
drug release at specific oral cavity sites. Furthermore, selecting the
correct preclinical model is critical, as is designing delivery
technologies that can feasibly be translated to patients.
Identification of soluble inflammatory mediators produced by oral
epithelial cells undergoing malignant progression which alter
myeloid differentiation and/or trafficking can lead to new
potential targets for therapeutic interventions.

Lately, multidomain peptide biomaterials have been
developed and consist of self-assembled peptides that mimic
the extracellular matrix by generating a nanofibrous network to
create a hydrogel. The hydrogel can encapsulate drugs, cytokines,
and growth factors and control their sustained release to permit a
sustained payload release in oral cancer models (121, 122) A
recent study by Shi et al. used the hydrogels loaded with PD1
immune checkpoint inhibitor to treat OPLs in p53 mutant and
wild-type mice. Mice were expose to the 4NQO carcinogen, a
model of carcinogenesis that represents all stages of human oral
cancer. Next, hydrogels were implanted in three histological
regions of the tongue to increase the ICI biodistribution.
Interestingly, OPLs frequency was significantly reduced in p53
wild type mice, however high-risk OPLs were higher in mutant
p53 mice (88). This study not only showed the capacity of the
hydrogels to control the release of PD-1 antibody and reduce
OPL frequency, but also provided evidence of the role of mutant
p53 in the mechanism of immunosuppression in OPLs. Other
immunoprevention studies using p53 mutant mice have showed
similar results but required 8 doses of parental immunotherapy
administration (89, 123), compared to a single hydrogel-PD1
dose (88). A recent comprehensive study of patient samples of
leukoplakia identified that proliferative leukoplakia predicts a
high rate of malignant transformation within 5 years of
diagnosis. Interestingly, CD8+ T cell and Treg signatures with
PD-L1 overexpression provides a justified approach to use anti-
PD1 as immunoprevention approach in oral leukoplakia (124).
Since these hydrogels are topically applied similar to TLR
agonists used in melanoma, this platform provides an
approach to incorporate additional immune agonists alone or
to be used to increase the efficacy of checkpoint blockade.
Therefore, our studies in selecting the precise preclinical mouse
model was critical, and the use of hydrogel loaded with
immunotherapeutic antibodies are feasible for translation
immunoprevention studies.

Currently, there are only a few ongoing clinical trials studying
checkpoint blockade in OPL. All of the studies use agents
targeting the PD-1/PD-L1 axis including nivolumab
(NCT03692325), sintilimab (NCT04065737) and avelumab
(NCT04504552). Of note, these trials use both clinical and/or
molecular criteria to select for patients at higher risk for
progression. In these trials, clinical features such as
multifocality, higher grade and/or size and/or genomic features
such as LOH at 3p14 and/or 9p21 are included. Currently, these
trials will add value to the role of systemic checkpoint blockade
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in OPL and the mechanisms for immune escape. Furthermore,
there is a need to address additional immunotherapeutics that
alter macrophage and/or Treg function. These studies may
discover new agents for a disease with in limited therapeutic
options (125).
DISCUSSION

OPL acquire mutations that drive the transformation of normal
epithelium to invasive OSCCs, a disease to which patients
frequently succumb. These mutations likely alter the immune
microenvironment to suppress TILs that would otherwise
potentially clear pre-malignant and malignant cells. Mutations in
classical HNSCC drivers including TP53, CDKN2A andNOTCH1
have been associated with an altered an immunosuppressive tumor
microenvironment. These mutations likely induce Treg and
MDSC infiltration as well as the phenotypic switch of M1 TAMs
to M2 TAM to suppress cytotoxic T lymphocytes. Modulation of
Frontiers in Immunology | www.frontiersin.org 9
these immunosuppressive signals using checkpoint inhibitors,
targeting TAM phagocytosis with CD47 inhibitors and/or
altering inflammatory pathways involving adenosine or STING
may promote a tumoricidal microenvironment to activate
cytotoxic lymphocytes that clear the malignant cells.
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