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Abstract

Species tree reconstruction is complicated by effects of incomplete lineage sorting, commonly modeled by the multi-
species coalescent model (MSC). While there has been substantial progress in developing methods that estimate a species
tree given a collection of gene trees, less attention has been paid to fast and accurate methods of quantifying support. In
this article, we propose a fast algorithm to compute quartet-based support for each branch of a given species tree with
regard to a given set of gene trees. We then show how the quartet support can be used in the context of the MSC to
compute (1) the local posterior probability (PP) that the branch is in the species tree and (2) the length of the branch in
coalescent units. We evaluate the precision and recall of the local PP on a wide set of simulated and biological datasets,
and show that it has very high precision and improved recall compared with multi-locus bootstrapping. The estimated
branch lengths are highly accurate when gene tree estimation error is low, but are underestimated when gene tree
estimation error increases. Computation of both the branch length and local PP is implemented as new features in
ASTRAL.

Key words: Incomplete lineage sorting, multi-species coalescent, quartet-based methods, ASTRAL, posterior proba-
bility, local support, branch length estimation.

Introduction
The multi-species coalescent model (MSC) of Rannala and
Yang (2003) has emerged as the standard method used for
reconstructing species trees in the presence of gene tree dis-
cordance due to incomplete lineage sorting (ILS) (Maddison
1997; Degnan and Rosenberg 2006). Many methods have
been developed to estimate species trees under the MSC
(e.g., Heled and Drummond 2010; Bryant et al. 2012;
Chifman and Kubatko 2014; Mirarab, Bayzid, Boussau, et al.
2014). The most scalable family of MSC-based methods are
based on a two-step process where gene trees are first esti-
mated independently for each gene and are then combined
to build the species tree using a summary method. Many of
the summary methods are statistically consistent and thus
converge in probability to the true species tree as the number
of input error-free gene trees increases; examples of consistent
methods include ASTRAL (Mirarab, Reaz, Bayzid, et al. 2014;
Mirarab and Warnow 2015), BUCKy-population (Larget et al.
2010), GLASS (Mossel and Roch 2010), MP-EST (Liu et al.
2010), NJst and ASTRID (Liu and Yu 2011; Vachaspati and
Warnow 2015), and STAR (Liu et al. 2009). While some meth-
ods (e.g., MP-EST) can estimate branch lengths in coalescent
units, others only infer the topology. The traditional concat-
enation approach (where all genes are put together in a super-
matrix) can produce high support for incorrect branches
(Kubatko and Degnan 2007; Roch and Steel 2014), and the
main goal of statistically consistent summary methods is to
address this shortcoming. However, despite the progress in

developing methods for species tree reconstruction, little at-
tention has been paid to methods of calculating support.

Bayesian methods (e.g., Liu 2008; Heled and Drummond
2010) readily provide support but remain computationally
challenging. Calculating support through bootstrapping
(Felsenstein 1985), while still computationally expensive, is
not prohibitively slow and is easily parallelizable. Seo et al.
(2005) proposed a multi-locus bootstrapping (MLBS) proce-
dure that produces bootstrap replicates by first resampling
genes and then sites within those sampled genes. Seo (2008)
later studied the accuracy of the MLBS approach in the con-
text of distance-based tree reconstruction for 4-taxon trees
and explored other strategies where only genes or only sites
were resampled. These earlier works did not consider ILS as
the cause of discordance; nor did they use summary methods.
Nevertheless, the community has adopted MLBS as a stan-
dard way of estimating support using ILS-based summary
methods; most biological studies using summary methods
rely on site-only or site/gene MLBS (e.g., Song et al. 2012;
Jarvis et al. 2014; Wickett et al. 2014; Prum et al. 2015).

Recently, Mirarab, Bayzid, Warnow (2014) studied the re-
liability of MLBS support values as a measure of accuracy in
simulation studies, and documented both under-estimation
and over-estimation of support (for low- and high-support
branches, respectively) using MP-EST (Liu et al. 2010) and
supertree methods such as MRP (Ragan 1992) and MRL
(Nguyen et al. 2012). Mirarab, Bayzid, Warnow (2014) also
observed better species tree accuracy when a summary
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method was run directly on ML gene trees, compared with
running the summary method on bootstrapped gene trees
first and then taking a consensus. This observation led to the
conjecture that MLBS might give biased estimates of the
support. Furthermore, Bayzid et al. (2015) found in simulation
studies that false positive branches can sometimes have high
MLBS support and that many true branches tend to have low
support. Obtaining low support for true branches should not
be a cause of concern if the lack of support is caused by
insufficient data; however, when low support is caused by
underestimation, we need better methods of quantifying
support.

In this article, we show that using properties of the MSC on
four taxa (quartets), we can derive support values that are
more precise and more powerful than MLBS, and are much
faster to compute. Under the MSC, quartet trees do not have
anomaly zones (Allman et al. 2011; Degnan 2013), meaning
that the most probable gene tree is identical to the species
tree for any quartet. Exploiting this property, some summary
methods break up gene trees into quartet trees. For example,
ASTRAL (Mirarab and Warnow 2015), a summary method
used in many recent studies (e.g., Wickett et al. 2014; Andrade
et al. 2015; Giarla and Esselstyn 2015; Grover et al. 2015;
Hosner et al. 2015; Laumer et al. 2015; Prum et al. 2015;
Streicher et al. 2015), finds the species tree that shares the
maximum number of induced quartet trees with gene trees.

We introduce a new method for computing support for
species tree branches with regard to a set of unrooted gene
trees by calculating Bayesian posterior probabilities. Our sup-
port values, which we call local posterior probabilities, are
computed based on gene tree quartet frequencies. For each
internal branch of the given species tree, we assume that the
four sides of the branch (fig. 1) are correct, and therefore three
topologies are possible around that branch. We introduce a
fast algorithm to compute a quartet support for each of those
three alternatives in HðnlÞ time (where l is the number of
species and n is the number of genes). We then use the
quartet support for each alternative topology to derive the
posterior probability (PP) that it is the correct species topol-
ogy. Besides producing measures of support, quartet frequen-
cies can be used to derive estimates of internal branch lengths
in coalescent units.

Our calculation of posterior probabilities is analogous to
characterizing a biased die. If we toss a three-faceted biased
die n times, our belief in whether the die is biased toward a
certain side should depend on the number of tosses and also
on the bias of the die (less bias requires more tosses). Similarly,
a short branch in the species tree will result in high discord-
ance, and will need many genes to resolve it with high con-
fidence. On the other hand, considering only the MSC and
ignoring issues such as long branch attraction, long branches
can be easily reconstructed confidently even with few genes.

We show using simulated and empirical datasets that the
local PP estimated by our approach is a reliable measure of
accuracy. We show that very few highly supported branches
are incorrect. Moreover, with a sufficient number of genes,
most correct branches have high support. Importantly, we
test our methods under conditions where assumptions of our

model are violated and show that it remains reliable. Our
method is available as part of ASTRAL (https://github.com/
smirarab/ASTRAL/), which now estimates species tree topol-
ogies, branch lengths, and local posterior probabilities.

New Approaches

Definitions
Throughout this article, we only consider unrooted trees. Let
L be the set of l leaves (i.e., taxa). Each branch of a tree T
creates a bipartition on L, and we say that each of the two
partitions is a cluster in T. Each internal branch dividesL into
four clusters, creating a quadripartition (fig. 1). Similarly, an
internal node divides L into three clusters, creating a tripar-
tition (fig. 1). Any quartet q of taxa induces a quartet tree t on
T. The two internal nodes of t correspond to two internal
nodes in T. When those two internal nodes are the two sides
of a single branch in T, we say that the quartet q is around
that branch. The set of quartets around a given quadriparti-
tion can be built by enumerating all selections of one leaf
from each of its four clusters.

Problem Statement
We are given a set of n gene trees evolved on an unknown
true binary species tree according to the MSC model. Our aim
is to score a given internal branch represented as a quadri-
partition Q to estimate:

(1) the probability that Q is in the true species tree, as-
suming clusters of Q are each correct,

FIG. 1. Quadripartitions and tripartitions. (A) An internal branch
(black, in the middle) divides the set of leaves into a quadripartition.
A quartet of leaves f1; 2; 3; 4g induces a quartet tree (in red) with two
internal nodes that map to two nodes in the larger tree (here, u and v).
(B) An internal node, here u, divides leaves into a tripartition; a selection
of two leaves from one side and one from each remaining side gives a
quartet mapped to that tripartition. Each quartet tree also maps to a
second tripartition (v). (C) An example mapping between a quadripar-
tition (e.g., from the species tree) and a tripartition (e.g., from a gene
tree); 12 such mappings exist. Note that by finding all quartets of the
form ða; b; c; dÞ; a 2 A \ Y; b 2 B \ Y; c 2 C \ X; d 2 D \ Z, we can
find all quartets around the quadripartition that are mapped to the
tripartition with this mapping.
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(2) the length of Q in coalescent units, assuming Q is a
correct branch in the species tree.

Assumptions
We assume that evolution is tree-like and true gene trees
differ from the species tree only due to ILS, as modeled by
the MSC. We also assume we are given an unbiased sample of
true gene trees. On real data, we need to instead estimate
gene trees from sequence data, and further, it is not always
clear that our sample is unbiased, nor that gene trees are
generated by the MSC.

Importantly, we further assume that all four clusters
around the branch we are scoring are correct. This assump-
tion, which we refer to as the locality assumption, makes our
computations tractable for large datasets. Similar assump-
tions have been made in past for fast calculation of local
support in the context of maximum likelihood (ML) tree
reconstruction from sequence data; for example, aLRT in
PhyML (Guindon et al. 2009) and SH-like support in
FastTree-II (Price et al. 2010). Note that to test our method,
we use data that violate the locality assumption and we also
use estimated gene trees in addition to true gene trees gen-
erated by the MSC.

Calculation of Local Posterior Probability
Quartet Trees
Our approach is based on analyzing quartets defined around
the branch Q. For any quartet of leaves around Q, we have
three possible topologies, which we will call t1; t2, and t3. In
the MSC model, the quartet topology found in the true spe-
cies tree has the highest probability of appearing in gene trees
(Allman et al. 2011), and the two alternative topologies have
identical probabilities. Furthermore, if the total branch length
(in coalescent units) between the two internal nodes of the
quartet is d, the probability of the dominant quartet topology
in gene trees is h ¼ 1� 2

3 e�d > 1
3, and the probabilities of

both alternative topologies are 1�h
2 ¼ 1

3 e�d < 1
3.

We refer to the number of times t1; t2; and t3 are induced
in gene trees as quartet frequencies, shown as

�n ¼ ðn1; n2; n3Þ; note
X3

1

nj ¼ n. In the MSC model, condi-

tioned on the species tree, gene trees are independent; Thus,
�n can be modeled as a multinomial random variable �N, with

parameters h, 1�h
2 ; 1�h

2 , where h corresponds to the species

tree topology, and 1�h
2 to the alternative topologies. A similar

model is used in the maximum pseudo-likelihood approach
of Liu et al. (2010) for triplets.

Multiple Quartets

There are m ¼
Y4

1

mi quartets around branch Q, where mi is

the size of a cluster of the quadripartition of Q. Note that we
can rearrange clusters of Q to obtain two alternative quad-
ripartitions, which we call Q2 and Q3. Let �ni ¼ ðn1i; n2i; n3iÞ;
1 � i � m be quartet frequencies for all m quartets

around branch Q such that n1i; n2i, and n3i correspond to
the topologies Q; Q2, and Q3, respectively.

Each �ni can be modeled as a multinomial random variables
�Ni, and �Nis are identically distributed. To use all �ni values, one
approach is to assume they are also all independent, and

model ð
X

n
1i
;
X

n
2i
;
X

n
3i
Þ as observations from a mul-

tinomial with m� n trials. The independence assumption
would clearly be incorrect; topologies of different quartets
around a branch heavily depend on each other (supplemen
tary fig. S15, Supplementary Material online, shows an exam-
ple). Quartets around a branch are dependent even when the
locality assumptions hold. A big problem with the indepen-
dence assumption is that it inflates confidence because
the number of observations (i.e., die tosses) becomes
m� n instead of n, thereby greatly increasing posterior prob-
abilities (note m � l� 3). Moreover, the dependence
of various quartets on each other is intricate and hard to
model.

To avoid inflating posterior values by assuming indepen-
dence, we take the opposite conservative approach. We
assume that a hidden random variable �Z gives a single vector
of “true” quartet frequencies around Q and treat each �Ni

as a noisy estimate of �Z. Thus, �Z follows a multinomial distri-
bution with n tries (irrespective of m) and �Ni ¼ �Zþ �Y for
1 � i � m where �Y is a noise term with zero expectation.
In the die analogy, we assume the die is tossed n times, and for
each toss, we read the outcome m times, each time with
some noise. Ideally, we should have a noise model and com-
pute the posterior with respect to the given �Ni values by
marginalizing over �Z. However, a good noise model is not
available and the resulting problem becomes hard to solve.
Instead, we treat the expected value of �Z as an observed value,
and empirically estimate it by averaging:

zj ¼

Xm

1
nji

m
for j 2 f1; 2; 3g (1)

At the end of this section, we will introduce an efficient
HðnlÞ algorithm to compute �z.

Lemma 1

Let ðh1; h2; h3Þ denote parameters of the true multinomial
distribution generating �Z. Note

P3
1 hi ¼ 1 and the two lower

his are identical, and recall z1 corresponds to the topology of
Q.

P h1 >
1

3
j�Z ¼ �z

� �
¼

ð1

1
3

Pð�Z ¼ �zjh1 ¼ tÞfh1
ðtÞdt

Pð�Z ¼ �zÞ ; (2)

where fh is the prior PDF. The likelihood term is

Pð�Z ¼ �zjh1 ¼ tÞ ¼ Ctz1
1� t

2

� �n�z1

; (3)

where C ¼ Cðnþ1ÞY3

1

Cðzjþ1Þ

, and marginal probability is
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Pð�Z ¼ �zÞ ¼
X3

j¼1

ð1

1
3

Pð�Z ¼ �zjhj ¼ tÞfhj
ðtÞdt

¼ C
X3

j¼1

ð1

1
3

tzj
1� t

2

� �n�zj

fhj
ðtÞdt:

(4)

The proof is given in Supplementary Material online. Q is in
the species tree iff h1 >

1
3; thus, with Lemma 1 and a prior we

can compute the PP.

Prior
In absence of extra reliable information about the species tree
topology, which is the most common scenario, the use of an
uninformative prior is justified. An uninformative prior would
require that the three topologies are equally likely

i:e:; P h1 >
1
3

� �
¼ P h2 >

1
3

� �
¼ P h3 >

1
3

� �
¼ 1

3

� �
. Based

on Theorem 3.3 from Stadler and Steel (2012), we can prove
(see Supplementary Material online):

Lemma 2

If the species tree is generated using the Yule process with
rate k, branch lengths are exponentially distributed, and for
t � 1

3:

fhj
ðtÞ ¼ k 3

1� t

2

� �2k�1

: (5)

We use (5) throughout the paper as the prior (k ¼ 1
2 gives

a flat prior). Note that we need that branch lengths in coa-
lescent units follow properties of the Yule process; this can be
achieved if lengths measured by the number of generations
follow the Yule process and Ne is constant for all branches.

Local PP
We now conclude

Theorem 1

Given (1) a set of n gene trees generated by the MSC on a
model species tree generated by the Yule process with rate k
and (2) an internal branch represented by a quadripartition Q
where the four clusters around Q are each present in the
species tree, let �z ¼ ðz1; z2; z3Þ be the average quartet fre-
quencies around Q (where z1 corresponds to the topology of
Q); the local PP that the species tree has the topology given by
Q is:

PðQj�Z ¼ �zÞ ¼ hðz1Þ
hðz1Þ þ 2z2�z1 hðz2Þ þ 2z3�z1 hðz3Þ

(6)

for hðxÞ ¼ Bðxþ 1;n� xþ 2kÞð1� I1
3
ðxþ 1;n� xþ 2kÞÞ.

Here, Bða;bÞ is the beta function, and Ix is the regularized
incomplete beta function.

Proof (sketch). With locality assumption, �Z follows a mul-
tinomial distribution with parameters ðh1; h2; h3Þ. Lack of
anomaly zones for unrooted quartets, shown by Allman
et al. (2011) means that Q is in the species tree iff h1 >

1
3.

Thus, by Lemma 1 we can use (2), (3), and (4) to compute the

local PP of Q. By the assumption that (coalescent unit) branch
lengths in the species tree are generated by the Yule process,
and by Lemma 2, our prior becomes the equation shown in
(5). Calculation of (6) follows from manipulating (2), (3), and
(4), as detailed in the Supplementary Material online.

Examples
The local PP is a function of the number of genes and the
quartet frequency of a branch. As figure 2 shows, a
branch that appears in 40% of gene trees has a low
66.1% PP if 50 gene trees given (and alternative topolo-
gies are equally frequent); however, with 200 or 500
genes, the same branch will have 93.0% or 99.7% PP,
respectively. Thus, a high discordance branch where
60% of genes do not agree with the species tree can still
be resolved with high confidence given enough genes.
Moreover, the PP is affected not just by the frequency of
the topology being scored, but also by the frequency of
the two alternatives. For example, if our branch of inter-
est appears in 40% of gene trees, but a second alternative
appears in three-quarters of the remaining genes (i.e.,
45% of genes), the branch with 40% frequency has only
a 1.90% PP (fig. 2).

Calculation of Branch Length
Given the true parameter h for a correct branch, its length in
coalescent units (Degnan and Rosenberg 2006) is simply
�ln 3

2 ð1� hÞ. Thus, we can prove (see Supplementary
Material online):

Theorem 2

Under conditions of Theorem 1, and assuming the branch
represented by Q is in the species tree, the ML estimate for its

FIG. 2. The local PP of a branch as a function of its normalized quartet
support for varying numbers of genes. Red lines: alternative topolo-
gies have equal frequencies (thus, conform to properties of the MSC
for x > 1/3); Blue lines: alternative topologies do not have equal
frequencies (contrary to the MSC).
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length is �ln 3
2 1� z1

n

� �
and the MAP estimate is �ln 3

2

1� z1

nþ2k

� �
when z1 � n

3 and z1 � nþ2k
3 , respectively; other-

wise, ML¼MAP¼ 0.

Calculation of Quartet Support
We now discuss how �z defined in (1) can be efficiently com-
puted. Note that in the worst case, there can be Hðl4Þ quar-
tets around a single branch. Thus, simply enumerating all nij

values and then getting the average can be very slow.
As noted before, each quartet around Q has each of its four

leaves drawn from a different cluster of Q. Recall also that
internal nodes of a tree produce a tripartition, and as Mirarab,
Reaz, Bayzid, et al. (2014) pointed out, any selection of two
leaves from one side of the tripartition and one leaf from each
remaining side gives a quartet tree mapped to that triparti-
tion (fig. 1). Let wðQÞ and wðRÞ give the set of quartet trees
around a quadripartition and mapped to a tripartition, re-
spectively. Any quartet tree around Q that is induced by a
gene tree will be mapped to two internal nodes in that gene
tree (fig. 1). Thus,

z1 ¼
1

2m

Xn

g¼1

Xl�2

u¼1

jwðRg
uÞ \ wðQÞj; (7)

where Rg
u is a tripartition for node u in the gene tree g, and m

is the number of quartets around Q.
We can efficiently compute the number of quartet topol-

ogies around Q that appear also in a tripartition R (i.e.,
jwðRg

uÞ \ wðQÞj) without computing wð:Þ sets. We define
a mapping between clusters around Q to clusters in R: map
two sister clusters in Q to a cluster in R, and map the remain-
ing two clusters in Q to the remaining two clusters in R (fig. 1).
For example, let Q ¼ ABjCD and R ¼ XjYjZ; a possible
matching is to map A and B to Y, C to X, and D to Z.
There are 12 such matchings between Q and R. For each
matching, we can compute the number of quartet trees
around Q that appear in R by multiplying the sizes of the
intersection of pairs of clusters in Q and R that are mapped to
each other. By enumerating all 12 matching and summing the
resulting numbers, we get jwðRg

uÞ \ wðQÞj. Since finding
the intersection of two clusters requires HðlÞ, computing
(7) would require Oðl2nÞ running time. However, we
can do better. Mirarab and Warnow (2015) have introduced
a HðnlÞ algorithm to compute a sum similar to (7) for scoring
a tripartition, based on a post-order traversal of gene trees
(instead of analyzing each Rg

u separately). This algorithm can
be adopted here to compute (7) in HðnlÞ (see supplementary
fig. S14, Supplementary Material online for the algorithm).
Since scoring a tree requires scoring l� 3 branches,

Theorem 3

Computing branch lengths and local posterior probabili-
ties of a tree requires Hðl2nÞ time.

Other Considerations
We implemented our methods in ASTRAL, using the Colt
(Hoschek 2002) package for numerical computations.
Handling missing data and unresolved gene trees requires

extra care. When gene trees have missing data, to compute
(7), instead of setting m to the number of quartets around Q,
we need to set it to the average number of quartets present in

gene trees (i.e., 1
n

X3

1
zj). Moreover, missing data can cause

some genes to miss all quartets around Q; to account for this,
we allow a different n for each branch, and set it to the
number of genes that include at least one of the quartets
around Q. To handle unresolved gene trees, similar to
ASTRAL-II, we need to score the quadripartition against all

d

3

 !
tripartitions around a polytomy with degree d.

Materials and Methods

Datasets
We use both simulated and biological datasets.

Simulated Data
We use two sets of simulated datasets from previous publica-
tions: the 200-taxon dataset (called A-200 here) from Mirarab
and Warnow (2015) and an avian dataset with 48 taxa from
Mirarab, Bayzid, Boussau, et al. (2014). A-200 enables us to test
accuracy under heterogeneous conditions with many species,
and the avian dataset is used to compare local posterior
against MLBS. For both datasets, gene trees are simulated us-
ing the MSC, and their branch lengths are then adjusted to be
in substitution units and to deviate from the strict molecular
clock. Sequence data are next simulated on the modified gene
trees using GTRþC, and ML gene trees are estimated from
the data. On the avian dataset, bootstrapped gene trees are
also available. For both datasets, in addition to true species
trees, we have estimated species trees (ASTRAL and NJst on
estimated gene trees, and concatenation using ML). We show
results for ASTRAL and true species tree here and show the
rest in the Supplementary Material online.

A-200. The 201-taxon datasets (200 ingroups plus an out-
group, treated like other taxa here) are simulated using
SimPhy (Mallo et al. 2015), and has three levels of ILS (table 1),
with true discordance that ranges from very low to very high
(supplementary fig. S1, Supplementary Material online). Each
replicate of the simulation has its own species tree, and the
ILS level is controlled by changing the tree length (500k, 2M,
and 10M generations). Mirarab and Warnow (2015) gener-
ated species trees using the Yule process with two speciation
rates (10�6 and 10�7 per generation) for each tree length, but
here we combine the two rates into one dataset to get twice
the number of replicates. SimPhy automatically introduces
deviation from the strict clock by drawing species, gene,
and gene/species-specific rate multipliers from predefined
distributions. Similarly, the number of sites for each gene is
randomly chosen; see Mirarab and Warnow (2015) for details.
ML gene trees are estimated using FastTree-II (Price et al.
2010), with a wide range of estimation error (table 1 and
supplementary fig. S1, Supplementary Material online).
Species trees are estimated based on all 1,000 genes per rep-
licate, or on subsets of 200 or 50 genes. The ASTRAL species
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trees error for various datasets ranges between average 3%
and 19% (table 1).

Avian. The avian dataset has 48 taxa, and is simulated to
emulate the whole-genome dataset of Jarvis et al. (2014),
possibly overestimating the true amount of ILS (Gatesy and
Springer 2014; Mirarab, Bayzid, Boussau, et al. 2014). Here, we
use four conditions, with 20 replicates that each includes
1,000 genes, all simulated based on the same avian-like species
tree. Our four conditions differ in terms of the number of sites
per gene (250, 500, 1,000, or 1,500 bp), creating varying levels
of gene tree estimation error (table 1). ML gene trees are
estimated using RAxML (Stamatakis 2014), and 200 replicates
of bootstrapping are performed. Average ASTRAL species tree
error ranges from 5% to 15%, depending on the gene tree
error (table 1). We used site-only MLBS to get BS support
values. A single branch in our true tree was extremely short
(almost a polytomy, with a length of 10–6). When discussing
branch length accuracy, we ignore that branch; results includ-
ing that branch will also be shown for completeness.

Biological Dataset. We reanalyze four published datasets: a
103-taxon 424 gene plant dataset by Wickett et al. (2014), a
46-taxon 310 gene angiosperm dataset by Xi et al. (2014), a
48-taxon 2022 (binned) supergene tree dataset by Jarvis et al.
(2014), and a 201-taxon 256 gene avian dataset by Prum et al.
(2015).

Evaluation Procedure
We study three questions in our evaluation:

(1) How accurate are branch lengths and support values
when assumptions of our model are met?

(2) How do violations of the model assumptions impact
the result?

(3) How do local posterior probabilities compare to site-
only MLBS?

To answer these questions, we use both true gene trees
and estimated gene trees to score both true and estimated
species trees. For every internal branch in the species tree
being scored, we also score its two alternative topologies.
For example, if branch ABjCD (fig. 1) appears in the species
tree, we also score ADjBC and ACjBD. In our estimations, we

use the Yule prior with fixed k ¼ 1
2, but note that the true k in

our A-200 simulations ranges from 0.06 to 1.19.
With true species trees and true gene trees, all model as-

sumptions are met. When estimated gene trees are used in-
stead of true gene trees, we violate the assumption that input
gene trees follow properties of the MSC model. When esti-
mated species trees are scored, the locality assumption is
potentially violated (i.e., each of the four clusters around a
branch may be incorrect).

Measurement

Posterior
Despite the long-standing debate about correct interpreta-
tions of various measures of support (e.g., Felsenstein and
Kishino 1993; Hillis and Bull 1993; Susko, 2009; Salichos and
Rokas 2013), biologists typically use support to judge branch
reliability. A common practice is to ignore branches below a
certain threshold of support and only interpret the remaining
branches as biologically meaningful (0.95 for posterior and
70% for bootstrap are often used). Our evaluation procedure
takes a similar approach; we use varying thresholds of support
and count the number of true and false branches with sup-
port at least equal to the threshold. For a threshold s, the
measures we use are precision (the percentage of branches
with support � s that are correct), recall (the percentage of
all true branches that have support � s), and false positive
rate (FPR) (the percentage of all false branches that have
support � s). We also draw the ROC curve (i.e., recall versus
FPR).

MLBS and posteriors values are not directly comparable.
Therefore, it is pointless to compare the precision or recall of
MLBS and posterior for a given threshold. Instead, we use the
ROC curve, which is agnostic to the exact interpretation of
the threshold; it simply shows which method results in a
better trade-off between false negative and false positive
branches. Moreover, comparing to MLBS was only feasible
on the avian dataset, where gene bootstrapping was doable.
On the A-200 dataset (300 replicates each with 1,000 genes of
201 taxa) bootstrapping was not computationally feasible.

Branch Length
We measure branch length accuracy by comparing true and
estimated lengths for each branch. Since this can be done
only for correct branches, we measure branch length accuracy
for the true species tree topology. Given b branches, and
letting wi and ŵi indicate the true and estimated branch
lengths, we use the logarithmic (log) error defined as
1
b

Xb

1
jlog 10ðwiÞ � log 10ðŵiÞj. We also plot log of estimated

versus true values. In addition, we show the root mean

squared error, defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
b

Xb

1
ðwi � ŵiÞ2j

q
. On Avian

datasets, we compare the error of MP-EST and ASTRAL.

Table 1. Properties of Simulated Datasets.

Cond. L n R ILS GE SE

A-200 Low-ILS 201 1,000 100 15% 25% 6%, 4%, 3%
A-200 Med-ILS 201 1,000 100 34% 31% 9%, 6%, 4%
A-200 High-ILS 201 1,000 100 69% 47% 19%, 10%, 6%
Avian 1,500 bp 48 1,000 20 47% 31% 5%
Avian 1,000 bp 48 1,000 20 47% 39% 6%
Avian 500 bp 48 1,000 20 47% 54% 8%
Avian 250 bp 48 1,000 20 47% 67% 15%

NOTE.—l, number of species; n, maximum number of genes (A-200 also has 50 and
200); R, number of replicates; ILS, average normalized RF (Robinson and Foulds
1981) distance (AD) between the true species tree and true gene trees; GE, AD
between true and estimated gene trees; SE, AD between true and ASTRAL species
trees (for A-200, with 50, 200, and 1,000 genes, respectively).
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Results

A-200 Dataset
Posterior

True Trees. When true species trees are scored with true gene
trees, the precision of branches with 0.99 pp or higher is 100%
for all model conditions, and is at least 99.8% for the 0.95
threshold (table 2). Thus, there are very few false positive
branches that have high local pp, a trend that continues if
we further lower the threshold to 0.9 (supplementary fig. S2,
Supplementary Material online). With the 0.95 threshold, the
percentage of true branches that are recovered (recall) ranges
from very high (98.7%) for the model condition with low ILS
and 1,000 gene trees to moderate (55.0%) for the most chal-
lenging dataset with high ILS and only 50 genes (table 2). As
desired, increasing ILS and reducing the number of genes both
reduce the recall while maintaining high precision (supple
mentary fig. S2, Supplementary Material online).

Estimated Gene Trees. When true species trees are scored on
estimated gene trees instead of true gene trees, precision
slightly drops from 100% to between 98.4% and 99.8%. The
recall, however, is impacted more and is reduced by as much
as 10% (table 2 and supplementary fig. S2, Supplementary
Material online). Thus, gene tree estimation error has a small
impact on the precision but a substantial impact on the recall.

The impact of the threshold is also interesting. Going from
the 0.99–0.95 threshold, as expected, recall improves (e.g.,
from 39% to 48% for high ILS, 50 genes) but reductions in
the precision are very small (at most 0.3%). Thus, a 95%
threshold results in meaningful improvements in the recall
without substantially sacrificing the precision. The ROC
curves (fig. 3B and supplementary S2, Supplementary
Material online) further explore the tradeoff between increas-
ing recall and allowing false positive branches.

Estimated Species Trees. By scoring estimated species trees we
study the impact of violating the locality assumption. We
show results for ASTRAL here, but similar results are obtained
with NJst and concatenation (supplementary figs. S2 and S4,
Supplementary Material online).

Precision and recall are remarkably similar between
ASTRAL and true species trees, especially with estimated

gene trees (table 2). Comparing true species trees and
ASTRAL on estimated gene trees, the precision is reduced
at most by 0.6% while the recall is surprisingly increased, by
up to 2.9%. The impact of violating locality assumptions is
more pronounced when true gene trees are used. Once again,
precision is reduced (by as much as 1.4%) and the recall is
increased (up to 4.7%). Thus, moderate violations of the lo-
cality assumption have minimal impact.

We note that in our analyses, deviations from the locality
assumption are moderate but realistic, as most ASTRAL trees
have a relatively high accuracy (table 1). The least accurate
ASTRAL trees have 19% RF distance to the true species tree
(50 genes and high ILS), which means 81% of the clusters in
the estimated tree remain correct. Nevertheless, it is interest-
ing that violating the locality assumption for up to 19% of
clusters has minimal impact on the precision and positive
impact on the recall.

Branch Length
The accuracy of branch lengths is dramatically impacted by
gene tree estimation error, the number of genes, and the
amount of ILS (table 3). With 1,000 true gene trees, the log-
arithmic error is very low, ranging from 0.03 to 0.10 (which
correspond to branches that on average are, respectively, 7%
or 25% shorter or longer than true branches). As the number
of genes is reduced, the logarithmic error predictably goes up,
but with true gene trees, it never exceeds 0.25. Moreover, with
true gene trees, the error is largely unbiased, except perhaps
for very short or long branches that are hard to estimate
correctly with a limited number of genes (fig. 4 and supple
mentary figs. S7 and S8, Supplementary Material online).

Branch length error dramatically increases when estimated
gene trees are used. Low ILS conditions are impacted the
most by gene tree error (table 3 and supplementary fig. S7,
Supplementary Material online). For example, with 1,000 es-
timated gene trees and low ILS, log error is 0.42, correspond-
ing to estimated branches that are on average 2.6 times too
short or long. Moreover, the error is biased towards underes-
timation, especially for low ILS (fig. 4, and supplementary figs.
S7 and S8, Supplementary Material online). This pattern is not
surprising because as we will show, gene tree error tends to

Table 2. Precision (and Recall) of Local Posterior Probabilities on A-200 Dataset.

n True species tree ASTRAL species tree

True gene tree Estimated gene tree True gene tree Estimated gene tree

0.99 0.95 0.99 0.95 0.99 0.95 0.99 0.95

Low ILS 1,000 100.0 (98.3) 100.0 (98.7) 98.6 (94.6) 98.4 (95.4) 98.8 (98.4) 98.8 (98.8) 98.0 (95.1) 97.8 (95.9)
Low ILS 200 100.0 (95.9) 100.0 (96.8) 99.1 (90.2) 98.9 (91.9) 98.9 (96.2) 98.8 (97.1) 98.7 (90.6) 98.5 (92.4)
Low ILS 50 100.0 (91.1) 100.0 (93.2) 99.6 (81.0) 99.3 (85.0) 98.7 (91.6) 98.6 (93.6) 99.4 (81.6) 99.0 (85.6)
Med ILS 1,000 100.0 (95.1) 100.0 (96.2) 98.9 (90.8) 98.7 (92.4) 99.3 (95.4) 99.2 (96.6) 98.6 (91.2) 98.4 (92.8)
Med ILS 200 100.0 (89.2) 100.0 (91.3) 99.4 (82.6) 99.2 (85.7) 99.4 (90.0) 99.4 (92.1) 99.3 (83.3) 99.0 (86.5)
Med ILS 50 100.0 (79.0) 99.9 (83.2) 99.7 (70.0) 99.5 (75.2) 99.4 (81.0) 99.2 (85.2) 99.7 (71.3) 99.5 (76.6)
High ILS 1,000 100.0 (83.0) 100.0 (86.0) 99.4 (77.5) 99.2 (81.3) 99.7 (84.2) 99.6 (87.1) 99.4 (78.3) 99.2 (82.1)
High ILS 200 100.0 (67.3) 100.0 (72.8) 99.8 (60.3) 99.6 (66.6) 99.8 (69.6) 99.7 (75.1) 99.8 (61.9) 99.6 (68.3)
High ILS 50 100.0 (46.0) 99.8 (55.0) 99.8 (38.6) 99.6 (47.7) 99.8 (50.0) 99.4 (59.7) 99.8 (41.1) 99.6 (50.6)

NOTE.—For local PP thresholds 0.95 and 0.99, we show the precision and recall (shown parenthetically) when true or ASTRAL species trees are scored with true or estimated gene trees.
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increase observed gene tree discordance and branch lengths
are a function of observed discordance.

Avian
On the avian dataset, we compare local posterior probabilities
against branch support generated using site-only MLBS with
estimated gene trees and ASTRAL species trees. Here, we also
study the impact of increasing levels of gene tree estimation
error by decreasing the number of sites per gene from
1,500 bp to 250 bp.

Posterior and MLBS
The precision of local PP is 100% for the 0.99 threshold, re-
gardless of the numbers of sites, but the recall ranges from

81% for the 1,500 bp model condition to 69% for 250 bp
(supplementary table S1 and figs. S5 and S6, Supplementary
Material online). Precision is at least 99.8% for the 0.95 thresh-
old, and the recall is between 71.5% and 84.7%, depending on
the model condition (an improvement of 2–5% compared
with the 0.99 threshold). Lowering the support threshold all
the way to 0.7 still retains at least 99.1% accuracy and in-
creases the recall to between 78.3% and 91.4%. Therefore, the
local posterior probabilities allow very few false positives with
high support but also miss some true positives (and thus may
be conservative).

Nevertheless, local posterior probabilities are less conser-
vative than MLBS support values and have better recall. As

A

B

FIG. 3. Evaluation of local PP on the A-200 dataset with ASTRAL species trees. See supplementary figures S2–S4, Supplementary Material online for
other species trees. (A) Precision and recall of branches with local PP above a threshold ranging from 0.9 to 1.0 using estimated gene trees (solid) or
true gene trees (dotted). (B) ROC curve (recall vs. FPR) for varying thresholds (figure trimmed at 0.4 FPR). Columns show different levels of ILS.
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the ROC curves show (fig. 5), for the same number of
false positives branches, local posterior probabilities result in
better recall than MLBS. This pattern is more pronounced
for shorter alignments, which have increased gene tree
error. For example, for the 250 bp model condition, if we
choose a support threshold that results in 0.01 FPR, with local
posterior values, we still recover 84% of correct branches,
whereas with MLBS, the same FPR results in retaining
70% of correct branches. Thus, for a desired level of precision,
better recall can be obtained using local posterior
probabilities.

Branch Length
Branch length accuracy on the avian dataset was a function of
gene tree estimation error whether ASTRAL or MP-EST was
used (table 4). With true gene trees, branch length log error

FIG. 4. Branch length accuracy on the A-200 dataset with Medium ILS. See supplementary figures S7 and S8, Supplementary Material online for
low and high ILS. The estimated branch length is plotted against the true branch length in log scale (base 10). Blue line: a fitted generalized
additive model with smoothing (Wood 2011).

Table 3. Branch Length Accuracy on the A-200 Dataset.

Dataset n Log Err RMSE

True gt Est. gt True gt Est. gt

Low ILS 1,000 0.10 0.42 5.57 6.75
Low ILS 200 0.16 0.44 6.22 6.99
Low ILS 50 0.25 0.48 6.84 7.29
Med ILS 1,000 0.03 0.20 0.22 0.86
Med ILS 200 0.07 0.22 0.44 0.91
Med ILS 50 0.13 0.26 0.74 1.05
High ILS 1,000 0.06 0.15 0.03 0.13
High ILS 200 0.11 0.18 0.07 0.15
High ILS 50 0.18 0.24 0.14 0.19

NOTE.—Logarithmic error (Log Err) and RMSE are shown for true species trees
scored with true gene trees or estimated gene trees (Est. gt).

250 500

1000 1500

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
False Positive Rate

R
ec

al
l

MLBS Local PP

FIG. 5. ROC curve for the avian dataset based on MLBS and local PPPP
support values. Boxes show different numbers of sites per gene (con-
trolling gene tree estimation error).
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was only 0.06, corresponding to branches that are about 14%
shorter or longer than the true branch. As gene tree estima-
tion error increases with reduced number of sites (see table 1
for gene tree error statistics), the branch length error also

increases. Thus, while 1,500 bp genes give 0.17 log error,
250 bp genes result in 0.59 error, which corresponds to
branches that are on average 3.9 times too short or long.
Moreover, unlike true gene trees, the error in branch lengths
estimated based on estimated gene trees is biased toward
underestimation (fig. 6), a pattern that increases in intensity
with shorter alignments.

ASTRAL and MP-EST have similar branch length accuracy
measured by log error for highly accurate gene trees, but
ASTRAL has an advantage with increased gene tree error
(supplementary fig. S10, Supplementary Material online and
table 4). Error measured by root mean squared error (RMSE)
(which emphasizes the accuracy of long branches) is compa-
rable for the two methods, but MP-EST has a slight advantage
given accurate gene trees.

Biological Datasets
For each biological dataset, we show MLBS support and the
local posterior probabilities, computed based on RAxML gene
trees available from respective publications. We also collapse
gene tree branches with <33% bootstrap support and use
these collapsed gene trees to draw local posterior probabili-
ties. For ease of discussion, we show local posterior probabil-
ities as percentages and refer to them simply as posterior or
collapsed posterior (for values based on collapsed gene trees).
We discuss the confidence in important branches in each
tree.

1KP. Three of the key relationships studied by Wickett et al.
(2014) are the sister branch to land plants, the base of the
angiosperms, and the relationship among Bryophytes (horn-
worts, liverworts, and mosses). In the ASTRAL tree, many
branches have full support regardless of the measure of the
support used, but the remaining branches reveal interesting
patterns (fig. 7). The sister relationship between
Zygnematales and land plants receives a moderate 80% BS,
but has 100% posterior. Wickett et al. (2014) also recovered
this relationship by concatenation of various data partitions.
There are 12 other branches that have collapsed posteriors
that are at least 10% higher than BS (fig. 7); no branch has
substantially higher BS than collapsed posterior. Collapsed
posterior for monophyly of Bryophytes and for Amborella
as sister to other angiosperms are 100% (compared with
97% and 93% BS, respectively).

When we collapse low-support branches in gene trees,
posterior goes up for several branches: nine branches have
improvements of 10% or more, and only two branches have
comparable reductions. An interesting case is Coleochaetales
as sister to Zygnematalesþ land plants, which has only 62%
BS and 61% posterior, but has 100% collapsed posterior.
Finally, note that several branches have low posterior, even
after collapsing.

Our estimated branch lengths are short for several nodes.
For example, the branch that unites (Chloranthalesþ
Magnoliids) and Eudicots has a length of 0.14 in coalescent
units. Other branches that have been historically hard to re-
cover also tend to have short branches; however, these are
not necessarily extremely short branches that would

FIG. 6. ASTRAL branch length accuracy on the avian dataset. Log
transformed estimated branch lengths are shown versus true branch
lengths, and a generalized additive model is fitted to the data. One
branch with length 10�6 is trimmed out here, but full results, includ-
ing MP-EST, is shown in supplementary figure S9, Supplementary
Material online.

Table 4. Branch Length Accuracy for the Avian Dataset.

No. of sites Log Err RMSE

ASTRAL MPEST ASTRAL MPEST

True gt. 0.06 (0.10) 0.07 (0.11) 0.44 (0.44) 0.30 (0.30)
1,500 0.17 (0.20) 0.14 (0.18) 0.83 (0.83) 0.70 (0.70)
1,000 0.22 (0.27) 0.22 (0.25) 1.08 (1.07) 1.01 (1.00)
500 0.37 (0.42) 0.42 (0.46) 1.65 (1.64) 1.65 (1.64)
250 0.59 (0.63) 0.81 (0.84) 2.25 (2.24) 2.28 (2.26)

NOTE.—Logarithmic error and root mean squared error are shown for true species
trees scored with true gene trees or estimated gene trees with various numbers of
sites using ASTRAL and MP-EST. An extremely short branch with length 10�6 was
removed from the calculations, but error including that branch is shown
parenthetically.
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implicate anomaly zone [two adjacent branches below
0.1 will result in an anomaly zone (Rosenberg 2013)]. For
example, Bryophytes had a length of 0.29, and
Zygnematalesþ land plants had a length of 0.28. These val-
ues, while short, are not below the often-cited 0.1 threshold.
Moreover, as our simulation study showed, we caution that

branch lengths tend to be underestimated because of gene
tree error and these numbers should be treated as lower
bounds.

Angiosperms. Xi et al. (2014) have used 310 genes to study the
base of the angiosperm tree, a question of intense debate (e.g.,

FIG. 7. ASTRAL tree on the 1KP dataset of Wickett et al. (2014) (103 taxa and 424 genes). On each branch, three support values are shown: BS (using
site-only MLBS), local posterior computed on fully resolved ML gene trees, and local posterior computed on collapsed ML gene trees (removing
branches with <33% BS). Branches with no designation have 100% support with all three measures. Dotted/green lines (dashed/red lines):
collapsing low support gene trees branches increases (decreases) posterior by at least 10%. Bold: collapsed posterior is at least 10% higher than BS.
Inset: ASTRAL tree with branch lengths in coalescent units using collapsed genes (terminals lengths drawn arbitrarily). Pie-charts (for selected
edges): relative frequencies of the three quartet topologies around a branch in collapsed gene trees.
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Soltis et al. 2011; Zhang et al. 2012; Goremykin et al. 2013;
Simmons and Gatesy 2015). Unlike the MP-EST tree by Xi
et al. (2014), but similar to concatenation on this dataset and
ASTRAL and concatenation on 1KP, the ASTRAL tree re-
covers Amborella as sister to the rest of the angiosperms.
This relationship has 75% BS, but it’s posterior and collapsed
posterior are 100% (supplementary fig. S11, Supplementary
Material online). The length of this branch is estimated to be
0.160, almost exactly matching the length estimated on the
1KP dataset (0.156).

Avian (Genomes). Jarvis et al. (2014) used whole-genomes of
48 bird species to resolve long-standing questions about re-
lationships at the base of Neoaves. We reanalyzed their 2,022
supergene trees (binned gene trees; see Mirarab, Bayzid,
Boussau, et al. 2014) using ASTRAL, which produced a tree
with a wall of short branches at the base of Neoaves (supple
mentary fig. S12, Supplementary Material online); 12 branches
are below 0.1 coalescent units, and another 11 are below 0.5.
However, when low-support branches in gene trees were col-
lapsed, branch lengths increase by a median of 0.23 units.
Nevertheless, 11 branches remain below 0.1, and another
four branches are below 0.5. Our results support the hypoth-
esis that avian big bang. Feduccia (2003) gave rise to very
short branches, but quantifying the exact lengths remains
difficult because of gene tree error.

Support values on the avian tree also revealed interesting
patterns. Despite the large number of supergene trees (2,022),
which should increase support (fig. 2), several key branches
have low posterior. For example, the position of Hoatzin (ar-
guably, the most difficult avian order to place) and the two
branches around it have collapsed posterior below 50% and
posterior below 75% (supplementary fig. S12, Supplementary
Material online). Similarly, at the base of Neoaves, a clade
containing land birds, water birds, and Caprimulgiformes
has full support, but the sister to this large group has only
61% posterior and 80% collapsed posterior. However, other
challenging relationships have full support (e.g., falcons as
sister to parrotsþ passerines, and seriema as sister to this
group, or a clade containing owls, eagles, and vultures).
Thus, despite large number of input trees, posterior proba-
bilities reveal some uncertainty. Finally, on this dataset, unlike
the 1KP dataset, four branches have substantially lower pos-
terior compared with BS, and posteriors are higher than col-
lapsed posteriors in some cases.

Avian (High Sampling). Prum et al. (2015) used their dataset
of 259 genes and 201 species to study the avian tree with high
taxon sampling. The ASTRAL tree reported by Prum et al.
(2015) has low MLBS (supplementary fig. S13, Supplementary
Material online), and many branches remain poorly sup-
ported with posterior probabilities (the median difference
between BS and collapsed posterior was 0). Moreover,
many of the most interesting relationships are poorly sup-
ported. For example, the sister to parrotsþ passerine has only
30% MLBS support, 83% local posterior support, and 0%
collapsed posterior. These low support values are encouraging
because the sister to parrotsþ passerine is likely recovered
incorrectly in this tree, as most recent studies put falcons as

sister to this group (Suh et al. 2011; Kimball et al. 2013;
McCormack et al. 2013; Jarvis et al. 2014). Overall, despite
its large taxon sampling, this dataset provides little resolution
for the early Neoaves radiation using ASTRAL because of the
insufficient gene count for this high level of ILS. Just like the
avian genomic data, here we obtain a wall of short branches
around the assumed rapid radiation of Neoaves (supplemen
tary fig S13, Supplementary Material online).

Discussions
The local posterior probabilities introduced in this article can
be computed quickly and without a need for extensive
MCMC sampling or bootstrapping. Computing posteriors
for a species tree with 200 taxa and 1,000 genes takes only
10 s and for a dataset with 1,000 taxa and 1,000 genes, takes
about 3 min on a laptop machine. This extremely fast com-
putation is possible only because of the two main assump-
tions of the method: that true MSC-generated gene trees are
given and the locality assumption (i.e., the four clusters
around each internal branch are present in the true tree).
These assumptions can both be violated on real data.
Recognizing this fact, our simulations include conditions
that violate these two assumptions by introducing plenty
of gene tree estimation error (ranging from average RF dis-
tance of 25–67%) as well as species tree error (table 1 and
supplementary fig. S1, Supplementary Material online).

Our method allows very few false positives with high sup-
port, a pattern that is retained even with high levels of gene
tree estimation error. It could be argued that our method is
perhaps too conservative and underestimates support.
Nevertheless, local posterior probabilities were less conserva-
tive than MLBS, the only viable alternative for large datasets.
Despite allowing very few false positives with high support,
the method generally had high recall (i.e., true branches with
high support) except for very few genes for a given amount of
ILS. Reassuringly, increased gene tree estimation error only
negatively impacted recall but retained very high precision.
While underestimation of support is not desirable, the abun-
dance of false branches with high support would be a more
serious problem.

A practical question is at what threshold of support a
branch can be judged reliable. The answer depends on factors
such as the FPR desired and the amount of gene tree error.
Nevertheless, it seems that the commonly used 0.95 threshold
results in very high precision while retaining moderately high
recall. In our analyses, even lower thresholds (e.g., 0.9 or even
0.7) give high precision, while increasing the recall.

Gene Tree Estimation Error
An interesting pattern was that with estimated gene trees
(but not with true gene trees), at a given threshold, support
values are more precise for high ILS compared to low ILS
(fig. 3A). We postulate that this effect is related to the larger
impact that gene tree estimation error has on the total
amount of observed discordance for low ILS compared
with high ILS conditions. Consistent with this explanation,
we also observed a larger degradation of branch length
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accuracy in going from true to estimated gene trees for low
ILS conditions compared with high ILS (table 3).

The issue of gene tree estimation error is at the heart of
why we saw a need for developing this new method. Sets of
site-resampled bootstrap gene trees tend to have increased
levels of discordance with regard to the species tree (and also
among themselves) compared with ML gene trees, especially
when each gene has a limited phylogenetic signal.
Bootstrapped gene trees have much higher rates of discor-
dance than either true gene trees or ML gene trees (fig. 8). It is
expected that bootstrapped replicates of a dataset result in
noisier estimates of parameters than ML; however, the added
error by bootstrapping should not be biased. For MLBS, the
input to the summary method is not just a noisy dataset, but
a biased one with increased levels of discordance. We postu-
late this bias is the reason for the underperformance of MLBS.

Our method, on the other hand, does not require boot-
strapping and uses the best available gene trees (e.g., esti-
mated ML gene trees). While ML gene trees are still biased
toward increased discordance (and hence reduced branch
length), they are better than bootstrapped gene trees
(fig 8). The downside of our approach is that gene tree

uncertainty is not considered directly. Thus, it was reassuring
to see that our method remains precise with high gene tree
estimation error. To account for gene tree estimation error,
one can collapse the most poorly resolved branches in gene
trees when computing support. As we show in our analyses of
biological data, this practice seems promising. However, we
note that when collapsing branches, one should be careful
not to introduce bias, which can happen with aggressive fil-
tering. We choose to collapse branches with support below
33% (which can be considered randomly resolved). Future
work needs to further study the effect of collapsing low-sup-
port branches in gene trees on both branch length and
support.

The impact of gene tree estimation error was most clear
with estimates of the branch length. The branch lengths pro-
duced by our method showed encouraging patterns (e.g.,
consistency across biological datasets); nevertheless, our esti-
mated branch lengths are not immune to underestimation
that is seen often with other summary methods. Thus, we
suggest branch lengths from ASTRAL and other summary
methods should be interpreted with care in the presence of
gene tree estimation error.

High Support Despite High Discordance
An important observation, predicted by the theory but some-
times lost in the scientific debate about discordance, is that
high confidence for a correctly inferred relationship can
emerge even with high levels of discordance. As figure 2
shows, a branch that appears in only 40% of gene trees can
still be resolved with high confidence if a sufficient number of
genes are available (e.g., �500). For example, in the 1KP tree,
the branch that puts Zygnematales as sister to land plants
appeared in only 49% of collapsed gene tree quartets and the
branch making Bryophytes monophyletic only appeared in
50% of them; both branches, however, have a posterior of 1.0.
We have implemented an option in ASTRAL to output the
percentage of gene tree quartets that agree with each of the
three resolutions around a branch. Pie charts in figure 7 give
examples of these relative quartet frequencies.

A question that biologists often face is the number of
genes required to resolve a branch. The number of genes
required to obtain high-resolution and low-FPRs depends
on the model condition. With higher ILS, more genes are
required, an observation that is not surprising. However,
our method can be extended to estimate the number of
genes that might be required to resolve a tree (with an esti-
mated level of ILS).

Limitations and Future Work
Promising approaches for incorporating gene tree uncertainty
into local posterior probabilities exist. For example, one can
weight each gene tree quartet around a branch by its SH-like
support, BS, or advanced measures like concordance (Ané
et al. 2007). Moreover, comparing our method against
Bayesian co-estimation methods on small datasets where
they can run will be interesting. Furthermore, we did not
investigate the impact of changing prior parameters (k);
nor did we explore other prior functions, such as Dirichlet

FIG. 8. Gene tree discordance for the avian dataset. We show the
density plot of the normalized RF distance between the true species
tree and true gene trees, ML gene trees, and BS gene trees for four
different model conditions.
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distributions (conjugate to multinomial) or birth–death pro-
cesses. We leave these for future work.

We violated some but not all assumptions of our method
in the experimental results. The sequence evolution models
used for simulation and inference were both GTRþC, but on
real data, model violations (e.g., compositional bias) can lead
to biased estimates of gene trees. Finally, all our simulated
datasets had discordance that was generated only by ILS and
estimation error, and not other sources of true biological
discordance, such as undetected paralogy or horizontal
gene transfer. Future work should further examine the impact
of other biological sources of discordance on the reliability of
local posterior probabilities.

Supplementary Material
Supplementary table S1 and figures S1–S15 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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