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Stroma-associated master 
regulators of molecular subtypes 
predict patient prognosis in 
ovarian cancer
Shengzhe Zhang1,2,*, Ying Jing1,*, Meiying Zhang3,4,*, Zhenfeng Zhang1,5, Pengfei Ma1, 
Huixin Peng1, Kaixuan Shi2, Wei-Qiang Gao1,2 & Guanglei Zhuang1,4

High-grade serous ovarian carcinoma (HGS-OvCa) has the lowest survival rate among all gynecologic 
cancers and is hallmarked by a high degree of heterogeneity. The Cancer Genome Atlas network 
has described a gene expression-based molecular classification of HGS-OvCa into Differentiated, 
Mesenchymal, Immunoreactive and Proliferative subtypes. However, the biological underpinnings 
and regulatory mechanisms underlying the distinct molecular subtypes are largely unknown. Here 
we showed that tumor-infiltrating stromal cells significantly contributed to the assignments of 
Mesenchymal and Immunoreactive clusters. Using reverse engineering and an unbiased interrogation 
of subtype regulatory networks, we identified the transcriptional modules containing master 
regulators that drive gene expression of Mesenchymal and Immunoreactive HGS-OvCa. Mesenchymal 
master regulators were associated with poor prognosis, while Immunoreactive master regulators 
positively correlated with overall survival. Meta-analysis of 749 HGS-OvCa expression profiles 
confirmed that master regulators as a prognostic signature were able to predict patient outcome. Our 
data unraveled master regulatory programs of HGS-OvCa subtypes with prognostic and potentially 
therapeutic relevance, and suggested that the unique transcriptional and clinical characteristics of 
ovarian Mesenchymal and Immunoreactive subtypes could be, at least partially, ascribed to tumor 
microenvironment.

High-grade serous ovarian carcinoma (HGS-OvCa) is the most lethal gynecological cancer and repre-
sents a clinically heterogeneous disease1–3. For example, essentially all patients diagnosed with advanced 
disease undergo very similar standard treatment, which is aggressive surgical debulking followed by 
multi-cycles of platinum-based combination chemotherapy4. However, approximately 30% of cases 
exhibit intrinsic chemoresistance and gain little or no benefit. Additionally, a large percentage of che-
mosensitive patients develop acquired resistance and eventually relapse within various time windows5,6. 
Therefore, it is important to leverage novel prognostic tools to stratify seemingly identical patients and 
redirect them to more precise therapies that may be potentially efficacious.
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To complement conventional histopathology, major efforts have recently been focused on the molec-
ular classifications enabled by large-scale global gene expression profiling studies. Several groups have 
used microarray-based gene expression datasets to retrospectively classify HGS-OvCa patients into prog-
nostic and/or molecular subtypes7. Using k-means clustering, Tothill et al. reported six molecular sub-
types in 285 serous and endometrioid tumors, and defined a poor prognosis subtype by a reactive stroma 
gene expression signature8. Tan et al. presented a meta-analysis of epithelial ovarian cancer and identi-
fied five distinct subgroups, which exhibited significantly different patient outcome9. Nevertheless, these 
classification schemes have not yet achieved widespread application, partly due to the lack of imperative 
understanding of biologic rationale that determines the transcriptional and clinical characteristics of 
diverse subtypes.

Recently, the Cancer Genome Atlas (TCGA) network identified four HGS-OvCa subtypes10, namely 
Differentiated, Mesenchymal, Immunoreactive and Proliferative, which were subsequently validated in 
an independent patient cohort (Mayo Clinic cohort)11. Surprisingly, however, survival time did not dif-
fer significantly for the transcriptional subtypes in the TCGA HGS-OvCa dataset10, in contrast to the 
clinical relevance of molecular classifiers evident in other cancers12–14. Counterintuitively, a statistically 
significant difference in patient survival was observed in the Mayo Clinic cohort, i.e. the Immunoreactive 
subtype had the longest survival time, while the Mesenchymal subtype had the shortest. These inconsist-
ent findings necessitate further prudent investigations before employing the TCGA subtyping in patient 
stratification.

We reasoned that a more thorough understanding of the biological and regulatory mechanisms 
underlying the distinct subtypes might facilitate the development of novel prognostic signatures and 
subtype-specific therapeutic strategies in HGS-OvCa. For example, numerous studies have implicated 
tumor-associated stroma in tumor progression and patient prognosis15–17. Interestingly, it has been 
recently discovered that stromal genes significantly contributed to the stem/serrated/mesenchymal tran-
scriptional subtype in colorectal cancer18,19. Although the Mesenchymal and Immunoreactive subtypes of 
ovarian cancer are known to contain infiltrating stromal cells and lymphocytes, respectively, it remains 
to be determined whether and to what extent tumor microenvironment influences the assignment of 
transcriptional subtypes. In this study, we designed an analytical approach to delineate the cellular and 
molecular underpinnings of HGS-OvCa subtypes, with a specific focus on the involvement of tumor 
stromal constituents.

Results
The TCGA subtypes are not associated with patient prognosis. Both non-negative matrix fac-
torization (NMF) method (Supplementary Figure S1) and k-means clustering algorithm (Supplementary 
Figure S2) yielded four robust high-consensus molecular subtypes in the TCGA dataset, thus verifying 
previous classifications10. We calculated silhouette width20 to identify samples most representative of each 
clusters and obtained a ‘core’ set of 388 tumors (Supplementary Figure S3). Subsequently, we derived a 
749-gene classifier (Supplementary Table S1) with the lowest prediction error using significance anal-
ysis of microarrays (SAM)21, followed by prediction analysis for microarrays (PAM)22. We applied the 
749-gene signature and NMF consensus clustering in two independent HGS-OvCa gene expression pro-
files (Tothill and Crijns)8,23, and validated the four molecular subtypes (Fig. 1A; Supplementary Figure 
S4-5). However, in all three datasets, the HGS-OvCa molecular subtypes were not prognostically relevant 
(Fig. 1B). These unexpected results prompted us to further investigate the cellular and molecular deter-
minants of HGS-OvCa clusters.

Tumor-associated stromal content contributes to defining Mesenchymal and Immunoreactive 
subtypes. The four TCGA subtypes were initially termed Differentiated, Mesenchymal, Immunoreactive 
and Proliferative on the basis of expressed genes in the clusters10. For example, the Mesenchymal subtype 
was defined by high expression of FAP, fibronectin and collagens, whereas chemokine ligands (CXCL9, 
CXCL10, CXCL11) and receptors (CXCR3, CXCR6) characterized the Immunoreactive subtype. Recent 
studies have revealed a significant contribution of tumor stromal genes to stem/serrated/mesenchymal 
transcriptional subtype in colorectal cancer18,19. We sought to assess whether a similar interplay between 
stromal components and molecular characteristics existed in HGS-OvCa. To this end, tumor purity 
was inferred by the ABSOLUTE algorithm24 and the average purity estimates of Mesenchymal and 
Immunoreactive samples were significantly lower than those of Differentiated and Proliferative samples 
(Fig. 2A). An alternative approach using the ESTIMATE method25 to predict the fraction of stromal and 
immune cells produced consistent results in the TCGA dataset (Fig. 2B), as well as in Tothill and Crijns 
cohorts (Supplementary Figure S6). These data suggested that a higher stromal content was associated 
with the Mesenchymal and Immunoreactive subtypes and might dominate the observed transcriptional 
traits. To analytically test this hypothesis, we identified signature genes that were upregulated in the 
Mesenchymal or Immunoreactive subtypes (Supplementary Table S2). Gene Set Enrichment Analysis 
(GSEA)26 indicated that Mesenchymal and Immunoreactive gene signatures were significantly enriched 
in the microdissected stroma components in comparison to paired tumor tissues8 (Fig. 2C). Additionally, 
we analyzed gene expression profiles of nine pairs of ovarian tumors and matched patient-derived xen-
ografts (PDXs), in which human stromal cells were substituted by mouse cells27. Mesenchymal and 
Immunoreactive gene transcripts were accordingly depleted in PDXs (Fig.  2D). Collectively, these 
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findings demonstrated that tumor-associated stromal content substantially influenced the transcriptional 
profiles and molecular subtypes of HGS-OvCa.

Regulatory networks and master regulators of Mesenchymal and Immunoreactive sub-
types. We employed a network-based strategy28–30 to uncover the molecular mechanism underlying the 
discrete HGS-OvCa molecular subtypes, particularly Mesenchymal and Immunoreactive gene programs 
most correlated with stromal rather than epithelial origin. First, a regulatory network was constructed for 
ovarian cancer based on the TCGA dataset using a genome-wide reverse engineering approach28. Next, 
we applied the Master Regulator Analysis (MRA) algorithm to the network29, to identify regulons show-
ing statistically significant overlap with Mesenchymal or Immunoreactive genes. From a list of 1111 tran-
scription factors (TFs) (Supplementary Table S3), MRA inferred 6 Mesenchymal-specific TFs (Fig. 3A; 
Supplementary Figure S7; Supplementary Table S4) and 10 Immunoreactive-specific TFs (Fig.  3B; 
Supplementary Figure S8; Supplementary Table S5), as master regulators (MRs) of HGS-OvCa molec-
ular subtypes. Interestingly, most Mesenchymal MRs had been implicated in epithelial-mesenchymal 
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Figure 1. The TCGA subtypes are not associated with patient prognosis. (A) Tumors from TCGA, Tothill 
and Crijns datasets were separated into four clusters on the basis of gene expression. (B) Kaplan Meier 
curves for four molecular subtypes in the TCGA, Tothill and Crijns datasets.
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transition and Immunoreactive MRs were predominantly transcriptional regulators of immune function 
(Fig. 3C), thus validating the robustness of our approach.

Mesenchymal and Immunoreactive MRs correlate with tumor stroma and patient survival.  
Using MRs as refined physiologically relevant gene signatures, we performed single-sample Gene Set 
Enrichment Analysis (ssGSEA)31 to assess MRs compound scores for the TCGA HGS-OvCa samples. 
The ssGSEA scores correlated well with those produced by the Gene Set Variation Analysis (GSVA)32 as 
an independent method (Supplementary Figure S9). As expected, the Mesenchymal and Immunoreactive 
subtypes showed relatively higher levels of Mesenchymal and Immunoreactive MRs expression as well 
as compound scores, respectively (Fig. 4A). The binary scores indicated that 78% (380/489) of expres-
sion profiles showed activity of Mesenchymal or Immunoreactive MRs, and that 28% of tumor samples 
could be assigned to both Mesenchymal and Immunoreactive subtypes (Fig.  4A), confirming previous 
observations that HGS-OvCa is highly heterogeneous11,33. To investigate the relative contributions of epi-
thelial tumor cells or stromal cells to the expression of MRs, we analyzed two gene sets of ovarian tumor 
samples8,34, in which epithelial and stromal components had been microdissected and profiled separately. 
Both Mesenchymal and Immunoreactive MRs were significantly upregulated in tumor stroma in com-
parison to epithelial tumor areas (Fig. 4B). Consistently, Mesenchymal and Immunoreactive MRs were 
significantly downregulated in patient-derived xenografts relative to paired primary tumors (Fig.  4C). 
Therefore, as with HGS-OvCa molecular subtypes, Mesenchymal and Immunoreactive MRs were asso-
ciated with noncancerous tumor stroma. Further detailed analysis indicated that levels of Mesenchymal 
and Immunoreactive MRs increased upon metastasis (Fig. 4D) and chemotherapy (Fig. 4E)35,36, support-
ing their involvement in tumor progression and response to treatment. Interestingly, the Mesenchymal 
MRs correlated with gene expression of multiple IGF-related molecules including IGF, IGFBP4, IGFBP6 
and IGFBP7, indicative of IGF pathway activation in the Mesenchymal tumors (Supplementary Figure 
S10).

To assess Mesenchymal and Immunoreactive MRs as prognostic biomarkers, we analyzed their expres-
sion in all HGS-OvCa samples included in curatedOvarianData for which overall survival information was 
available37. All 6 Mesenchymal MRs significantly correlated with poor patient outcome (Supplementary 
Figure S11). Conversely, 7 of 10 Immunoreactive MRs showed significant association with improved 
overall survival (Supplementary Figure S12). Based on these findings, we subdivided the TCGA sam-
ples into three clusters, i.e. ‘immu +  mese− ’, ‘immu −  mese+ ’ and ‘mixed’, according to Mesenchymal 

Figure 2. Tumor-associated stromal content contributes to defining Mesenchymal and Immunoreactive 
subtypes . (A) Tumor purity estimated by ABSOLUTE analysis for four molecular subtypes of TCGA 
samples. (B) ESTIMATE scores for four molecular subtypes of TCGA samples. (C) GSEA for upregulation 
of Mesenchymal and Immunoreactive genes in microdissected tumor stroma versus epithelial tissues.  
(D) GSEA for downregulation of Mesenchymal and Immunoreactive genes in patient-derived xenografts 
(PDX) versus matched primary tumors.
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and Immunoreactive compound scores. We found that patients classified as ‘immu −  mese+ ’ had sig-
nificantly shorter survival than ‘immu +  mese− ’ patients, and the ‘mixed’ group showed intermediate 
outcome (Fig.  4F). To independently corroborate the prognostic value of MRs signatures, we per-
formed meta-analysis of 749 HGS-OvCa expression profiles across five datasets8,23,38–40. The difference 
in survival between the three groups was highly statistically significant (Fig.  4G). Interestingly, com-
pared with ‘immu +  mese− ’ subtype, patients whose tumor samples express both Mesenchymal and 
Immunoreactive MRs (‘immu +  mese+ ’) had statistically significantly worse survival (Fig. 4H). On the 
contrary, we did not observe survival difference between ‘immu −  mese+ ’ and ‘immu +  mese+ ’ groups 
(Supplementary Figure S13). These data highlighted the dominant role of Mesenchymal MRs in predict-
ing patient outcome.

Discussion
In this study, we presented a detailed analysis of the four molecular subtypes based on TCGA HGS-OvCa 
expression data. We showed that Mesenchymal and Immunoreactive subtypes were characterized by 
transcriptional traits dominated by tumor-infiltrating stromal cells. By systematically interrogating 
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Figure 3. Regulatory networks and master regulators of Mesenchymal and Immunoreactive subtypes .  
(A) The Mesenchymal regulatory network showing the six MRs (square nodes) and all inferred targets 
(round nodes). (B) The Immunoreactive regulatory network showing the ten MRs (square nodes) and all 
inferred targets (round nodes). (C) The list of Mesenchymal and Immunoreactive MRs.
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subtype-specific regulatory networks, we further identified the transcriptional module and master reg-
ulators that drove the expression of Mesenchymal and Immunoreactive signatures. This approach led 
to the identification of novel transcription factors as potentially critical regulators of tumor-associated 
microenvironment, which also served as robust prognostic biomarkers of aggressive ovarian cancer.

We provided several complementary lines of evidence supporting that Mesenchymal and 
Immunoreactive signature genes were mostly expressed by tumor stromal components. First, tumor 
purity inferred by the ABSOLUTE or ESTIMATE algorithm was significantly lower in Mesenchymal 
and Immunoreactive samples than in Differentiated and Proliferative samples, suggesting that a higher 
stromal content was associated with the Mesenchymal and Immunoreactive subtypes. Second, analy-
sis of the expression profiles of microdissected ovarian cancer demonstrated that Mesenchymal and 
Immunoreactive gene signatures were significantly enriched in the stroma components in comparison 
to paired tumor tissues. Third, in nine pairs of ovarian tumors and matched patient-derived xenografts 
(PDXs), where human stroma was substituted by mouse stroma, Mesenchymal and Immunoreactive 
gene transcripts were depleted in PDXs. Notably, these findings were confirmed in multiple independent 
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Figure 4. Mesenchymal and Immunoreactive MRs correlate with tumor stroma and patient survival . 
(A) Heatmap of Mesenchymal and Immunoreactive MRs expression and ssGSEA scores for four molecular 
subtypes of TCGA samples. Binary scores were shown to indicate whether a tumor sample activated 
Mesenchymal or Immunoreactive MRs. Red, activated; black, not activated. (B) Mesenchymal and 
Immunoreactive MRs scores in microdissected tumor stroma (5 samples in GSE9890 and 31 samples in 
GSE40595) versus epithelial tissues (5 samples in GSE9890 and 32 samples in GSE40595). (C) Mesenchymal 
and Immunoreactive MRs scores in PDX versus matched primary tumors (9 samples). (D) Mesenchymal 
and Immunoreactive MRs scores in tumor metastasis versus primary tumors (9 paired samples).  
(E) Mesenchymal and Immunoreactive MRs scores in tumors treated with chemotherapy (34 samples) versus 
non-treated tumors (35 samples). (F) Kaplan Meier curves for three prognostic groups of TCGA samples 
classified by Mesenchymal and Immunoreactive MRs signatures. G. Kaplan Meier curves for meta-analysis 
of 749 HGS-OvCa expression profiles across five cohorts. H. Kaplan Meier curves for ‘immu +  mese− ’ and 
‘immu +  mese+ ’ patients.
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datasets, indicating that abundant stroma was an intrinsic feature of some HGS-OvCa samples rather 
than a technical artifact.

The four TCGA subtypes, namely Differentiated, Mesenchymal, Immunoreactive and Proliferative, 
were originally defined by specifically expressed genes in the clusters10. However, regulatory mechanisms 
at the molecular level remain to be discovered within each subtype, in order to elucidate causal drivers 
and to identify relevant targets for effective cancer treatment. We took a systems biology approach to gain 
insight into transcriptional networks associated with molecular subtypes and identified central transcrip-
tion factors as master regulators of Mesenchymal and Immunoreactive phenotypes. Our analysis iden-
tified ZEB1, ZEB2, SNAI2, PRRX1, AEBP1 and HOPX as Mesenchymal MRs, most of which had been 
implicated in epithelial-mesenchymal transition41, and IRF7, IRF9, IKZF1, IKZF3, BATF, ETV7, BTN3A3, 
SP140, HCLS1 and TFEC as Immunoreactive MRs, which were predominantly transcriptional regulators 
of immune function42–44. In line with stromal enrichment of Mesenchymal and Immunoreactive signa-
ture genes, Mesenchymal and Immunoreactive MRs were associated with noncancerous tumor stroma. 
It would be interesting to investigate the biological functions of these MRs in future studies.

Importantly, a statistically significant correlation was observed between the MRs and patient sur-
vival. In contrast, the simple classification into four molecular subtypes did not seem to have prog-
nostic relevance. It was previously shown that subtype assignment of HGS-OvCa expression profiles 
were not mutually exclusive20. Therefore, MRs might have increased power to detect Mesenchymal 
and Immunoreactive traits that were otherwise concealed by sample heterogeneity. Indeed, we found 
that Mesenchymal or Immunoreactive MRs were detectable in the majority of TCGA samples (78%) 
at different levels of activation. Furthermore, there is an emerging consensus that network-based bio-
marker candidates, especially with sound biologic rationale, often exhibit high reproducibility and sen-
sitivity in ovarian cancer45,46. The facts that stroma-associated MRs predicted clinical outcome and that 
Mesenchymal and Immunoreactive MRs differentially linked to opposite prognostic categories prompted 
us to deduce that the stromal composition and interplay might have a significant, if not major, contribu-
tion to the HGS-OvCa prognosis. These findings may reconcile controversies on the prognostic impor-
tance of HGS-OvCa molecular subtypes and propose a simple way to subgroup patients for accurate 
management. Further validation of stromal MRs in forecasting disease outcome will require prospective 
clinical studies, preferably using feasible assays that can process many samples on a routine basis, e.g. 
quantitative PCR or immunohistochemistry.

In addition to patient prognosis, we also found that Mesenchymal and Immunoreactive MRs were 
upregulated in tumor metastasis or in response to chemotherapy. Moreover, the Mesenchymal MRs com-
pound scores correlated with expression levels of multiple IGF-related genes, suggesting that the IGF 
pathway might be a druggable target in ovarian tumors with Mesenchymal MRs signature. Future stud-
ies should further elucidate the intricate relationship between tumor subtypes, MRs expression, tumor 
progression, response to treatment and patient outcome. For example, individuals with Immunoreactive 
MRs signature may benefit from treatments targeting tumor cells via the immune response, such as 
recently approved immune checkpoint inhibitors or vaccine therapies in the adjuvant setting. On the 
other hand, patients expressing Mesenchymal MRs exhibit poor outcome and probably need to be 
treated more aggressively with chemotherapy. We speculate that beyond disease prognosis, insights into 
stroma-associated MRs may contribute to the selection and development of new therapeutic strategies.

In summary, integrative analyses presented in this work determined the cellular and molecular under-
pinnings of HGS-OvCa subtypes. We provided evidence that infiltrating stromal cells had a profound 
effect on the expression patterns of HGS-OvCa, particularly Mesenchymal and Immunoreactive clus-
ters. A stroma-associated gene signature composed of transcriptional master regulators was inferred by 
unbiased reverse engineering algorithm, and proved to effectively stratify patients into different prog-
nostic groups. Therefore, systematic interrogation of genome-wide context-specific networks may not 
only advance our understanding of the regulatory programs underlying cancer phenotypes, but also 
enable accurate prediction of patient prognosis. Importantly, the MRs signature only consists of 16 genes, 
making clinical implementation using various gene/protein profiling platforms feasible. We envision that 
our findings should provide a basis for improved stratification of patients with HGS-OvCa that may 
ultimately lead to more precise therapies.

Methods
Microarray datasets. We used various microarray datasets of HGS-OvCa in the public domain. 
Combined and filter TCGA gene expression data were downloaded from https://tcga-data.nci.nih.gov/
docs/publications/ov_2011/. The five patient cohorts (Tothill, Crijns, Bonome, Yoshihara and Denkert) 
for meta-analysis have been described previously8,23,38–40, and processed data were downloaded from a 
recent report20. Other microarray datasets, including GSE9890, GSE15622, GSE30587 and GSE56920, are 
publicly available in NCBI GEO database.

Identification of molecular subtypes and signature genes. We classified TCGA HGS-OvCa 
based on non-negative matrix factorization (NMF) consensus clustering originally used to define the 
four molecular subtypes10. NMF is an unsupervised technique to reduce the dimensionality of gene 
expression data. A small number of metagenes are defined as a positive linear combination of many 
genes. The metagene expression patterns provide a robust clustering of samples47. The NMF classification 

https://tcga-data.nci.nih.gov/docs/publications/ov_2011/
https://tcga-data.nci.nih.gov/docs/publications/ov_2011/
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was confirmed using k-means clustering algorithm implemented in R package ‘ConcensusClusterPlus’48. 
The k-means clustering algorithm aims to classify a given dataset into k clusters, which have been speci-
fied a priori. The samples are assigned to the nearest k cluster centroids, and each cluster center is recal-
culated as the mean value of cluster members, followed by sample reassignment. This process is repeated 
until the distance between consecutive cluster centers converges. Both the NMF and k-means clustering 
methods yielded four robust transcriptomic clusters. To minimize the impact of outlier samples on the 
identification of subtype markers, the silhouette width was computed to filter out expression profiles 
with negative values, which excluded 101 samples that were not likely a robust representative of the sub-
class. To identify subtype-specific signature genes, we used significance analysis of microarrays (SAM) 
to identify genes significantly differentially expressed across the four subtypes. These genes were trained 
by prediction analysis for microarrays (PAM) to achieve the lowest prediction error, which resulted in 
the 749-gene signature (Supplementary Table S1). To validate the presence of four molecular subtypes 
in additional datasets, the 749-gene signature was applied to Tothill and Crijns cohorts, followed by 
consensus-based NMF analysis. Heatmaps were generated using GenePattern49.

GSEA and ssGSEA. Gene Set Enrichment Analysis (GSEA) was performed as described26, using 
Mesenchymal and Immunoreactive signatures as gene sets. We downloaded the GSEA software from 
the Broad Institute GSEA portal. Single sample GSEA (ssGSEA) was applied to generate compound 
scores for Mesenchymal and Immunoreactive master regulators as gene signatures31. The procedure was 
similar to GSEA but gene expression values were ranked for a given sample, and an enrichment score 
was calculated based on the normalized rank difference in Empirical Cumulative Distribution Functions 
(ECDF) of the genes in the signature and the remaining genes. We normalized the scores by the absolute 
difference between the minimum and the maximum for all samples within a dataset before combining 
ssGSEA scores across different datasets. The Gene Set Variation Analysis (GSVA) was performed to 
compare the enrichment scores produced by independent methods32.

Tumor purity analysis. For tumor purity analysis, we used two different previously validated 
approaches, ABSOLUTE and ESTIMATE24,25. The ABSOLUTE method predicts tumor purity based on 
the allelic copy-ratio profiles derived from SNP arrays. The ESTIMATE analyses quantify non-tumor 
constituents by identifying specific gene signatures related to the infiltration of normal cells in tumor 
tissues. Tumor purity inferred by the ABSOLUTE algorithm was obtained from the TCGA working 
group. ESTIMATE scores, which predict the level of infiltrating non-tumor cells, were calculated by 
performing ssGSEA as reported. We first defined stromal and immune scores based on the genes related 
to stromal tissue and immune cell infiltration, and then combined the stromal and immune scores as 
the ESTIMATE scores.

Transcriptional network inference and master regulator analysis. Combined and filter TCGA 
HGS-OvCa gene expression data were used to build a gene regulatory network. The analysis was conducted 
with Bioconductor package ‘RTN’30, which re-implemented ARACNe in R for reconstruction and analysis 
of transcriptional networks using mutual information (MI). Transcriptional regulatory units, termed reg-
ulons, were assembled by computing the MI between transcription factors (TF) and all potential targets 
using gene expression data, followed by multiple hypothesis testing corrections (Benjarnini-Hochberg). 
The TF list was derived from a previous publication50. Unstable TF-gene interactions were removed 
by bootstrap analysis, and Data Processing Inequality (DPI) algorithm was used to remove redundant 
interactions and preserve the dominant TF-gene pairs. In order to identify subtype-specific transcription 
factors, the Master Regulator Analysis (MRA) pipeline was applied to estimate the statistical significance 
of the overlap between the regulons and Mesenchymal or Immunoreactive signature genes using the 
hypergeometric distribution. GSEA was performed to validate the MRA results. For network visualiza-
tion we used the Bioconductor package ‘RedeR’51.

Survival analysis. To test the individual Mesenchymal and Immunoreactive master regulators as 
prognostic markers, we analyzed the hazard ratio of MRs expression and generated forest plots using 
the ‘curatedOvarianData’ Bioconductor package37. For meta-analysis of 749 HGS-OvCa expression pro-
files, ssGSEA compound scores of Mesenchymal and Immunoreactive master regulators were computed 
for each sample. The patients were dichotomized into a high-score and a low-score group, using the 
median ssGSEA score as the threshold value. Based on both Mesenchymal and Immunoreactive com-
pound scores, we stratified samples into three clusters, i.e. ‘immu +  mese− ’, ‘immu −  mese+ ’ and ‘mixed’. 
Overall survival curves were calculated using the Kaplan–Meier method, and statistical significance was 
assessed using the log-rank test. The analyses were conducted with the R Bioconductor ‘survival’ package.
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