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Abstract: Dbl (B-cell lymphoma)-related guanine nucleotide exchange factors (GEFs), the largest
family of GEFs, are directly responsible for the activation of Rho family GTPases and essential for a
number of cellular events such as proliferation, differentiation and movement. The members of the
Ephexin (Eph-interacting exchange protein) family, a subgroup of Dbl GEFs, initially were named
for their interaction with Eph receptors and sequence homology with Ephexin1. Although the first
Ephexin was identified about two decades ago, their functions in physiological and pathological
contexts and regulatory mechanisms remained elusive until recently. Ephexins are now considered as
GEFs that can activate Rho GTPases such as RhoA, Rac, Cdc42, and RhoG. Moreover, Ephexins have
been shown to have pivotal roles in neural development, tumorigenesis, and efferocytosis. In this
review, we discuss the known and proposed functions of Ephexins in physiological and pathological
contexts, as well as their regulatory mechanisms.

Keywords: Ephexin; Ephexin1; Ephexin2; Ephexin3; Ephexin4; Ephexin5; guanine nucleotide
exchange factor; GEF; Dbl family; Rho GTPase

1. Introduction

The Rho family of GTPases is a subgroup of the Ras superfamily. Like other small GTPases,
the members of the Rho family function as molecular switches [1–4]. Rho GTPases are best known
for their roles in the regulation of the actin cytoskeleton. Consequently, they are involved in diverse
cytoskeleton-dependent processes such as cell adhesion, cell motility, cytokinesis, phagocytosis,
morphogenesis, and axon guidance [1,2,5]. In addition, Rho GTPases also play essential roles in
transcriptional regulation and cell transformation [1,2,5–7]. Because Rho GTPases are associated
with these essential cellular processes, the activity of Rho GTPases should be spatiotemporally and
tightly controlled. Accordingly, various regulatory molecules are involved to modulate the activity of
Rho GTPases, but guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs),
and guanine nucleotide dissociation inhibitors (GDIs) are at the center of the regulation.

The overall activity of a Rho GTPase in cells depends on its ratio of the GTP-bound to GDP-bound
form. Importantly, this ratio is controlled by its direct binding to GEFs, GAPs, or GDIs. GEFs activate
Rho GTPases by catalyzing the exchange of bound GDP for GTP, which results in activated Rho
GTPases to interact with their downstream effectors. On the other hand, GAPs antagonize the
function of GEFs by stimulating Rho GTPases to hydrolyze bound GTP to GDP. Additionally,
inactive GDP-bound Rho GTPases are sequestered in the cytosol by RhoGDIs (Figure 1) [1,2,8–10].
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Figure 1. Overview of Rho GTPase regulation. The activity of Rho GTPases is controlled by GEFs, 

GAPs and GDIs. GEFs facilitate the exchange of GTPase-bound GDP for GTP but GAPs inactivate the 

Rho GTPase by hydrolyzing GTP. Additionally, the sequestration of Rho GTPases by GDIs modulates 

the level of active Rho GTPases. GEF, guanine nucleotide factor; GAP, GTPase-activating protein; 

GDI, guanine nucleotide dissociation inhibitor. 

Dbl, the first GEF of the Dbl family, was originally identified as an oncogene but its function as 

a GEF for Cdc42 was revealed later [11,12]. Since then, 82 RhoGEFs have been identified; 71 RhoGEFs 

comprise the Dbl family and the other 11 RhoGEFs belong to the Dock family [13]. An important 

characteristic of the Dbl family is the presence of the Dbl homology (DH) domain, which is composed 

of ~200 amino acid residues, and the pleckstrin homology (PH) domain, which is composed of ~100 

residues [9,10,14]. The DH domain is mainly responsible for the catalytic activity of Dbl RhoGEFs 

and forms a minimal catalytic unit for the guanine nucleotide exchange reaction with the adjacent 

PH domain [9,14,15]. In addition to the tandem DH-PH domain, the members of the family also 

contain other domains that regulate their GEF activity, subcellular localization, or interaction with 

other molecules [9]. In contrast, the GEFs of the Dock family are considered as unconventional GEFs 

due to the absence of the typical DH domain. Thus, the Dock family, instead of the DH domain, is 

characterized by the presence of DHR1 (Dock homology region 1) and DHR2 (Dock homology region 

2) whose roles are to bind phospholipids and to provide the guanine nucleotide exchange activity, 

respectively [15,16]. Intriguingly, the number of RhoGEFs far outnumbers that of Rho GTPases. 

Moreover, some RhoGEFs can modulate multiple Rho GTPases. These imply that the activity of Rho 

GTPases is modulated by intertwined networks [14,15]. 

Among the members of the Dbl family, five proteins from Ephexin1 to 5 belong to the Ephexin 

subfamily [13,17]. Their sequences are highly conserved among paralogs, and they possess the typical 

tandem DH-PH domain and an additional SH3 domain which is C-terminal to the PH domain except 

that the SH3 domain is absent in Ephexin5 [17,18]. Besides the high sequence homology, one of the 

important common features of the Ephexin family is that they are the direct downstream proteins of 

Eph receptors, the largest subfamily of receptor tyrosine kinases that is activated by Ephrins and 

involved in various cellular processes such as axon guidance, formation of tissue boundaries, long-

term potentiation, angiogenesis, and cancer, through their association with Eph receptors [18–23]. 

Therefore, the GEF activity of Ephexins could be regulated by Ephrin/Eph receptor-mediated 

signaling, and diverse cellular processes induced by Ephexins occur through this module, Ephrin-

Eph receptor-Ephexin (Figure 2). 

In particular, the Ephexin family plays essential roles in normal function of neurons and their 

development. It regulates the axon guidance of developing neurons [17,19,24–30] and synaptic 

homeostasis [31–33] via the reorganization of the actin cytoskeletons. Although a number of studies 

on the family have focused on its roles in the nervous system, several studies have also suggested 

that Ephexins have a variety of other functions. For example, it has been reported that they regulate 

Figure 1. Overview of Rho GTPase regulation. The activity of Rho GTPases is controlled by GEFs,
GAPs and GDIs. GEFs facilitate the exchange of GTPase-bound GDP for GTP but GAPs inactivate the
Rho GTPase by hydrolyzing GTP. Additionally, the sequestration of Rho GTPases by GDIs modulates
the level of active Rho GTPases. GEF, guanine nucleotide factor; GAP, GTPase-activating protein;
GDI, guanine nucleotide dissociation inhibitor.

Dbl, the first GEF of the Dbl family, was originally identified as an oncogene but its function as a
GEF for Cdc42 was revealed later [11,12]. Since then, 82 RhoGEFs have been identified; 71 RhoGEFs
comprise the Dbl family and the other 11 RhoGEFs belong to the Dock family [13]. An important
characteristic of the Dbl family is the presence of the Dbl homology (DH) domain, which is composed
of ~200 amino acid residues, and the pleckstrin homology (PH) domain, which is composed of ~100
residues [9,10,14]. The DH domain is mainly responsible for the catalytic activity of Dbl RhoGEFs
and forms a minimal catalytic unit for the guanine nucleotide exchange reaction with the adjacent
PH domain [9,14,15]. In addition to the tandem DH-PH domain, the members of the family also
contain other domains that regulate their GEF activity, subcellular localization, or interaction with
other molecules [9]. In contrast, the GEFs of the Dock family are considered as unconventional GEFs
due to the absence of the typical DH domain. Thus, the Dock family, instead of the DH domain,
is characterized by the presence of DHR1 (Dock homology region 1) and DHR2 (Dock homology
region 2) whose roles are to bind phospholipids and to provide the guanine nucleotide exchange
activity, respectively [15,16]. Intriguingly, the number of RhoGEFs far outnumbers that of Rho GTPases.
Moreover, some RhoGEFs can modulate multiple Rho GTPases. These imply that the activity of Rho
GTPases is modulated by intertwined networks [14,15].

Among the members of the Dbl family, five proteins from Ephexin1 to 5 belong to the Ephexin
subfamily [13,17]. Their sequences are highly conserved among paralogs, and they possess the
typical tandem DH-PH domain and an additional SH3 domain which is C-terminal to the PH
domain except that the SH3 domain is absent in Ephexin5 [17,18]. Besides the high sequence
homology, one of the important common features of the Ephexin family is that they are the direct
downstream proteins of Eph receptors, the largest subfamily of receptor tyrosine kinases that is
activated by Ephrins and involved in various cellular processes such as axon guidance, formation of
tissue boundaries, long-term potentiation, angiogenesis, and cancer, through their association with
Eph receptors [18–23]. Therefore, the GEF activity of Ephexins could be regulated by Ephrin/Eph
receptor-mediated signaling, and diverse cellular processes induced by Ephexins occur through this
module, Ephrin-Eph receptor-Ephexin (Figure 2).
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ubiquitination of Ephexin5 resulting in proteasomal degradation. An Eph receptor for Ephexin2 has 

not been reported. 

2. Ephexin Family 

Since the first Ephexin, Ephexin1, was identified as an EphA4-interacting RhoGEF, Ephexin was 

named for Eph-interacting exchange protein [19]. Since then, four Ephexin1-homologous proteins 

have been identified and named sequentially from Ephexin2 to Ephexin5 [17]. These five Ephexins 
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been identified. Accordingly, they are engaged in a variety of Eph receptor-mediated cellular 

processes (Figure 2 and Table 1) [18–22]. In addition, the domain structure of Ephexins is highly 

conserved, which consists of a tandem DH-PH domain followed by a SH3 domain, but the length of 
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Ephexin1 
Arhgef27, Ngef, 

Ephexin 
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RhoA, Rac1, 

Cdc42 
EphA4 [19,54] 

Ephexin2 Arhgef19, Wgef 
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RhoA – 1 [55] 

Ephexin3 Arhgef5, Tim 
Liver, kidney, colon, 
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RhoA, Rac1, 

Cdc42 2 
EphA4 [20,41,44] 

Ephexin4 Arhgef16 – 3 RhoG, Cdc42 EphA2 [21,56,57] 

Figure 2. Ephrin-Eph receptor-Ephexin signaling. The activation of EphA4 by Ephrin-A increases
the GEF activity of Ephexin1 toward RhoA whereas the EphB2 activation by Ephrin-B induces
ubiquitination of Ephexin5 resulting in proteasomal degradation. An Eph receptor for Ephexin2
has not been reported.

In particular, the Ephexin family plays essential roles in normal function of neurons and their
development. It regulates the axon guidance of developing neurons [17,19,24–30] and synaptic
homeostasis [31–33] via the reorganization of the actin cytoskeletons. Although a number of studies
on the family have focused on its roles in the nervous system, several studies have also suggested
that Ephexins have a variety of other functions. For example, it has been reported that they regulate
angiogenesis [34], efferocytosis, a type of phagocytosis to clear apoptotic cells in the body [35–37],
and vascular muscle contractility [18]. Moreover, aberrant expression or function of Ephexins are
related to various types of cancer [38–53]. Thus, the roles of Ephexins are not limited to the nervous
system. In this review, we highlight the molecular characteristics of Ephexins and their various roles
in physiological and pathological contexts.

2. Ephexin Family

Since the first Ephexin, Ephexin1, was identified as an EphA4-interacting RhoGEF, Ephexin was
named for Eph-interacting exchange protein [19]. Since then, four Ephexin1-homologous proteins
have been identified and named sequentially from Ephexin2 to Ephexin5 [17]. These five Ephexins
comprise a subfamily of the Dbl-related GEFs, the Ephexin family [13,17].

Ephexins function as GEFs for Rac, Cdc42, Rho and RhoG, and interact with Eph receptors
to transduce signals from the receptors although an Eph receptor interacting with Ephexin2 has
not been identified. Accordingly, they are engaged in a variety of Eph receptor-mediated cellular
processes (Figure 2 and Table 1) [18–22]. In addition, the domain structure of Ephexins is highly
conserved, which consists of a tandem DH-PH domain followed by a SH3 domain, but the length of
their N-termini is irregular and the sequence identity is especially low among Ephexin1 orthologs,
particularly drosophila and chicken Ephexin1 (dEpehxin1 and cEphexin1) (Figure 3). In the following
sections, the members of the Ephexin family will be consecutively discussed in detail (also refer to the
Table S1 to see all experimental systems for studies on Ephexins).



Cells 2019, 8, 87 4 of 13

Table 1. Overview of Ephexin family proteins.

Member Aliases Expression GEF Specificity Interacting
Receptors References

Ephexin1 Arhgef27, Ngef,
Ephexin Brain, spinal cord RhoA, Rac1,

Cdc42 EphA4 [19,54]

Ephexin2 Arhgef19, Wgef Liver, kidney, heart,
intestine RhoA – 1 [55]

Ephexin3 Arhgef5, Tim
Liver, kidney, colon,

trachea, prostate,
pancreas

RhoA, Rac1,
Cdc42 2 EphA4 [20,41,44]

Ephexin4 Arhgef16 – 3 RhoG, Cdc42 EphA2 [21,56,57]

Ephexin5 Arhgef15,
Vsm-RhoGEF

Brain, vascular
smooth muscles

(liver, kidney, heart,
spleen)

RhoA, Rac1,
Cdc42 4

EphA4,
EphB2 [18,22,34]

1 There is no research that identifies the Ephexin2-interacting Eph receptors. 2 It is controversial whether Ephexin3
has GEF activity toward Rac1 and Cdc42 or not. 3 There is no research that directly deals with the expression pattern
of Ephexin4. 4 It is controversial whether Ephexin5 has GEF activity toward Rac1 and Cdc42 or not.
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Figure 3. Schematic diagram of the members of the Ephexin family and sequence identity
among homologs. The phosphorylation sites involved in alleviating the auto-inhibition are shown.
The domains of Ephexins were structured according to SMART, a domain prediction program,
and the sequence identity among homologs was calculated by Clustal Omega. DH, Dbl homology;
PH, Pleckstrin homology; SH3, Src homology 3.

2.1. Ephexin1

Ephexin1 was originally isolated from an adult mouse brain cDNA library in 2000 as Ngef.
Ephexin1 is predominately expressed in the central nervous system, the brain and spinal cord, and its
expression is developmentally regulated, that is, its mRNA levels gradually increase throughout
embryonic development and peak at the P10 postnatal stage. In particular, Ephexin1 is highly expressed
in the caudate nucleus associated with motor processes [19,54]. This expression timing and location of
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Ephexin1 is quite similar to those of EphA4, which suggests the implicated roles of Ephexin1 in the
nervous system. Indeed, Ephexin1 plays crucial roles in axon guidance and synaptic homeostasis.

During development, the axon pathfinding is regulated by various molecules existing in the
extracellular matrix or on the surrounding cell surfaces. These guidance cues determine the attraction
and/or repulsion of the growth cone by regulating the actin cytoskeleton. Eph receptors and Ephrins
are involved and their roles are well established in these processes [58]. In particular, Ephexin1 is a key
regulator providing a linkage between Ephrin-Eph and the axon pathfinding through interaction of
Ephexin1 with EphA4 [19]. Furthermore, Ephexin1 participates in mediating proper neuronal functions
like synaptic homeostasis, maturation and myelination [33,59]. In the neuromuscular junction (NMJ)
of fruit flies, presynaptic Eph receptors receive a retrograde signal from the postsynaptic terminal and
activate dEphexin1, Cdc42, and calcium channels sequentially, leading to the enhanced presynaptic
release for synaptic homeostasis [31]. In mouse NMJ, Ephexin1 expressed in the postsynaptic muscle
regulates the actin cytoskeleton via RhoA. As a consequence, the membrane structure and postsynaptic
AchR cluster stability are altered and thus NMJ maturation is mediated [32].

In addition, the importance of Ephexin1 in the nervous systems is also highlighted in various
contexts. Optimal neuron innervation by axon guidance during embryonic development is one
of the most well-characterized processes regulated by Ephexin1. Tissues from various model
organisms like mice, chickens, and fruit flies have been used to confirm the roles of Ephexin1 in
those developmental stages. Afferent innervation from spiral ganglion neurons (SGNs) is important
for development of the proper auditory system during mouse embryogenesis and also regulated by
the ephrin-EphA4-Ephexin1 axis [26]. Medial lateral motor column (LMC) neurons and dorsal limb
mesenchyme express EphB1 and Ephrin-B, respectively, to induce the growth of medial LMC neurons
towards the ventral part in chicken and mouse embryos [27]. dEphexin1 also mediates olfactory
dendrite targeting [29] and cEphexin1 (chicken Ephexin1) takes an important role in successful retinal
ganglion cell (RGC) projection to reach the optic tectum in chicken embryos [28].

The GEF activity of Ephexin1 is modulated by the activation state of EphA4: using cultured
Ephexin1-/- neurons and RNA interference in the chick, it was found that Ephexin1 could function
as a GEF for Rac1, Cdc42, and RhoA under the basal condition. However, when EphA4 is activated
by Ephrins, the phosphorylation of Ephexin1 by Src provides the specificity of Ephexin1 towards
RhoA [17,24]. Ahead of this modification, Cdk5 participates in the phosphorylation of Ephexin1
as a priming kinase. Activated EphA4 phosphorylates Cdk5, which causes Cdk5 to phosphorylate
Ephexin1, results in further modification of Ephexin1 by Src [25]. Intriguingly, this phosphorylation of
Ephexin1 relieves auto-inhibition generated by the inhibitory helix region to the N-terminus of the DH
domain of Ephexin1. It is known that the activity of a number of Dbl family GEFs is auto-inhibited by
interaction of the DH domain with an N-terminal helix region to exclude and prevent the activation
of Rho GTPases. Similarly, Ephexin1 is also auto-inhibited and its activity is modulated by relief or
strength of the auto-inhibition. The phosphorylation of tyrosine 179, located in the inhibitory helix
region of Ephexin1, by Src disrupts interaction between the DH domain and the inhibitory helix
region of Ephexin1, which makes the DH domain free to bind RhoA. Eventually, the phosphorylation
increases the activity of Ephexin1 and the levels of RhoA activation [60].

It has been reported that Ephexin1 is positively correlated to pathophysiologic conditions
like depression or recovery after CNS (central nervous system) injury, due to its roles in neuronal
development and synaptic homeostasis, [61–64].

2.2. Ephexin2

Ephexin2 was identified in 2004 from a mouse liver cDNA library and initially was termed as
Wgef, an abbreviation of weakly similar to Rho GEF 5 [55]. Studies on Ephexin2 have not extensively
been done compared with Ephexin1. Thus, there is not much literature to refer to and data about
Ephexin2 are also limited. However, its intrinsic role to function as a GEF for RhoA seems to be clear.
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Ephexin2 is involved in convergent extension, a developmental step of anterior-posterior axis
extension in Xenopus gastrulation through RhoA activation [65]. In addition, Ephexin2 participates in
pronephric tubulogenesis of Xenopus and zebrafish. During this process, the GEF activity of Ephexin2
is modulated by Daam1 interacting with it [66]. Ephexin2 also plays a role in cancer. For instance,
various cancer tissues and cell lines show elevated levels of Ephexin2, which results in the increased
activity of RhoA causing higher cancer proliferation, migration, and invasion. The downregulated
levels of Ephexin2 by miR-503 have an inhibitory effect on cancer metastasis in hepatocellular
carcinoma model and miR-29b, which downregulates the levels of Ephexin2, is decreased in non-small
cell lung cancer (NSCLC) [39,40]. Interestingly, the roles of Ephexin2 during pronephric tubulogenesis
and in the cancer are relevant to the high expression levels of Ephexin2 in the kidney, as well as the
liver and lung.

2.3. Ephexin3

Ephexin3, also called Tim (Transforming immortalized mammary), is ubiquitously expressed
in many tissues, such as colon, kidney, trachea, prostate, liver, and pancreas, with tendency to be
highly expressed in tissues containing epithelial cells [41]. Ephexin3 is able to activate RhoA in in vitro
guanine nucleotide exchange assays using purified proteins and in Rho GTPase pull-down assays
using COS-7 cells [20,41]. However, it promotes the formation of membrane ruffles and filopodia
and induces a loss of actin stress fibers in NIH/3T3 and COS-7 cells, which seems to indicate that
Ephexin3 activates Rac and Cdc42 [44]. However, the consecutive studies on Ephexin3 have shown
that it functions as a GEF for RhoA rather than Rac and Cdc42.

The roles of Ephexin3 in physiological and pathological contexts are quite various.
Genetic deletion of Ephexin3 causes defects in immature dendritic cell migration in vivo. In terms
of cell migration, Ephexin3 is also involved in Src-induced podosome formation which is related
to cell migration and adhesion. RNAi-mediated knockdown of Ephexin3 inhibits Src-dependent
podosome formation whereas its overexpression increases the podosome formation through RhoA
activation [45,67]. In addition, Ephexin3 is highly linked to cancer progression. Higher levels of
Ephexin3 are observed in cervical, colorectal, and lung-derived cancers and patients with a high
level of Ephexin3 and Src show shorter survival time [41–43,45,46]. Moreover, mutations in Ephexin3
is also correlated with cancer. Frequent mutations in Ephexin3 in lung cancer and familial lung
cancer compared with the healthy control were detected through whole genome sequencing [68].
Furthermore, it is conceivable that the correlation of Ephexin3/Src with cancer malignancy comes
from their function of promoting endothelial-mesenchymal transition (EndoMT) [47].

The activity of Ephexin3 is also auto-inhibited by intramolecular interaction caused by the
N-terminal inhibitory helix and the DH domain, which is similar to that of Ephexin1. Therefore,
the regulatory mechanism for the activity of Ephexin3 is also comparable to that of Ephexin1.
The inhibitory helix of Ephexin3 binds to the DH domain, which prevents RhoA access to the DH
domain of Ephexin3 and results in the auto-inhibition. Tyrosine phosphorylation at Y1097 and Y1100
by Src leads to disruption of the intramolecular interaction between the inhibitory helix and the DH
domain, which results in RhoA activation [20,69,70].

2.4. Ephexin4

Most studies on Ephexin4, also known as Arhgef16, have focused on its role as a GEF for RhoG.
However, the potential activity of Ephexin4 to regulate Cdc42 was also reported in a specific context.
Tax-interacting-protein 1 (Tip-1) is a protein that interacts with HPV16 E6 oncoprotein to regulate
E6-dependent cell motility. Intriguingly, Ephexin4 was identified as a novel binding partner of Tip-1
via a yeast two-hybrid screen. The interaction of Ephexin4 with Tip-1 alters its GEF activity toward
Cdc42 [56,57].

The biological significance of Ephexin4 in various physiological and pathological conditions
has been addressed. The potential involvement of Ephexin4 in preventing carcinogenesis was
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suggested from its down-regulation in kojic acid-stimulated A375 malignant melanoma cells [48].
In addition, it was reported that Ephexin4 could modulate cancer cell migration in a breast cancer
model. Ephexin4 activates RhoG by interacting with EphA2, which promotes RhoG/ELMO2/Dock4
complex formation resulting in Rac activation [21]. Since elevated EphA2 expression is correlated
with the aggressiveness of breast cancer, Ephexin4 links EphA2 to RhoG causing cancer invasion.
Cancer cells are resistant to anoikis, a type of cell death caused by detachment from surrounding
ECM, leading to more progression of cancer. It has been revealed that Ephexin4 takes an important
part in preventing anoikis as its loss in HeLa cells promoted anoikis. Phosphorylation of EphA2
enhances its interaction with Ephexin4 and, in turn, activates RhoG and RhoG-dependent PI3K/Akt
signaling. Because Akt phosphorylates EphA2, these proteins compose a positive feedback loop
for anoikis resistance [50–52]. Ephexin4 also correlates with the development and progression of
brain tumors [49,53]. In patients with oligodendroglial brain tumors, a missense mutation (2125G to
2125A) in Ephexin4 is commonly found, although extensive investigation is required to fully elucidate
its contribution to the pathogenesis [49]. One recent report revealed that GLI2, glioma-associated
oncogene and a downstream effector of Hedgehog signaling, binds to the promoter region of Ephexin4
and upregulates the transcript level of Ephexin4. Although there is an absence of studies on its
mechanism, interaction between Ephexin4 and cytoskeleton-associated protein 5 (CKAP5) in this model
is newly reported. This suggests a correlation between spindle regulation and glioma proliferation
and migration [53]. Besides tumorigenesis, Ephexin4 is related to optic nerve regeneration process in
zebrafish. After optic nerve injury, Wnt-related pathways are altered and the transcription levels of
Daam1 and Ephexin4 decrease as a consequence [71].

A novel role of Ephexin4 in clearance of apoptotic cells was recently reported [35]. Interaction of
Ephexin4 and Elmo1 was newly identified through a yeast two-hybrid screen. Elmo1 is known
to regulate various cellular processes, such as cell motility, neurite outgrowth, and formation of
cellular protrusions, all of which are mediated by the actin cytoskeleton remodeling. Elmo1 plays
a central role during efferocytosis as a scaffold protein modulating the activity of its associating
proteins [72]. Since Ephexin4 was recognized as a new binding partner of Elmo1, the effects
of Ephexin4 on efferocytosis has been elucidated. Ephexin4 indeed promotes the engulfment of
apoptotic cells in a RhoG- and Rac1-dependent manner [35]. Interestingly, co-expression of Elmo1
and Ephexin4 synergistically promotes efferocytosis resulting from relief of the auto-inhibition
of Ephexin4. The SH3 domain of Ephexin4 mediates homotypic intermolecular interaction,
which generates an auto-inhibitory effect by the blockade of RhoG access to the DH domain of
Ephexin4. This auto-inhibitory interaction is relieved by Elmo1; the N- and C-termini of Elmo1 bind
to the DH and SH3 domain of Ephexin4, respectively. Therefore, the binding of Elmo1 to Ephexin4
relieves the auto-inhibition of Ephexin4 by disrupting the homotypic intermolecular interaction,
leading to the augmented GEF activity of Ephexin4 toward RhoG and the consequent increase in the
ability of efferocytosis [36,37]. It is notable that the regulatory mechanism for the activity of Ephexin4
differs from that of other Ephexins.

2.5. Ephexin5

Another name for Ephexin5 is Vsm-RhoGEF, standing for vascular smooth muscle-specific
RhoGEF. As its name implies, it was identified as a RhoGEF expressed in vascular smooth muscle cells
from different tissues including the heart, liver, kidney, aorta, and spleen. Along with the identification
of its expression pattern, its roles as a key downstream regulator of EphA4 signaling have been
revealed. Ephexin5 interacts with EphA4 through its DH-PH domain, and Ephrin-A-stimulated EphA4
phosphorylates Ephexin5, which activates RhoA and induces the formation of stress fibers related to
the vascular smooth muscle contractility [18].

Ephexin5 is highly expressed in the brain, especially in the hippocampus, and its functions in
the brain have been well established [22]. It is known that Eph-Ephrin signaling is important for
the proper excitatory synapse formation in the brain. EphB binding to Ephrin-B enhances the kinase
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activity of EphBs in the developing dendrites, which results in the dendritic spine outgrowth and
excitatory synapse formation. In the hippocampus, Ephexin5 shows a similar expression pattern to
that of EphB2 and it interacts with EphB2 preferentially in neurons. Ephexin5 is a RhoA-specific GEF
and decreases the number of excitatory synapses by activating RhoA. Upon Ephrin-B stimulation,
however, activated EphB2 phosphorylates tyrosine 361 of Ephexin5 (mouse Ephexin5), leading to its
ubiquitination by Ube3A and following proteasomal degradation. Therefore, the negative regulation
of spine outgrowth by Ephexin5 is a checkpoint to limit the EphB-mediated excitatory synapse
formation [22,73]. In addition, one recent study reported that Ephexin5 is required for spinogenesis.
Ephexin5 is temporally increased at the site of new spine formation in hippocampal neurons prior to
its removal and new spine formation. Interestingly, the complete loss of Ephexin5 prevents neuronal
activity from promoting spinogenesis. Taken together, these data indicate that Ephexin5 may serve as
a beacon locating sites of new spine formation keeping them in check until incoming activity promotes
spine formation at these sites [74].

Angiogenesis occurs through a series of complicated processes including sprouting, migration,
tubulogenesis, and stabilization [75]. To accomplish these processes, the actin cytoskeleton in
endothelial cells is tightly controlled by various Rho GTPases. Vascular endothelial growth factor
(VEGF) is one of the most crucial regulators for angiogenesis. The interaction between VEGF
and its corresponding receptor, VEGFR2, facilitates the development of blood vessels via the
activation of Cdc42 and the inactivation of RhoJ in the endothelial cells [76,77]. Ephexin5 has an
important role in angiogenesis because it mediates the VEGF-induced Rho GTPase activity modulation.
During angiogenesis, Ephexin5 is highly expressed in retinal endothelial cells where Ephexin5
promotes actin polymerization by regulating the activity of Cdc42 and RhoJ [34,78]. By increasing
Cdc42 activity and decreasing RhoJ activity, Ephexin5 promotes actin polymerization in endothelial
cells. The significance of Ephexin5 in angiogenesis is further supported by delayed retinal vascular
growth in Ephexin5-deficient mice [34]. Furthermore, the mutations or aberrant expression of
Ephexin5 are associated with cancer and neuronal disorders such as epilepsy, seizures and Alzheimer’s
disease [38,79,80].

3. Targeting Ephexins in Diseases

All members of the Ephexin family function as GEFs for RhoA, Rac, Cdc42 and RhoG, which is
closely related to cell proliferation and cell migration. Due to their pivotal roles in cell proliferation and
migration, dysregulation of their activity or expression could be associated with tumorigenesis and
metastasis. Indeed, the increased expression levels of Eph receptors or Ephexins have been observed
in many cancer types. Moreover, mutations or transcript variants of Ephexins are also closely related
to cancer [44,49,68]. Therefore, targeting the signal module or a regulator for the signal module could
be a good therapeutic approach for cancer treatment.

A few studies tried to modulate the activity of Ephexin3 using peptides mimicking the inhibitory
helix or the most highly conserved surface of the DH domain interacting the inhibitory helix. However,
modulating their activity is only tested in in silico or in vitro systems [20,69,70]. Thus, the efficacy of the
peptides should be further investigated in more physiologically relevant conditions. Another approach
to target the signal module is to inhibit the activity of Src because the activity of Ephexin1 or Ephexin3
is modulated through phosphorylation by Src. A few studies showed that Ephexin1 expression is
altered after spinal cord injury and treatment of PP2, a selective Src family inhibitor, for the injury leads
to functional locomotor recovery [62,63]. Although PP2 is not specific to only Src, this approach shows
a possibility that targeting an Ephexin regulator in the signal module could be effective therapeutics.

Furthermore, Ephexin1 and Ephexin5 are associated with neuronal disorders such as depression,
epilepsy, and Alzheimer’s disease [38,61,79,80]. EphA4-Ephexin1 signaling was increased in mice
after social defeat stress [61]. Through whole exome sequencing on children with epilepsy, a missense
mutation (1810C to 1810T) in Ephexin5 was identified and this substitution resulted in ~50%
reduction in its GEF activity on RhoA [79]. In addition, the amyloid-β accumulated brain showed
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an elevated Ephexin5 level and reduced postsynaptic spine density due to the decreased level of
EphB2 [80]. Treatment of mice with depression-like phenotype with an EphA4 inhibitor showed
an antidepressant-like effect [61]. These studies imply that it is also a good strategy to target the
signal module for treatment of those neuronal disorders. Therefore, a drug modulating the Eph
receptor-Ephexin signaling would be a promising treatment such disorders.

4. Conclusions

In this review, the biological significance of Ephexins in various physiological and pathological
contexts and molecular mechanisms by which their GEF activity is regulated have been discussed.
Starting from studies in the 2000s, their roles not only in neurogenesis but also in other cellular
events have been reported. In particular, recent studies have provided the relevance of Ephexins to
tumorigenesis and efferocytosis, suggesting that the unappreciated roles of Ephexins still remain and
need to be explored. Accordingly, extensive and in-depth studies of them would provide a better
understanding of the diverse processes, including neuronal development and cancer.
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