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Introduction

Abstract

The phenotypic variance—covariance matrix (P) describes the multivariate distri-
bution of a population in phenotypic space, providing direct insight into the appro-
priateness of measured traits within the context of multicollinearity (i.e., do they
describe any significant variance that is independent of other traits), and whether
trait covariances restrict the combinations of phenotypes available to selection.
Given the importance of P, it is therefore surprising that phenotypic covariances are
seldom jointly analyzed and that the dimensionality of P has rarely been investigated
in a rigorous statistical framework. Here, we used a repeated measures approach to
quantify P separately for populations of four cricket species using seven acoustic
signaling traits thought to enhance mate attraction. P was of full or almost full
dimensionality in all four species, indicating that all traits conveyed some informa-
tion that was independent of the other traits, and that phenotypic trait covariances
do not constrain the combinations of signaling traits available to selection. P also
differed significantly among species, although the dominant axis of phenotypic
variation (pmay) was largely shared among three of the species (Acheta domesticus,
Gryllus assimilis, G. texensis), but different in the fourth (G. veletis). In G. veletis and
A. domesticus, but not G. assimilis and G. texensis, pmax Was correlated with body
size, while py.x was not correlated with residual mass (a condition measure) in any
of the species. This study reveals the importance of jointly analyzing phenotypic
traits.

ticomponent sexual signals can experience different selec-
tion regimes, female preferences can result in mating signals

Males often use multicomponent sexual signals to attract
mates (Mgller and Petrie 2002; Candolin 2005; Hebets and
Papaj 2005). These signals can be bright, aromatic, or noisy
(Andersson 1994). Females, in turn, often exhibit distinct
preferences for specific components of male sexual signals
(Andersson 1994; Candolin 2005; Hebets and Papaj 2005).
Female preferences for both intermediate and extreme phe-
notypes are common in many anuran and insect mating
systems (Gerhardt 1994b). Preferences for intermediate phe-
notypes result in stabilizing selection, whereas preferences
for extreme male phenotypes result in directional selection
(Paterson 1982, 1985; Butlin et al. 1985; Walker and For-
rest 1989; Gerhardt 1991; Ryan and Keddy-Hector 1992;
Gerhardt 1994a; Gerhardt and Huber 2002). Because mul-

experiencing relatively complex selective landscapes. Under-
standing how signaling components covary can provide in-
sight into whether certain trait combinations are available to
selection.

There is a long history to the idea that relationships among
traits can impose evolutionary constraints (Darwin 1871;
Fisher 1930; Dickerson 1955; Lande 1979; McGuigan and
Blows 2007). The phenotypic variance—covariance matrix
(P) describes the variance—covariance structure of a suite
of phenotypic characters. As such, P helps define the multi-
variate phenotype available to selection (Lande and Arnold
1983; Steppan 1997; Arnold and Phillips 1999; McGuigan
and Blows 2007). The phenotypic variance—covariance struc-
ture is of interest, because it (1) describes the multivariate
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Mating Signal Phenotypic Covariance Structure

distribution of the population in phenotypic space, (2) in-
forms us if the matrix is less than full dimensionality (has
fewer linearly independent dimensions than measured traits),
indicating combinations of traits that do not exist in the
population and are thus unavailable to selection, (3) may
place an upper bound on the dimensionality of the un-
derlying genetic variance—covariance matrix (G) that shapes
and potentially constrains the response to selection, (4) may
provide additional information about the structure of G,
and (5) provides insight into whether the traits are appro-
priately chosen, indicating whether they represent axes of
phenotypic variance that are at least partly independent of
other traits. P matrices can thus provide valuable information
about the phenotypic space of multicomponent signals, pro-
vided they are built using biologically relevant traits. Traits
should be selected to avoid multicollinearity (high correla-
tions among traits; Lande and Arnold 1983; McGuigan and
Blows 2007). Traits should also describe variance that is inde-
pendent from the variance described by other traits (Lewon-
tin 1978; Fristrup 2001; McGuigan and Blows 2007), because
there is no evolutionary information gleaned from traits that
are perfectly correlated with one another. Recent statistical
advances have enabled researchers to explicitly test for ma-
trix dimensionality. Statistically testing for dimensionality of
P can provide insights into whether traits used to character-
ize the phenotype fit the above criteria (McGuigan and Blows
2007).

To date, only one study has explicitly tested the dimen-
sionality of P. McGuigan and Blows (2007) chose 10 traits
representative of aspects of wing size and shape in Drosophila
bunnanda. Using a repeated measures approach, they esti-
mated dimensionality of P and thereby inferred potential
constraints on wing size and shape (McGuigan and Blows
2007). Their P matrices were of full dimensionality, suggest-
ing that selection could, in theory, act upon any combination
of these trait, driving the population toward an adaptive peak
regardless of the position of the optimum. McGuigan and
Blows (2007) intentionally chose traits that would maximize
the probability of observing a P matrix of full dimensional-
ity, and it remains to be seen whether similar results would
be obtained for behavioral instead of morphometric traits.
Comparisons of P across species may also provide under-
standing about how species differ in how they experience
selection and permit tests of the processes underlying phe-
notypic divergence.

We tested the dimensionality of P for a set of behavioral
traits involved in cricket long-distance acoustic mate attrac-
tion. Cricket mating signals have surfaced as an important
model system in evolutionary biology and behavioral ecol-
ogy (Cade 1975; Harrison 1980; Hedrick 1986, 1988; Bertram
2002b; Hunt et al. 2004; Simmons 2005; Bertram et al. 2009;
Bertram et al. 2010; Drayton et al. 2010; Logue et al. 2010;
Rodriguez—Muiioz et al. 2010). We performed repeated mea-
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sures of seven mating signals for replicate individuals across
four species. Six of these traits appear to be indicative of
signaling quality, while the seventh is indicative of signaling
quantity.

Most research on cricket mate signaling has either explored
factors influencing signaling quality (Zuk et al. 1998; Kol-
luru 1999; Wagner and Hoback 1999; Hedrick 2000; Holzer
et al. 2003; Simmons 2004; Judge et al. 2008; Whattam
and Bertram 2011) or factors influencing signaling quantity
(Bertram 2000, 2002a; Bertram and Bellani 2002; Hunt et al.
2004; Orozco and Bertram 2004; Bertram 2007; Judge et al.
2008; Bertram et al. 2009). It is largely unknown whether
signaling quality is correlated with signaling quantity (but
see Bertram et al. 201 1b; Whattam and Bertram 2011). Given
that conspicuous signaling can impose dramatic costs both
in terms of energetic demands and predation risks (Prestwich
and Walker 1981; Prestwich 1994; Hoback and Wagner 1997;
Basolo and Alcaraz 2003), males that can maximize the con-
spicuousness of their mating signals in the face of these
costs are thought to exhibit higher genetic quality (Ander-
sson 1994). Under this honest signaling scenario, males in
good condition might simultaneously maximize several com-
ponents of their signals’ conspicuousness (Rowe and Houle
1996; Cotton et al. 2006). We therefore used a multivari-
ate approach to determine whether signaling traits reflecting
quality are correlated with each other and with signaling traits
reflecting quantity. We also determined whether cricket mat-
ing signals reflect differences in body size and/or condition
because the honest signaling scenario suggests that sexual
signals exhibit condition-dependent expression (genetic cap-
ture hypothesis; Rowe and Houle 1996; Kotiaho et al. 1997;
Tomkins et al. 2004)

To explore the covariances between signaling traits, how
they might be influenced by condition, and how they might
be evolutionarily constrained, we quantified the phenotypic
variance—covariance matrix for each of four cricket species.
Using these P matrices, we were then able to test the following
three hypotheses:

(1) Different species have different P matrices.

(2) P matrices have full dimensionality.

(3) The dominant axis of variation in P (pp,y) is correlated
with body size and/or condition in each species.

We studied European house crickets (Acheta domesticus),
Jamaican field crickets (Gryllus assimilis), Texas field crick-
ets (G. texensis), and spring field crickets (G. veletis) because
these four species are likely to be influenced by different selec-
tive regimes. Gryllus texensis are often stalked by acoustically
orienting parasitoid flies (Tachinidae; Ormia ochracea) and
may experience intense selection to not signal (Cade 1975;
Wineriter and Walker 1990; Robert et al. 1992; Adamo et al.
1995). By contrast, A. domesticus have been reared in captiv-
ity for several decades and therefore may have experienced
very different selection on long-distance signaling compared
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to the three Gryllus species. Gryllus assimilis and G. veletis
likely lie somewhere in the middle of this continuum, as they
are not stalked by O. ochracea, yet they are bound to expe-
rience very different sexual selection than laboratory-reared
A. domesticus.

Material and Methods
Collections and colonies

We collected several hundred adult G. texensis, G. assim-
ilis, and G. veletis from fields in their natural habitats in
2008. Gryllus veletis were collected in May and June in the
Ottawa, Ontario, Canada area. Gryllus texensis and G. as-
similis were collected in September and October in the area
from Austin to Smithville, Texas. All three of these species of
field cricket were visually and acoustically located and then
hand captured between the hours of 2100 and 0200. We ob-
tained A. domesticus from a local breeder in Ottawa, Ontario,
Canada.

Cricket colonies were housed in a greenhouse at Carleton
University, Ottawa, Ontario, Canada. We used laboratory-
reared Gryllus offspring (G. texensis: first and second genera-
tion; G. assimilis: first generation; G. veletis: first generation)
for this experiment. We do not know the number of gener-
ations for which A. domesticus had been in culture prior to
the start of our experiment. Crickets were housed in large
species-specific colonies preceding the start of the experi-
ment. These communal 68 litres plastic containers each had a
10 cm x 15 cm wire-mesh covered hole cut in the lid to pro-
vide light and air. Temperature was controlled at 28 =+ 2°C
(mean =+ SE; range = 24-32°C within each day) and crick-
ets were kept on a 12:12 h light:dark cycle with lights on at
0700 h. All four species were provided with ad libitum pow-
dered food (Harlan Teklad Rodent diet # 8604, Indianapolis,
Indiana, U.S.A.) and water. Food and water were checked
daily and replaced as required. All crickets were also pro-
vided with egg cartons for shelter. Colonies containing sex-
ually mature crickets were provided with moist soil for egg
laying.

At the start of the experiment, we checked the colonies
daily to ensure all newly molted adult males were removed.
Each newly molted adult male was placed individually into
a 500 mL plastic container (11 cm diameter X 7 cm height)
containing 1 fluid ounce (30 mL) plastic cup filled with gravel
and water, a crumpled piece of paper towel for shelter and
1”7 x 1" (2.54 x 2.54 cm) plastic food dish. Crickets were
examined every 2 days to ensure they were still alive and
to replenish their food and water. Males were weighed at
1-week post-eclosion using a Denver Instruments balance
(Pinnacle Series model PI-314; precision = =+ 0.1 mg; Denver
Instruments, Bohemia, New York, U.S.A.).

© 2011 The Authors. Published by Blackwell Publishing Ltd.
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Quantifying mate signaling

Males were placed, still in their individual containers, into
an electronic acoustic recording system (EARs II). A micro-
phone allowed each cricket to have all of its acoustic mate
attraction signals monitored throughout its time in the EARs
II. Each cricket’s microphone was continuously monitored
in real time using a computer program (CricketSong soft-
ware developed for the Bertram laboratory by Cambridge
Electronic Design Ltd., Unit 4, Science Park, Milton Road,
Cambridge, UK). CricketSong analyzed the separate signal-
ing components by calculating the hourly averages for the
following fine-scale temporal and spectral properties: pulse
duration (PD) (ms), interpulse duration (IPD) (ms), pulses
per chirp, chirp duration (CD) (ms), pulse rate (number
of pulses/s), interchirp duration (ICD) (ms), chirp rate
(#chirps/min), carrier frequency (CF) (Hz), and amplitude
(AMP) (dB; Fig. 1; Table 1). CricketSong also determined
each male’s total time spent signaling each hour (min), which
reflects each male’s hourly signaling effort. Each male’s acous-
tic signaling traits were quantified for 24 h a day, over the
entire time that the male spent in the EARs IT (8—14 days post
adult-molt = 7 consecutive days).

During acoustic recording, pulse onset was determined
when the AMP recorded by the microphone passed a species-
specific threshold (e.g., 40.0 dB for G. assimilis). This thresh-
old was also adjusted dynamically by CricketSong to account
for individuals that signal at higher than average AMPs. For
these very loud individuals, the threshold was raised to a
level proportional to the AMP of the pulse and then back to
the original value within 1-8000 ms (the exact rate of decay
was proportional to the size of the pulse, allowing the system
to be self-scaling). For very quiet individuals, the minimum
threshold was manually reset to values below the species-
specific value. For more details of the recording settings and
thresholds, see Fitzsimmons and Bertram (2011).

Each male was acoustically isolated from the others while in
the EARs II. Males were placed in their individual containers
into Styrofoam™ enclosures with 7-cm thick walls lined with
3.5-cm thick acoustic foam. Inside each cricket’s Styrofoam
enclosure (but outside the cricket’s plastic container), a single
light-emitting diode provided each male with the same 12:12
h light:dark cycle under which they were raised.

To calculate daily averages for signaling traits, hourly aver-
ages were weighted by the number of pulses produced in the
hour and then averaged over each 24 h period. In this way,
hours in which males signaled a lot contributed more heav-
ily to the daily average than hours in which males signaled
for only a few seconds. We included this weighting protocol
so that each pulse of sound contributed equally to the daily
averages. Total time spent signaling each day was calculated
by summing the number of minutes spent signaling each
hour. Time spent signaling was averaged across days without
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any form of weighting to calculate average daily time spent
signaling.

To reduce the potential for multicollinearity, we did not
include pulses per chirp and pulse rate in P because these
traits represent linear combinations of other measured traits.
Instead, we utilized only seven signaling traits to calculate the
P matrices (time spent signaling [TSC], PD, IPD, CD, ICD,
CF, and AMP; Fig. 1).

Mate signaling repeatability

We used a Box-Cox transformation in JMP v. 8.0.2 (SAS
Institute, Cary, NC) to normalize time spent signaling. All
other signaling traits were normally distributed. We assessed
within-individual variation in mating signals by quantifying
the repeatability of all signaling traits using the intraclass cor-
relation coefficients following Falconer and Mackay (1996).

Estimating phenotypic variance-covariance
matrices

We estimated individual-level phenotypic variance—
covariance matrices via restricted maximum likelihood
(REML) as implemented in the MIXED procedure of SAS v.
9.2 (SAS Institute, Cary, NC). We employed a repeated mea-
sures approach as described in McGuigan and Blows (2007).
A single, global P matrix (i.e., across all four species) was first
estimated using the following multivariate mixed model:

Yijk =+ L + Rji) + Sk, (1

where Y is the observed signaling trait of replicate measure-
ment R nested within individual I. Fixed effects included the
intercept () and species (S). Because species were coded as
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1.5 Figure 1. Signaling traits of the
long-distance mate attraction signal of
Gryllus assimilis.

a fixed effect, our inferences should be restricted to the four
species included in our study; discussion about other cricket
species is speculative.

Before analysis, the seven signaling traits were individually
standardized (~N(0,1)) globally (i.e., across species). Due
to convergence problems when attempting to estimate an
unconstrained covariance matrix at the individual level (P),
the model was fit via a factor-analytic approach (Kirkpatrick
and Meyer 2004; Hine and Blows 2006), employing three
dimensions at the individual level, which is the maximum
number for which convergence could be obtained, and an
unconstrained variance—covariance matrix at the replicate
level.

As a direct test of Hypothesis 1, that P differ among species,
we used a likelihood-ratio test to compare the fit of the above
model (Equation 1) to one in which separate P matrices were
estimated for each species by employing the “group” state-
ment at the individual level in the SAS MIXED procedure.
P matrices were estimated for each species using Equation
(1), excluding the fixed effect of species (S), fit separately by
species. In these analyses, signaling traits were standardized
(~N(0,1)) separately for each species.

Our repeated measures approach to estimating P required
replicate measures of each trait from every individual. To
record daily mate signaling traits, replicate measures were
taken across a 1 week period and hence at different ages (7—
14 days postimaginal molt). Some or all of these signaling
traits may change within an individual as they age (e.g.,
Bertram 2000; Judge et al. 2008; Fitzsimmons and Bertram
2011; Judge 2011). Age-associated effects would contribute
to variance at the replicate (R), and not individual (I) lev-
els in Equation (1). In addition, there was little evidence of

© 2011 The Authors. Published by Blackwell Publishing Ltd.
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Table 1. Descriptive statistics for all acoustic signal components. Trait abbreviations listed to the right of the trait name.

Mating Signal Phenotypic Covariance Structure

Trait Species N Mean SE cv r F P R?aqj Diff.
Signaling time (min) TSC A. domesticus 17 22.14 1.39 67.74 0.6499 66.76 <0.0001 0.41 A
G. assimilis 85 181.01 16.86 85.90 0.9655 B
G. texensis 35 16.44 4.59 165.38 0.4329 A
G. veletis 51 170.93 18.60 77.70 0.9074 B
Pulse duration (ms) PD A. domesticus 100 14.87 0.46 31.08 0.9836 71.95 <0.0001 0.45 A
G. assimilis 82 9.69 0.16 14.78 0.9574 B
G. texensis 25 7.73 0.27 17.29 0.7381 C
G. veletis 49 15.07 0.23 10.83 0.9452 A
Interpulse duration (ms) IPD A. domesticus 100 63.79 0.63 9.91 0.9408 2197.07 <0.0001 0.96 A
G. assimilis 82 16.19 0.20 11.46 0.9345 B
G. texensis 25 14.53 0.28 9.77 0.8828 B
G. veletis 49 31.62 0.39 8.60 0.8595 C
Chirp duration (ms) CD A. domesticus 100 82.47 0.84 10.22 0.9184 140 <0.0001 0.62 A
G. assimilis 82 114.63 2.16 17.04 0.9431 B
G. texensis 25 450.30 51.99 57.73 0.8604 C
G. veletis 49 121.36 3.1 17.94 0.9660 B
Interchirp duration (ms) ICD A. domesticus 100 1104.04 60.66 54.94 0.9385 72.57 <0.0001 0.46 A
G. assimilis 82 1571.87 52.36 30.16 0.8789 B
G. texensis 25 354.94 27.33 38.50 0.9889 C
G. veletis 49 511.42 24.80 33.94 0.8790 C
Carrier frequency (Hz) CF A. domesticus 100 4502.00 29.17 6.48 0.9330 358.12 <0.0001 0.81 A
G. assimilis 82 3780.25 33.74 8.08 0.9503 B
G. texensis 25 5238.55 44.32 4.23 0.6119 C
G. veletis 49 5309.56 38.75 5.11 0.9556 C
Amplitude (dB) AMP A. domesticus 100 50.54 1.16 22.98 0.9597 67.13 <0.0001 0.44 A
G. assimilis 82 47.22 1.35 25.85 0.8044 A
G. texensis 25 58.16 1.85 15.91 0.6072 B
G. veletis 49 73.91 1.21 11.45 0.8526 C
Pronotum area (mm?) A. domesticus 117 8.64 0.14 16.44 401.76 <0.0001 0.81 A
G. assimilis 85 19.62 0.32 14.91 B
G. texensis 35 18.66 0.56 17.76 B
G. veletis 51 15.47 0.27 12.34 C
Wet mass (mg) A. domesticus 17 253.74 4.38 17.85 150.26 <0.0001 0.63 A
G. assimilis 85 482.19 11.02 20.82 B
G. texensis 35 393.73 17.35 24.93 C
G. veletis 51 431.64 10.56 16.41 C

CV = coefficient of variation; r = repeatability; Diff. = species with different letters are statistically different using post hoc Tukey's test; R?.q =
adjusted R?; SE = Standard Error; F and P = outputs from an analysis of variance.

any directional change in any of the signaling traits across
this 1 week span (S. Bertram, unpubl. results). Estimates
of P also changed little if, in place of an unconstrained
variance—covariance matrix at the replicate level, we instead
employed an autoregressive covariance structure in which
the correlation between two measurements decreased expo-
nentially as the length of time between them increased (H.
Rundle, unpubl. results).

Quantifying dimensionality

To test Hypothesis 2, those P matrices are of full dimen-
sionality, we used factor-analytic modeling to determine the
dimensionality of P within each species. We constrained

© 2011 The Authors. Published by Blackwell Publishing Ltd.

the individual-level variance—covariance matrix to be from
zero through seven dimensions, employing an unconstrained
variance—covariance matrix at the replicate level in all cases. A
series of nested likelihood-ratio tests were used to determine
whether excluding each dimension significantly worsened the
fit of the model (Hine and Blows 2006; McGuigan and Blows
2007).

Comparing phenotypic variance-covariance
matrices among species

Differences among species in phenotypic covariance struc-
ture were characterized via a comparison of the eigen-
structure of P. We employed a formal method of subspace
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comparison of P matrices originally developed by Krzanowski
(1979), which has been outlined in detail elsewhere (Blows
et al. 2004; McGuigan and Blows 2007). In brief, the
Krzanowski method is a geometric approach that provides
a bounded measure of the overall similarity in orientation
of two subspaces and is not restricted to any type of original
matrix. For a given pair of species, we created matrices A and
B, where the columns of A are the first three eigenvectors
of P for the first species and the columns of B are the first
three eigenvectors of P for the second species. Note that the
number of columns in each matrix A and B (here equal to
three) cannot exceed half the number of columns of P or
the method will recover common dimensions between the
subspaces (Blows et al. 2004). The matrix S is calculated as:

S = ATBBTA. (2)

The similarity of the two subspaces defined by matrices A
and B is then assessed as the sum of the eigenvalues of matrix
S, the upper bound of which here equals three. Dividing the
sum of eigenvalues of S by three, therefore, yields a similarity
coefficient ranging between zero, indicating that the three
eigenvectors of each subspace are orthogonal, to one, indi-
cating a set of eigenvectors with identical orientation. This
subspace comparison was performed between all six unique
combinations (6 = (3)) of the four species and the resulting
values were assembled into a symmetrical 4 x 4 similarity ma-
trix § characterizing the among-species variation in P. The
eigenstructure of § was then examined via diagonalization to
determine the dominant axes of the among-species variation
inP.

Patterns in the among-species variation in P were explored
by calculating the correlation between the similarity matrix
§ and a matrix of phylogenetic distances between these four
species, as outlined in Rundle et al. (2008), with significance
determined using Mantel tests employing 10,000 random-
izations (Mantel 1967). Phylogenetic distances were calcu-
lated from a slightly modified tree originally constructed by
Huang et al. (2000) using two mitochondrial DNA loci. Be-
cause branch length data were unavailable from Huang et al.
(2000) or directly from the authors, Bertram et al. (2011a)
measured the branch lengths of Huang et al.’s Figure 3 and
then replicated the tree using Mesquite version 2.74 (Maddi-
son and Maddison 2010). This correlation analysis informed
us whether differences in P were associated with phylogenetic
distance.

To compare the dominant axis of among-individual phe-
notypic variance (i.e., pmax, the eigenvector of P associated
with the largest eigenvalue) among species, we calculated the
vector correlation of py.x between each of the six unique
pairwise combinations of the four species. Vector correla-
tions were calculated as the dot product of py,x from a pair
of species, each standardized to unit length (Rundle et al.
2008; Blows and Walsh 2009). These correlations represent a
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measure of the overall similarity in the multivariate direction
of prax between two species and range from —1 (indicating the
same multivariate trait combinations, but oriented 180° from
one another) to +1 (indicating the same trait combination
and direction), with zero indicating orthogonal eigenvectors.

Is signaling correlated with size or
condition?

To test Hypothesis 3, that variation in signaling traits reflects
underlying variation in body size, mass, and/or condition,
we first scored individuals, separately by species, for the first
eigenvector of the P matrix (pmay)- Best linear unbiased pre-
dictors (BLUPs) were then estimated at the individual level
for this trait in a univariate version of Equation (1), again
excluding the fixed effect of species (S) and fit separately
by species. An index of body size was obtained by quanti-
fying the area of each cricket’s pronotum at the end of the
experiment. Pronotum measurements were made using Ax-
ioVisionLE v4.8 from highly magnified photographs taken
with a Zeiss Axio Observer inverted dissecting microscope
(Carl Zeiss; magnification: ~8.5%, resolution: ~1.60pum).
Body mass was measured at day 7 (prior to the recording
of the signaling traits). As a measure of condition, we used
the residuals of a regression of body mass on pronotum area,
again fit separately by species. Because repeated measure-
ments of pronotum area and body mass were not available,
for each species the individual BLUPs for pp,.. were sepa-
rately regressed directly onto individual values of pronotum
area and condition to determine whether among-individual
variation in pp,, scores was associated with any of these
traits.

Results

Across species, mate signaling was repeatable within indi-
viduals (Table 1; overall mean = SE = 0.87 £ 0.02), with
repeatability scores ranging from 0.91 to 0.93 for PD, IPD,
pulses per chirp, and CD. Repeatability scores were slightly
lower for CF and AMP (mean = 0.86 and 0.81, respectively),
with signaling time exhibiting the lowest repeatability scores
(mean = 0.74). There was extensive variation among males in
their mate signaling behavior (Table 1). Coefficients of vari-
ation were greatest for signaling time (mean = 99) and were
large for PD, CD, and AMP (means of 19-34). Coefficients
of variation were smallest for IPD and CF (means of 6-12).
We found strong support for correlations between signal-
ing components. Males that signaled with longer PDs pro-
duced signals (a) with longer CDs (A. domesticus and G.
assimilis), (b) at lower carrier frequencies (A. domesticus, G.
assimilis, and G. veletis), and (c) at higher AMPs (A. domesti-
cus, G. assimilis,and G. texensis) (Table 2). Males that signaled
at higher AMPs also signaled with longer CDs (A. domesti-
cus, G. assimilis, and G. texensis). Furthermore, males that

© 2011 The Authors. Published by Blackwell Publishing Ltd.
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Table 2.

Mating Signal Phenotypic Covariance Structure

Phenotypic variance—covariance matrices (P matrices) of seven acoustic signaling traits for four cricket species, as estimated from the

individual-level variance—covariance matrix in a multivariate mixed model fit separately by species. Phenotypic variances are given along the diagonal
(bold) and covariances (lower left) and correlations (upper right, in italics) are given on the off-diagonals. pmax, p2, and ps are the first three eigenvectors

of P, respectively. Trait abbreviations are given in Table 1.

AMP CcD CF ICD IPD PD INGS Prmax P2 P3
A. domesticus
AMP 0.795 0.271 —0.250 —-0.302 —-0.430 0.669 0.766 —0.466 —0.234 0.369
CcD 0.193 0.635 —-0.413 0.266 0.362 0.652 0.229 -0.276 0.500 0.270
CF —0.221 —0.326 0.981 —0.085 0.148 —0.521 —0.349 0.416 —0.300 0.786
ICD —0.190 0.149 —0.059 0.498 0.359 —0.030 —0.324 0.078 0.384 —0.105
IPD —0.338 0.255 0.130 0.224 0.779 —-0.197 —0.597 0.241 0.601 0.328
PD 0.594 0.518 —0.513 —0.021 -0.173 0.992 0.575 —-0.574 0.196 0.226
TSCX 0.497 0.133 —0.252 -0.167 —0.384 0.418 0.531 —0.375 —0.243 0.057
G. assimilis
AMP 0.718 0.662 —0.462 —0.485 —0.249 0.546 0.647 0.509 0.008 0.333
CcD 0.358 0.407 —0.663 —-0.271 0.094 0.880 0.565 0.363 0.327 0.043
CF —-0.277 —0.299 0.498 0.139 0.039 —0.746 —-0.379 —-0.329 —0.380 0.503
ICD —0.298 -0.125 0.071 0.527 0.376 —0.265 —0.655 -0.324 0.371 —0.545
IPD —0.140 0.040 0.018 0.181 0.441 0.157 —0.650 —-0.171 0.564 0.544
PD 0.307 0.373 —0.349 -0.127 0.069 0.440 0.442 0.348 0.411 —0.006
TSCX 0.448 0.295 —0.219 —0.388 —0.353 0.240 0.667 0.495 —0.353 —0.204
G. texensis
AMP 0.486 0.662 —-0.162 —-0.628 0.010 0.826 0.797 0.501 0.037 —0.161
CcD 0.360 0.607 0.164 —-0.522 —0.081 0416 0.859 0.459 0.281 0.256
CF —0.090 0.102 0.641 -0.253 —0.432 —-0.520 0.070 -0.133 0.635 0.503
ICD —0.282 —0.262 —0.131 0.415 0.166 —0.440 —0.830 —0.346 —0.262 —0.063
IPD 0.006 —0.052 —0.282 0.087 0.665 0.349 —0.061 0.092 —0.585 0.787
PD 0.450 0.253 —0.326 —0.221 0.222 0.611 0.625 0.523 —0.289 —0.168
TSCX 0.274 0.330 0.028 —0.263 —-0.024 0.241 0.243 0.345 0.148 0.068
G. veletis
AMP 0.734 —0.396 0.522 —-0.697 —0.590 —-0.112 0.621 —0.433 —-0.073 0.414
(@) —0.321 0.895 —0.169 0.462 0.617 0.031 —0.168 0.352 0.573 0.487
CF 0.419 —0.150 0.878 —-0.276 —0.406 —0.432 0.404 —0.365 0.519 0.049
ICD —0.524 0.384 —0.227 0.772 0.576 0.247 —0.535 0.423 0.185 —0.171
IPD —0.444 0.513 —0.335 0.445 0.774 0.393 —0.529 0.455 0.102 0.274
PD —0.084 0.026 —0.356 0.191 0.304 0.774 —0.209 0.230 —0.585 0.539
TSCX 0.428 -0.128 0.304 -0.378 —0.375 —0.148 0.648 —0.342 0.100 0.441

'TSC has been normalized using a Box-Cox transformation to yield TSCX.

signaled more (i.e., had higher signaling times) also produced
(d) louder chirps that had (e) shorter IPDs (A. domesticus, G.
assimilis, and G. veletis), (f) longer CDs (G. assimilis and G.
texensis), and (g) lower carrier frequencies (A. domesticus and
G. assimilis) (Table 2). Together these findings indicate posi-
tive correlations between the quality and quantity of mating
signals.

We found evidence to support Hypothesis 1, that
species exhibit different P matrices. First, individual-level
P matrices were estimated separately for each species
(Table 2) because the model that permitted species specific
(i.e., separate), as opposed to a shared variance—covariance
structure, exhibited a significantly improved fit [ x> = 3892,
df = 54, P < 0.0001; Akaike Information Criterion (AIC),
shared: 11,754.4, separate: 7970.4]. Variation between in-
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dividuals accounted for 51.3, 68.2, 52.6, and 75.6% of the
total variance in this suite of traits in A. domesticus, G. as-
similis, G. texensis, and G. veletis, respectively, with the re-
maining variance occurring among replicate measurements
within individuals (the latter likely including mostly true
biological variation within-individuals, such as age-related
changes in signaling along with some measurement error).
Second, G. texensis differed from the other three species
in that factor-analytic modeling only supported the exis-
tence of five of the seven dimensions; modeling supported
the existence of all seven dimensions in the other three
species (discussed in detail the next paragraph). Third, G.
veletis differed substantially from the other three species
in the first eigenvector (with the largest eigenvalue) of P.
The first eigenvector of P (pmay) accounted for 46-55% of
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Table 3. Model fit statistics of the effective number of dimensions of
the individual-level phenotypic variance—covariance matrices (P matrices)
for each species, as determined from a series of nested likelihood-ratio
tests employing a factor-analytic model. The percent of the total variance
(% var) was calculated from a full-dimensionality (unconstrained) model
at the individual level. Significant P-values in bold.

No. of
No. of dimensions % var  traits -2LL AIC P-value
A. domesticus
0 — 28 9660.3 9716.3 —
1 46.9 35 8810.2 8880.2 <0.0001
2 24.9 41 8251.8 8333.8 <0.0001
3 127 46 7868.5 7960.5 <0.0001
4 6.8 50 7618.4 7716.4  <0.0001
5 4.0 53 7430.3 7534.3 <0.0001
6 3.2 55 7310.7 7420.7 <0.0001
7 1.4 56 7261.5 7373.5 <0.0001
G. assimilis
0 — 28 2849.0 2905.0 —
1 55.0 35 27221 27921 <0.0001
2 22.7 41 2604.0 2684.0 <0.0001
3 8.8 46 2531.8 2621.8 <0.0001
4 7.0 50 2482.3 2580.3 <0.0001
5 4.4 53 2448.2 2554.2 <0.0001
6 1.4 55 2420.6  2530.6 <0.0001
7 0.7 56 2416.5 25285 0.0436
G. texensis
0 — 28 1695.6 17516 —
1 46.1 35 1601.0 1669.0 <0.0001
2 31.4 41 1533.7 1613.7 <0.0001
3 11.2 46 1474.3 1566.3 <0.0001
4 6.8 50 1451.3 1551.3 0.0001
5 3.3 53 14425 15485 0.0326
6 1.0 55 1440.7 1560.4 0.3970
7 0.1 56 1440.7 1552.7 0.8557
G. veletis
0 — 28 5417.4 5473.4 —
1 49.5 35 4882.2 4952.2 <0.0001
2 17.7 41 44418 4523.8 <0.0001
3 12.3 46 4121.7 4211.7  <0.0001
4 9.2 50 3876.0 3976.0 <0.0001
5 58 53 3717.9 38239 <0.0001
6 3.3 55 35994 3709.4 <0.0001
7 2.3 56 3532.6 36446 <0.0001

the total individual-level variation within each species (Ta-
ble 3). While pp,, was largely shared among three of the
species—A. domesticus, G. assimilis, G. texensis—with vector
correlations ranging in absolute value from 0.85 to 0.93 (Ta-
ble 4), pmax of G. veletis differed substantially from the other
three species, with vector correlations ranging in absolute
value from 0.09 to 0.28 (Table 4).

We also found support for Hypothesis 2, that the phe-
notypic variance—covariance matrices are full dimensional-
ity. Factor-analytic modeling supported the existence of all
seven dimensions in the P matrices of three of the species
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Table 4. Similarity matrix, §, comparing the individual-level phenotypic
variance—covariance matrices (P matrices) among all pairwise combina-
tions of the four species of crickets. Values below the diagonal are
Krzanowski (1979) subspaces comparison of the first three eigenvectors
of P and are standardized to range from zero, indicating noncoincident
subspaces (i.e., no similarity), to one, indicating identical subspaces. Val-
ues above the diagonal are the vector correlation of pmax, ranging from
-1, indicating that the two eigenvectors are oriented 180" from one an-
other, to +1, indicating two identical eigenvectors, with zero indicating
orthogonal vectors.

A. domesticus ~ G. assimilis ~ G. texensis  G. veletis
A. domesticus —0.926 —0.849 0.092
G. assimilis 0.795 0.915 -0.277
G. texensis 0.735 0.706 —-0.109
G. veletis 0.753 0.613 0.711

(A. domesticus, G. assimilis, and G. veletis), and five of the
seven dimensions in G. texensis (Table 3). This indicates that,
to a large extent, each measured signaling trait makes some
unique contribution to the population-level phenotypic vari-
ance among individuals. That only five of the seven dimen-
sions are supported in G. texensis suggests that this species
may be an outlier relative to the other three.

Among the seven traits we analyzed, variance inflation fac-
tors were low, ranging from one to two with a single outlier
value of five, indicating minimal multicollinearity (Chatter-
jee and Hadi 2006) and suggesting that we appropriately
chose traits. Condition numbers (ratio of maximal to min-
imal eigenvalues) were also small, indicating the absence of
strong multicollinearity (Chatterjee and Hadi 2006; Visanu-
vimol and Bertram 2010).

A comparison of the subspaces defined by the first three
eigenvectors of P among all species pairs using the method
of Krzanowski (1979) yielded values ranging from 61% sim-
ilarity (between G. assimilis and G. veletis) to 80% similarity
(between G. assimilis and A. domesticus), indicating a mod-
erately high degree of overall similarity in the eigenstructure
of the three-dimensional subspaces of P of each species (Ta-
ble 4). The subspaces defined by the first three eigenvectors
of P within each species accounted for the majority of the
individual-level variation, representing 85, 87, 89, and 80%
of the total variance in P in A. domesticus, G. assimilis, G. tex-
ensis, and G. veletis, respectively (Table 3). The eigenstructure
of §, the similarity matrix of Krzanowski subspace compar-
isons (Table 4), which reflects patterns in the among-species
variation in P, arrayed the species roughly equidistantly from
one another. Gryllus veletis differed the most from the other
species, while A. domesticus and G. assimilis were the most
similar overall (Fig. 2). There was no indication of a nega-
tive association between this similarity matrix and a matrix
of phylogenetic distances among the four species, as would
be expected if P differed to a greater extent between more

© 2011 The Authors. Published by Blackwell Publishing Ltd.
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Table 5. Model fit statistics for the linear regression of individual-level
BLUPs for pmax on body size (pronotum area) and condition (measured
as the residuals of the regression of body mass on pronotum area),
separately by species. Significant P-values are bolded.

df Slope (P-value) r?

A. domesticus

Size 1.95 —0.345 (<0.001) 0.255

Condition 1.95 —0.007 (0.136) 0.023
G. assimilis

Size 1.28 0.003 (0.941) 0.000

Condition 1.27 0.002 (0.438) 0.022
G. texensis

Size 1.23 0.048 (0.289) 0.049

Condition 1.21 0.003 (0.156) 0.094
G. veletis

Size 1.45 0.191 (0.012) 0.132

Condition 1.40 —0.002 (0.603) 0.007

distantly related species. Rather, the observed correlation
between these matrices was positive (r = 0.768), although not
significantly more extreme than expected by chance (Mantel
test, P = 0.077).

There was limited evidence to support Hypothesis 3, that
the eigenvector associated with the largest eigenvalue of each
P matrix is correlated with size and/or condition, insofar as
the first eigenvector of P, in part, reflected among-individual
variation in size. BLUPs for pmax scores were significantly
associated with variation in body size (pronotum area) in
A. domesticus and G. veletis (Table 5; the contrasting sign of
this relationship in A. domesticus relative to G. veletis reflects
the opposite orientation of pp,x in this species.) There is no
evidence of any association between p,,, BLUPs and body
size in G. assimilis and G. texensis, nor is there evidence from

© 2011 The Authors. Published by Blackwell Publishing Ltd.
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any of the four species for an association with condition
(Table 5).

Discussion

An important goal in evolutionary biology is to identify what
constraints prevent populations from responding fully to se-
lection (McGuigan and Blows 2007). Most researchers have
tackled this problem by either quantifying the genetic corre-
lations among traits or examining the relationships between
selection and additive genetic variance (Blows and Higgie
2003). However, the distribution of populations in pheno-
typic space (the P matrix) is also important as it determines
the combinations of traits available to selection. The dimen-
sionality of P may place an upper bound on the dimensional-
ity of the genetic variance—covariance matrix (G) (McGuigan
and Blows 2007). Several robust studies have also revealed
that P may provide additional information about the struc-
ture of G (Cheverud 1988; Roff 1995; Waitt and Levin 1998;
Dochtermann 2011).

We determined that selection was not limited in the direc-
tions in which it could act upon male cricket long-distance
mate signaling traits. Factor-analytic modeling supported the
existence of all seven dimensions of P in three of the four
species studied (A. domesticus, G. assimilis, and G. veletis).
These findings suggest that each of the seven measured signal-
ing traits made some unique contribution to the population-
level phenotypic variance among individuals. As such, the
potential exists for all seven signaling traits to experience se-
lection, with minimal potential for evolutionary constraints.
Selection may be able to shift each population toward its
adaptive peak, regardless of the position of an adaptive opti-
mum, provided that the signaling traits we measured exhibit
genetic variance.
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While our results suggest that all of the measured traits
capture some unique information and that all combinations
of traits exist in the population, our results do not imply
that researchers should study these univariate signaling traits
separately. Significant correlations still exist between pairs of
traits, suggesting that selection may target trait combinations
(i.e., correlational selection); univariate analyses would miss
this phenomenon.

Factor-analytic modeling suggests the existence of only five
of seven dimensions in the P matrix of G. texensis, indicating
that G. texensis may be an outlier compared to A. domes-
ticus, G. assimilis, and G. veletis. Less than full dimension-
ality suggests the potential for multicollinearity-—where the
sixth and seventh dimensions can be expressed as some linear
combination of the first five dimensions. Statistical support
for only five of seven dimensions suggest evolutionary con-
straints may exist because only a subset of the seven traits
might be available to selection. Gryllus texensis may there-
fore be evolutionarily constrained in ways that A. domesticus,
G. assimilis, and G. veletis are not. Lack of full dimension-
ality also suggests that G. texensis may have fewer traits on
which selection might act. In other words, some traits may
covary with other traits. While we know what the seven traits
are, we do not know what the sixth and seventh dimensions
represent, other than linear combinations of the seven mea-
sured traits. Unless P matrices are diagonal, there is no easy
interpretation of dimensions in terms of traits.

Less than full dimensionality in G. texensis may have re-
sulted from insufficient statistical power because of a smaller
sample size of G. fexensis. Further, the sixth and seventh di-
mensions explained very little of the variance in all of the
species studied (A. domesticus [4.6%], G. assimilis [2.1%], G.
texensis [1.1%], and G. veletis [5.5%]). Even though the sixth
and seventh dimensions were statistically significant for A.
domesticus, G. assimilis, and G. veletis, these two dimensions
do not differ much from the small amount of variance ex-
plained by the sixth and seventh dimensions for G. texensis
that were not statistically significant.

In addition to the dimensionality of its P matrix, G. texen-
sis differs from the other three species studied in two distinct
ways. First, G. texensis is the only study species to be regularly
attacked by the parasitoid O. ochracea (Diptera, Tachinidae)
(Cade 1975). Ormia ochracea females have a large tympanic
membrane on their thorax that allows them to listen for sig-
naling male G. fexensis (Robert et al. 1996). Ormia ochracea
females acoustically orient to signaling male G. texensis, lay-
ing their larvae on and around the cricket. Fly larvae burrow
into the cricket, feed on the cricket’s tissue, and cause host
cricket death within a week (Cade 1975; Berrill et al. 1993;
Adamo et al. 1995). This parasitoid fly is thought to select
against mate attraction signaling in G. texensis (Cade 1975;
Wineriter and Walker 1990; Robert et al. 1992; Adamo et al.
1995). Second, G. texensis is the only species studied that

190

S. M. Bertram et al.

produces an extremely long chirp, concatenating an average
of 37 pulses into a single chirp (termed a trill in G. texensis).
The other three species concatenate only a small number of
pulses into each chirp (A. domesticus: 2-3 pulses; G. assimilis:
6-9 pulses; and G. veletis: 35 pulses). These dissimilarities
provide additional reasons why G. texensis may differ from A.
domesticus, G. assimilis, and G. veletis in the dimensionality
of its P matrix.

Mate choice often exerts directional sexual selection on
mate attraction signals (Andersson 1994). However, under
some circumstances, intermediate phenotypes are most pre-
ferred (Andersson 1994; Mead and Arnold 2004; Brooks et al.
2005). Historically, female crickets have been shown to exert
both stabilizing and directional selection on male acoustic
mate attraction signals (Cade 1979b, 1981a; Hedrick 1986;
Doherty and Callos 1991; Wagner 1996; Holzer et al. 2003;
Hunt et al. 2004; Brooks et al. 2005; Bentsen et al. 2006; Bailey
2008; Rodriguez—Muiioz et al. 2010). Together, these studies
provide clues for the potential effect female preference could
have on the evolution of cricket mate signaling. They sug-
gest the general trend that females exert directional selection
for more conspicuous displays (louder signals, shorter inter-
chirp intervals, longer bout durations, and more time spent
signaling; Cade 1979a; Hedrick 1986; Wagner 1996; Wagner
and Hoback 1999; Hunt et al. 2004; Brooks et al. 2005) and
stabilizing selection for species identification traits (CF and
pulse rate; Doherty and Callos 1991; Bentsen et al. 2006).
When coupled with our P matrices and dimensionality anal-
yses, these findings suggest that selection for one temporal
component, such as enhanced PD, has the potential to re-
sult in responses in several other signaling traits including
elevated AMP and higher nightly signaling times. That said,
we recognize that a correlated response to selection arises
from a genetic, not phenotypic, covariance, so a test of this
hypothesis requires G matrix estimates.

For a trait to respond to selection, it requires (1) suffi-
cient phenotypic variation for selection to act, and (2) suf-
ficient genetic variation for selection to result in an evo-
lutionary response. Our study reveals support for the first
requirement—extensive phenotypic variation exists among
individuals, especially in signaling time, AMP, and PD, sug-
gesting the ability for these traits to experience selection.
Two lines of evidence also suggest support for the second
requirement-—sufficient genetic variation for an evolution-
ary response. First, the signaling traits examined in our study
exhibited high repeatability, and repeatability sets the up-
per bounds of heritability (Falconer and Mackay 1996). Sec-
ond, most cricket signaling traits studied to date exhibit
high heritability. For example, G. integer has a heritability
of h* = 0.74 for calling-bout length (Hedrick 1988). Real-
ized heritability for G. texensis’ signaling time was measured
at h* = 0.50-0.53 (Cade 1981b). However, Bertram et al.
(2007) showed that signaling time did not exhibit significant
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heritability in a nearby G. texensis population (k> = 0.08 £
0.11). Gryllus firmus’ pulse rate displays a heritability of h* =
0.35 (Webb and Roff 1992). Further, Teleogryllus oceanicus’
song duration and the proportion of the long-chirp element
show a genetic basis (Simmons 2004). Future research should
quantify whether signaling traits exhibit extensive genetic
variation in the species and populations studied. If signaling
traits are heritable, their response to selection would depend
on the potential for traits to evolve independently and on the
patterns of female preferences.

Dimensionality of the P matrix is important because it
may set the upper limit to the dimensionality of the genetic
variance—covariance matrix, G, and because it may provide
additional information about the structure of G (Cheverud
1988; Roff 1995; Waitt and Levin 1998; Dochtermann 2011).
Consequently, the dimensionality of P can be a useful mea-
sure for investigating the potential for genetic constraints.
However, our finding of P of full (or almost full) dimension-
ality does not imply that G will be of full dimensionality in
crickets, but only that it can be. McGuigan and Blows (2007)
revealed that even though Drosophila wing P matrices were of
full dimensionality for males and females, the corresponding
G matrices were not. McGuigan and Blows (2007) quanti-
fied the dimensionality of P and G for the same 10 wing size
and shape traits. While there was statistical support for all
10 phenotypic dimensions in both sexes, there was statistical
support for only two genetic dimensions in males and five
genetic dimensions in females. The dimensionality mismatch
between P and G suggests that even though selection might
result in wing size and shape shifts within generations, se-
lection may not result in across-generational shifts, because
evolution may be restricted to fewer dimensions due to the
genetic covariance structure of the traits. Our future work will
examine dimensionality of G in field cricket species to ascer-
tain if crickets, like Drosophila, exhibit G matrices with much
lower dimensionality than do the corresponding P matrices.

Species differences

The four cricket species all exhibited statistically different P
matrices from each other, supporting Hypothesis 1. Gryllus
texensis differed from the other three species in that it lacked
a P matrix of full dimensionality. Having a dimensionality of
only five (out of a maximum of seven) suggests that G. texen-
sis may be subject to more evolutionary constraints than G.
veletis, G. assimilis,and A. domesticus, the latter three of which
have P matrices of full dimensionality. In retrospect, this re-
sult is not surprising insofar as G. fexensis experiences greater
tension between natural and sexual selection for acoustic sig-
naling traits because it is the only one of these species in
which a parasitoid acoustically homes in on signaling male
crickets using the same signals that attract female conspecific
crickets. The phenotypic differences between G. texensis and
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the other species can also be seen in the Krzanowski subspaces
comparison of the first three eigenvectors of P, not just in the
six and seventh (the last two) eigenvectors.

Krzanowski subspace comparison indicated that all four
cricket species had different P matrices, with G. texensis and
G. veletis being the most different from others and G. as-
similis and A. domesticus being most similar to one another.
This result also supports the hypothesis that species exhibit
different P matrices. This result falsifies the implicit null hy-
pothesis that P primarily reflects phylogeny, in which all three
Gryllus species would have grouped together and would have
been different from Acheta.

The result that G. texensis and G. veletis were most different
and G. assimilis and A. domesticus were most similar also fal-
sifies the hypothesis that differences in P reflect the number
of generations species were reared in the laboratory. As a do-
mesticated cricket, A. domesticus has been reared in captivity
for numerous generations, while Gryllus species were reared
in captivity for only 1-2 generations. If time spent in captiv-
ity were the driving force behind the differences in P, Gryllus
species would have grouped together and been different from
Acheta. P matrices of field-captured crickets may, however,
differ from laboratory-reared crickets because field-captured
crickets will presumably vary more in their overall condition,
a hypothesis requiring future testing.

Gryllus veletis also differed from the other three species in
the makeup of its pmax. Acheta domesticus, G. assimilis, and G.
texensis exhibited high vector correlations (Ip-max|>0.85),
signifying strong similarities among these three species in
their ppax. Conversely, G. veletis exhibited much lower vec-
tor correlations with the other three species (Ip-max|<0.28),
signifying that G. veletis had a different pp,y.

Signaling component correlations

We proposed that there would be correlations between sig-
naling quality and quantity. Males that signaled with longer
PDs, shorter IPDs, longer CDs, and lower carrier frequencies
also produced the loudest signals and signaled most often
throughout the day and night. These correlations suggest that
the most attractive signalers also signal with the highest effort.
Our findings are consistent with signaling being an honest
indicator of a cricket’s overall condition, given that males
with the most attractive chirps also signal with the highest
effort. While specific female preference functions have yet to
be built for most of the species included in our study, female
field crickets tend to be most attracted to chirps that have
long pulses, short interpulses, are long in duration, and have
shorter interchirp intervals (Hedrick 1986, 1988; Simmons
1986; Wagner et al. 1995; Gray and Cade 1999; Holzer et al.
2003; Hunt et al. 2004; Simmons 2004). The most attractive
chirps are also louder, and produced at a lower CF (Alexander
1961, 1962; Cade 1980).
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Our correlational findings suggest that females do not
need to assess males for extended periods of time to select
a mate that signals with high effort. Because signaling effort
is strongly correlated with signaling quality, a female could
briefly assess males to ascertain which ones signal loudest,
with long PDs, more pulses per chirp, and/or longer CDs.
By selecting one of these males, the female would likely be
mating with a male that signals most often. This approach
would minimize the female’s time spent in the mating chorus,
thereby reducing her energetic costs, predation risks, and lost
foraging time.

Condition and size effects

Signaling can impose dramatic costs, both in terms of ener-
getic demands and predation risks (Prestwich and Walker
1981; Prestwich 1994; Hoback and Wagner 1997; Basolo
and Alcaraz 2003). Males that maximize the conspicuous-
ness of their mating signals in the face of these costs may
exhibit higher genetic quality than less showy males (Ander-
sson 1994). Given that sexual signals are costly to produce
and maintain, the genic capture hypothesis suggests that sex-
ual signals should exhibit condition-dependent expression
(Rowe and Houle 1996; Kotiaho et al. 2001; Tomkins et al.
2004). Males in good condition may therefore simultane-
ously maximize several components of their signals’ conspic-
uousness. Because the genic capture model assumes sexu-
ally selected traits will be costly to produce, it suggests that
males in poor condition should not be able to maximize the
conspicuousness of their signals. Conversely, males in good
condition should produce conspicuous mating signals re-
gardless of costs. Thus, the system should foreclose cheaters.
Our findings partially support these ideas; we found a strong
relationship between signaling quality and signaling effort,
as discussed above. Furthermore, signaling traits were de-
pendent on body size in two of the four species studied (A.
domesticus and G. veletis). We did not, however, find sup-
port for the idea that signaling traits are strongly dependent
on residual mass, our measure of condition. The general
trend that variation in most signaling traits was not depen-
dent on variation in residual mass suggests that residual mass
may not be an ideal indicator of condition in cricket species.
Lack of a relationship between residual mass and signaling
traits should not, however, be interpreted to mean that sig-
naling traits are not influenced by condition because sev-
eral studies have shown that when diet is manipulated, sev-
eral signaling traits respond, either increasing with enhanced
food quality or quantity, or decreasing with reduced food
quality or quantity (Scheuber et al. 2003a, b; Hedrick 2005;
Whattam and Bertram 2011). Future studies should explore
whether dietary limitations can change the relationships be-
tween signaling traits, thereby fundamentally altering the P or
G matrices.
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Concluding remarks

We employed a recently developed rigorous repeated mea-
sures approach to characterizing P matrices in order to ascer-
tain the differences between species, number of independent
traits within species, and maximal dimensionality of genetic
variance—covariance matrices. Gryllus texensis truly are dif-
ferent from their congeners and even a heterogeneric gryllid,
which we surmise could be due to the acoustic signals they
produce attracting both mates and parasitoids. Instead of in-
dependently analyzing univariate phenotypic traits, we rec-
ommend the analysis of vectors of phenotypic traits and their
variance—covariance matrices in order to better understand
the evolution of these traits and taxa. Characterizing P matri-
ces provides insight into whether phenotypic covariances may
constrain selection by making certain combinations of traits
unavailable. The P matrix also provides understanding about
whether the measured traits capture a dimension of phe-
notypic variability that is unique from the other measured
traits. Finally, P is of interest with respect to evolutionary
constraints as it places an upper limit on the dimensionality
of the G matrix, thereby affecting the response to selection.
How P differs among species has received little attention, but
should be considered of interest, both in terms of how it
arises and how it may subsequently affect their evolution and
divergence.
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