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Abstract: Endothelial and epithelial barrier function is crucial for the maintenance of physiological
processes. The barrier paracellular permeability depends on the composition and spatial distribution
of the cell-to-cell tight junctions (TJ). Here, we provide an experimental workflow that yields several
layers of physiological data in the setting of a single endothelial cell monolayer. Human umbilical
vein endothelial cells were grown on Transwell filters. Transendothelial electrical resistance (TER) and
10 kDa FITC dextran flux were measured using Alanyl-Glutamine (AlaGln) as a paracellular barrier
modulator. Single monolayers were immunolabelled for Zonula Occludens-1 (ZO-1) and Claudin-5
(CLDN5) and used for automated immunofluorescence imaging. Finally, the same monolayers were
used for single molecule localization microscopy (SMLM) of ZO-1 and CLDN5 at the nanoscale for
spatial clustering analysis. The TER increased and the paracellular dextran flux decreased after the
application of AlaGln and these functional changes of the monolayer were mediated by an increase
in the ZO-1 and CLDN5 abundance in the cell–cell interface. At the nanoscale level, the functional
and protein abundance data were accompanied by non-random increased clustering of CLDN5. Our
experimental workflow provides multiple data from a single monolayer and has wide applicability
in the setting of paracellular studies in endothelia and epithelia.

Keywords: Alanyl-Glutamine; automated immunofluorescence imaging; cell monolayer; claudins;
endothelial cells; paracellular permeability; single molecule localization microscopy; tight junctions;
Transwell; Zonula Occludens-1

1. Introduction

The study of epithelial and endothelial barrier permeability is critical for understand-
ing basic physiological functions that are seminal for sustaining physiological cell and
organ function. Processes like the reabsorption and secretion of water, ions, and nutrients
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in the nephron and gastrointestinal tract, as well as the filtration of plasma in the areas
of capillary vascular beds, rely on the proper function of the associated epithelial and
endothelial barriers [1]. The permeability characteristics of such barriers are defined by the
transcellular and paracellular route of water, small molecules, and ion transport [2].

Transcellular permeability necessitates the function of the basolateral Na+-K+-ATPase
that sustains low intracellular Na+ concentrations (around 10 mM) and thus maintains
an electrochemical gradient between the extracellular and the intracellular compartments
allowing for the function of apically located ion channels, cotransporters, and antiporters
that mediate ion, water, and small molecule absorption and secretion [3]. This process also
requires the polarization of the epithelial and endothelial monolayers that is ensured by
the function of tight junctions (TJ) [4]. Through their “fence” function, TJ ensure that no
lateral diffusion of transmembrane proteins, e.g., ion channels, transporters, or pumps, can
occur from the apical to the basolateral side of the cell membrane (and vice versa), thus
maintaining an asymmetry of distribution of such molecules and along with the function
of Na+-K+-ATPase, a potential difference between the two sides of the monolayer [5]. This
implies that the paracellular molecular machinery is essential for proper epithelial and
endothelial barrier function.

TJs are the molecular counterparts of the paracellular barrier formation and consist of
claudins (a protein family with 27 members), junctional adhesion molecules (JAMs), and
accessory proteins that are located in the intracellular compartment of TJ and mediate the
connection of TJ with the actin cytoskeleton. Zonula occludens proteins (ZO1-3) are the
most important ones [6]. Depending on the composition of the TJ in terms of Claudins
and JAMs, a barrier can be variably permeable to water, ions and small molecules [7].
The paracellular route can be divided in two pathways, namely the pore pathway that
modulates the passage of ions and water in a charge and size selective manner and the
leak pathway that modulates the passage of ions and small molecules in charge and size
non-selective manner [8]. At the ultrastructural level, the TJ comprise a highly ordered,
dynamic in nature, belt-like meshwork of anastomosing strands that encircle cells at the
proximal apical membrane side [6]. Changes in the TJ composition (i.e., stoichiometry of
claudin types in the complex) are also accompanied by re-organization at the ultrastructural
level [9–12]. Pro-inflammatory cytokines and reactive oxygen species are modulators of
the TJ [13–17].

The current methodological approach to study the paracellular permeability in vitro
involves the development of cell monolayers on Transwell porous filters by monitoring the
electrical resistance until a plateau is reached (i.e., monolayer is confluent). Subsequently,
chemical stimuli are applied and then the resistance changes are measured as a function
of time. Increase in the resistance implies that the monolayer becomes tighter, and a less
ionic current can pass paracellularly [18,19]. With the same setup, a fluorescently labelled
dextran can be added on the apical compartment and its leakage into the basolateral
compartment can be measured at given time points, in order to assess changes in the small
molecule paracellular permeability [20]. Different sizes of dextrans (4 kDa to 2000 kDa)
can provide evidence regarding the increase or decrease in the leakage of small molecules
and macromolecules. Although this approach provides important information, it does not
provide any evidence regarding the paracellular pathway changes on the molecular level.
This is achieved when, at the end of an experiment as described above, ordinary or confocal
microscopy immunofluorescence is performed on the filter probing with antibodies against
specific claudin or ZO proteins [21,22]. Moreover, there is still no information provided
regarding the ultrastructural organization of TJ. In most cases, these data have been
produced when the monolayers are subjected to transmission electron microscopy (TEM)
or freeze fracture electron microscopy (FFEM) in order to visualize the ultrastructural
morphological changes in the interface of adjacent cells with high resolution, but in this
case an evaluation of specific TJ proteins is not possible as a totally different sample
preparation procedure is required [23,24]. Recent advances in single molecule localization
microscopy (SMLM) have provided opportunities for a more in-depth assessment of TJ
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changes with high spatial resolution as recently illustrated in studies involving ZO-1 in
human endothelial cells [25]. This approach allows for the use of monolayers grown in
filters after being subjected to TER, dextran leakage measurements, and immunostaining for
specific TJ molecules [25,26]. Combining these methods in one experimental setting should
circumvent inter-experimental variations and allow for combined analyses of specific TJ
expression and localization, functional studies, and single molecule cluster analyses in a
matched manner.

In this paper we provide an experimental workflow that combines functional studies
(TER and dextran permeability measurements) with immunofluorescence and with SMLM
probing for ZO-1 and CLDN5 in the same human endothelial cell monolayer. To provide
proof of the concept, we treated the endothelial cells with Alanyl-Glutamine (AlaGln), a
dipeptide that tightens the paracellular barrier [25].

2. Results
2.1. Transendothelial Resistance and Paracellular Dextran Permeability Assay

Primary human umbilical vein endothelial cells (HUVEC) were seeded on polyester
(PE) or polycarbonate (PC) Transwell filters. In parallel, HUVEC in the same plating
density were seeded on coverglasses placed in a 12-well cell culture plate in order to
be used in the subsequent immunocytofluorescence steps along with the filters. While
values of the blank Transwell filters (filters without cells being bathed by cell culture
medium only) differed between PE (121 ± 4 Ω) vs. PC (88 ± 5 Ω, p < 0.001) filters, the
resulting baseline resistance reached by the HUVECs after correction for the blank value
was similar (12.9 ± 3.5 vs. 13.2 ± 1.6 Ω cm2; p = 0.85 in PE vs. PC filters). After cells have
formed a confluent monolayer, baseline TER was measured and medium was exchanged
for treatment solution. We incubated HUVECs with 24 mM AlaGln, known to induce
the tightening of endothelial barriers [25]. After one hour, TER was measured again and
the treatment solutions were exchanged to contain FITC labeled dextran (10 kDa) and
incubated for four hours. HUVECs grown on coverglasses were also treated with AlaGln for
five hours. After one hour of incubation with medium supplemented with 24 mM AlaGln,
transendothelial resistance of HUVEC monolayers increased by a factor of 1.30 ± 0.22 (i.e.,
TERt/TERINITIAL) relative cells incubated with medium only (p = 0.013; Figure 1A). After
five hours, the increase was similar (1.41 ± 0.21 compared to control (medium incubated
cells, p = 0.049; Figure 1B). After the one-hour time point, 10 kDa FITC dextran was added
to the apical medium of the Transwell and the transport to the basolateral compartment
was measured four hours later. In AlaGln exposed cell monolayers, 10 kDa FITC dextran
concentration in the basolateral compartment was reduced to 31.7 ± 0.07% in comparison
to control cells (p = 0.016; Figure 1C). These results demonstrate that AlaGln tightens the
paracellular barrier.

2.2. Immunofluorescence Probing for ZO-1 and CLDN5

Co-staining of ZO-1 and CLDN5 was performed on the same Transwell filters used
for the functional analysis. Monoclonal antibodies conjugated to secondary antibody
(Alexa 647, 555 or 488) or polyclonal antibodies stained with secondary Alexa-antibody
against the host species of the primary antibody were used. Alexa 488 conjugated antibodies
were excluded, because of the highest autofluorescence background signal of the filter at
488 nm excitation. Filters were cut out from the Transwell plastic and mounted a glass slide.
Controls and treatment conditions were mounted on the same glass slide to ensure equal
microscopy settings. Coverglasses were mounted in the glass slides likewise. Automated,
z-stacks based imaging of filters/coverglasses was performed on the ACQUIFER Imaging
Machine. Images were acquired for all channels and were processed afterwards with
specialized software (see Methods).
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Figure 1. Functional endothelial cell monolayer characterization under the influence of 24 mM
AlaGln (AG). The transendothelial resistance (TER) was measured at one (A) and five (B) hours of
AlaGln incubation. FITC-dextran (10 kDa) was introduced apically at time 1 h post AG incubation
and its transport to the basolateral compartment was measured after 5 h (C). Incubation with 24 mM
AG resulted in increase of TER after 1 and 5 h, while the 10 kDa FITC dextran transport was reduced.
M = control medium. Data are presented as mean ± SD, n ≥ 6, * p < 0.05.

As shown in Figure 2, after imaging of the whole area at 2×magnification, five ran-
domly chosen regions (representing 15% of the whole filter area) were automatically imaged
with 20× objective using the same specifications (illumination power and exposure time).
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Figure 2. Automated imaging of the filter. Endothelial cells either grown on polycarbonate (PC) Transwell filter, polyester
(PE) Transwell filter or on glass slide were stained and analyzed by automated imaging. First, the whole filter/slide area
was imaged in 2×magnification. 4′,6-Diamidin-2-phenylindol (DAPI) staining was used to find focal plane (A). 5 randomly
selected areas (squares) were further imaged with a 20× objective with excitation wavelengths of 385 nm (B, DAPI), 555 nm
(C, Alexa 555) and 647 nm (D, Alexa 647). Grey scale pictures from PC filter are shown for all channels. Scale bar = 100 µm.

Ten z-stacks were acquired (image distance 3 µm), and maximum intensity projection
was carried out prior to analysis. Fluorescence intensity was quantified on grey scale
images with Fiji, and at least 10 random junction areas per image were analyzed. The
analysis was repeated with the complete filter area. For this purpose, 100 images with 10%
overlap were obtained and stitched together with an in-house stitching script [27].

Treatment with AlaGln increased ZO-1 (27.3± 14 vs. 19.5± 12 A.U. with medium con-
trol; p = 0.01) and CLDN5 intensities (29 ± 17 vs. 12.4 ± 10 A.U.; p < 0.0001) at the junction
areas (Figure 3). Comparable differences between AlaGln and medium treated monolayers
were obtained when the whole filter area was analyzed (ZO-1 intensity 0.63 ± 0.29 A.U.
after 24 mM AlaGln exposure vs. 0.51 ± 0.23 A.U. in medium; p = 0.04 and CLDN5
0.68 ± 0.25 A.U. vs. 0.44 ± 0.33 A.U. in medium only; p = 0.007). The results did not differ
between PE and PC filters.
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Figure 3. Visualization and quantification of tight junction protein. Immunocytochemical staining of
Zonula Occludens-1 (ZO-1) and claudin-5 (CLDN5) in HUVEC monolayers on the same PC filters
that were used for the TER and paracellular dextran permeability functional studies. In the upper row
medium incubated HUVECs are shown and in the lower row HUVECs incubated with 24 mM AlaGln
(AG) are shown (A). Immunofluorescence of ZO-1 and CLDN5 in the junction areas was quantified
(z-stack spacing 3 µm). Scale bar = 100 µm. The quantification of AG treatment vs. medium control
for ZO-1 is shown in (B) and for CDLN5 in (C).

HUVEC grown on coverglasses showed a similar tendency towards increase in junc-
tional ZO-1 with AlaGln (26.3 ± 14 vs. 19.7 ± 11 A.U. with medium, p = 0.07). However,
CLDN5 was not different (20.3 ± 11 vs. 18.0 ± 10 A.U., p = 0.48). Thus, in PC filters, a
better discriminatory capacity was probably due to better polarization of the monolayer
was achieved.

Next, we analyzed in how far staining results were influenced by characteristics of the
antibodies. While ZO-1 was available as monoclonal Alexa conjugated antibody detectable
in several excitation wavelengths (488, 555, and 647 nm), CLDN5 antibody was only
available conjugated to Alexa 488. While ZO-1 abundance changes after the incubation
with 24 mM AlaGln were comparable, independent of the antibody and conjugate used,
the corresponding CLDN5 changes were only detected with the monoclonal antibody at
555 nm, but not the polyclonal antibody at 647 nm (Table 1). Antibodies labelled with
Alexa 488 did not prove suitable for localization microscopy in preliminary experiment
and were therefore not used further.
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Table 1. Immunofluorescence intensity quantification (in arbitrary units; A.U. grey scale image fluo-
rescence signal normalized to analyzed area) performed on maximum z-projection after incubation
with 24 mM AlaGln for 24 h. Antibodies with different characteristics were used to quantify ZO-1
and CLDN5 abundance either on the whole image or limited to junction area at the cell-cell contact
and resulted in similar findings for ZO-1, but not for CLDN5.

Quantification of Immunofluorescence Intensity.

ZO-1 (Conjugated) CLDN5 (Unconjugated)

monoclonal monoclonal monoclonal polyclonal
555 nm 647 nm 555 nm 647 nm

Whole
Medium 0.32 (±0.16) 0.25 (±0.15) 0.11 (±0.06) 0.6 (±0.3)

24 mM AlaGln 0.6 (±0.3) 0.59 (±0.19) 0.65 (±0.29) 0.6 (±0.3)
p-value 0.0013 0.005 0.001 0.85

Junction
Medium 19 (±12) 20 (±12) 12.7 (±7.5) 30 (±19)

24 mM AlaGln 35 (±20) 25 (±11) 29.5 (±13.6) 26 (±14)
p-value 0.048 0.095 <0.0001 0.67

2.3. SMLM for Localization of ZO-1 and CLDN5 Clustering

TJ function depends on the spatial organization of the belt-like structures, thus abun-
dance measurements with immunofluorescence are only partially informative [7]. There-
fore, following the automated imaging described above, the same filters (cell monolayers)
were further analyzed by SMLM [25,28]. Due to the intrinsic property of Transwell filters
to exhibit higher background autofluorescence, we repeated the analysis with HUVECs
grown on coverglasses in parallel. The imaging results were comparable with those for IF
and SMLM imaging. Coverglasses had the least background, followed by polycarbonate
(PC) and polyester (PE) filters.

Single molecule quantification and cluster analysis was performed separately for
each channel. Two critical observations for the optimal outcome of the experiments were
that (a) the combination of ZO-1 555 and CLDN5 647 antibodies did not produce a suffi-
cient number of blinking events, therefore monoclonal antibodies against ZO-1 647 and
CLDN5 555 were used for the SMLM and (b) double channel imaging was not possible
in case of PE filters, because of the high autofluorescence background. In AlaGln treated
monolayers (1.30 × 10−4 ± 0.11 × 10−4) ZO-1 molecules/nm2 were counted compared
to (1.20 × 10−4 ± 0.09 × 10−4) in monolayers incubated with medium only (p = 0.242).
CLDN5 counts were (2.23 × 10−5 ± 0.33 × 10−5) molecules/nm2 in AlaGln treated vs.
(8.56 × 10−5 ± 0.62 × 10−5) molecules/nm2 in medium treated cells (p < 0.0001). Depend-
ing on the size and structure of the individual TJ, ROIs of different sizes were selected to
match the TJ form as closely as possible. Therefore, comparing absolute fluorophore count
values is not valid in this case and count values were normalized for area for comparisons.

SMLM of HUVEC monolayers on the PC filters revealed increased clustering of
CLDN5 molecules after five-hour treatment with 24 mM AlaGln, while no significant
change was observed for ZO-1 (Figure 4). In the presence of AlaGln, the relative frequency
of CLDN5 molecule clusters was significantly higher in the range of 40 nm, which suggests
a more organized and less permeable TJ belt, as CLDN5 is a known endothelial barrier
protein. This corroborates the findings of the functional analysis in the Transwell monolayer
(TER and dextran flux) as well as the immunocytofluorescence findings of more CLDN5
being present at the junctional interface of the cell–cell contacts. The AlaGln induced
increased clustering, which was similar when the analysis performed was limited to the
cell junction area only and when glass slides were analyzed. When PE filters were used,
no differences in the clustering of ZO-1 and CLDN5 were detected, most likely due to the
high background autofluorescence of the PE filter reducing the sensitivity of the method.
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Figure 4. Cluster analysis following single molecule localization microscopy. ZO-1 (A) shows comparable frequency of clusters at
40 nm after AlaGln treatment, while clustering it was increased for CLDN5 (B) compared to medium treated HUVEC. Left: Widefield
images of contact zones. Scale bar = 1µm. Middle: Pointillist images of contact zones created by SMLM Right: Ripley’s pairwise
distance frequency histograms indicating cluster formation (peak at smaller distances) in a dispersed environment.

Immunofluorescence images are randomly selected and cover a large area of the
filter, but provide information on the overlapping of ZO-1 and CLDN5 with limited
localization precision and resolution only. SMLM colocalization studies demonstrated
the single, distinct ZO-1 and CLDN5 molecules, and their precise spatial distribution and
colocalization (Figure 5). Colocalization was defined as the distance of fluorophores of
different wavelengths within 90 nm. This range considers the size of two antibodies with
fluorophores and their possible minimal distance. To determine the spatial organization of
ZO-1 (shown in blue) and CLDN5 (shown in green), the distances between individual ZO-1
molecules and individual CLDN5 molecules were quantified up to a distance of 400 nm.
Ripley’s pairwise distance frequency histograms indicated an organized clustering of the
colocalized ZO-1 and CLDN5 molecules. Their distribution however, was not affected by
AlaGln supplementation (Supplementary Figure S1). The amount of colocalized molecules
was quantified in both ZO-1 and CLDN5 channels. The percentage of CLDN5 molecules
co-localized to ZO-1 was (42.4 ± 4.7)% in AlaGln treated cell compared to (46.1 ± 6.5)% in
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medium treated monolayers (p < 0.001). The percentage of ZO-1 molecules co-localized
to CLDN5 was (11.4 ± 1.5)% in AlaGln treated cells vs. (25.4 ± 3.8)% in medium treated
cells (p = 0.160), reflecting the much higher abundance in CLDN5 than ZO-1 in response to
AlaGln (Figure 5).
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2.4. Integration of the Multiple Stepwise Tight Junction Analyses of a Single Experiment

The four-step experimental workflow performed on the same Transwell filter is sum-
marized in Figure 6. Primary HUVECs were seeded on PC Transwell filters and monitored
until a confluent monolayer with stable TER was achieved. Then, the specific intervention
was introduced (addition of 24 mM AlaGln containing medium) and the changes in TER
were monitored along with the paracellular flux of a fluorescent dextran as a function of
time. Thereafter, the same monolayers were fixed and probed with appropriate antibodies
for immunocytofluorescence against the TJ components ZO-1 and CLDN5 and changes in
the according fluorescence intensity were recorded by automated z-stack fluorescence anal-
ysis of the 10% of the monolayer. Spatial clustering and colocalization of the components
of the TJ under study were then analyzed by SMLM in the same filter.
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Figure 6. Integration of the stepwise experimental workflow for in-depth TJ study in endothelial cells. HUVECs were
grown on PC Transwell filters, and the transendothelial resistance (TER) of the monolayer was measured with a volt/ohm
meter until confluence. (Step 1): After confluent monolayer formation, experimental solutions were added and TER
changes along with 10kDa FITC dextran paracellular transport were monitored for a 4-hour period. (Step 2): Subsequent
immunofluorescent staining was performed on the monolayer in the PC Transwell filter with different fluorescently labeled
antibodies. (Step 3): Automated immunofluorescence intensity analysis was performed from a z-stack by the ACQUIFER
Imaging Machine comprising 10% of the entire insert. (Step 4): The same filter was subjected to single molecule localization
microscopy (SMLM) followed by image processing of the junction area. Image processing algorithms were employed in
order to assess the clustering of the TJ proteins of interest. The Figure was constructed with BioRender.com (accessed on 17
March 2021).

3. Discussion

Endothelial cells form the inner monolayer vesting the vessels throughout the car-
diovascular system and provide a well-regulated barrier, important for the provision of
the underlying tissues with oxygen, nutrients, and for the removal of cell metabolites and
toxins [29]. The polarization of endothelial cell monolayers is critical for their absorptive
and/or secretory functions as well as the prevention of pathogens entering the systemic
circulation [30,31]. The tight junctions are a dynamic structure that can be reorganized
depending on the external stimuli in a way that the paracellular permeability can adapt
to the required characteristics of diffusion restriction [32]. The way claudins interact with
other TJ machinery components such as the zonula occludens (ZO) adaptor proteins is an
area of great scientific interest and requires methodologies providing functional analyses
together with high spatial and temporal resolution [6]. In several pathological conditions,
like anaphylaxis or sepsis, the disruption of the endothelial TJ is a hallmark of disease
severity and progression since the leakage of proteins to third spaces will follow and induce
interstitial and organ oedema that can be fatal for the patient [33–35]. Therefore, a thorough
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understanding of the mechanisms underlying this disruption and the investigation of
potentially therapeutic compounds is of great interest.

In the current study, we have presented an experimental workflow that allows for the
in-depth and comprehensive study of the paracellular pathway properties from a single
endothelial monolayer. We have combined TER, paracellular dextran flux, immunofluores-
cence for TJ abundance estimation, and SMLM for the assessment of TJ spatial organization
profile in endothelial cells. In this context, we chose to investigate the important endothelial
TJ components CLDN5 and ZO-1. In order to demonstrate the validity of our findings,
we have used AlaGln, a dipeptide that has been reported to seal the TJ in endothelial
cells [25]. Indeed, under the effect of AlaGln, it was shown that the TER increased along
with a concomitant decrease in the paracellular flux of 10 kDa FITC dextran at 4 h post
incubation. Another layer of information was provided by means of automated immuno-
cytofluorescence analysis, showing that this effect was mediated by the increase in the
fluorescent intensity of both ZO-1 and CLDN5 in the junctional areas. Altogether, these
data indicated that AlaGln tightened the endothelial barrier. The subsequent SMLM anal-
ysis demonstrated that this phenotype was not only a result of higher ZO-1 and CLDN5
abundance, but a key for functional properties, also a result of the enhanced clustering of
CLDN5 in the cell–cell area. Thus, our approach can provide a functional, temporal, and
spatial description of the paracellular permeability changes that occur in the TJ under the
influence of a certain stimulus in the context of one single monolayer.

Currently, the methodological approaches for assessing the paracellular permeability
of an epithelial or endothelial monolayer mainly involve the measurement of TER and
paracellular fluorescently labelled dextran fluxes [18–20]. These studies provide infor-
mation concerning the ionic current passing through the monolayer and its leakage to
macromolecules. However, no information on the underlying molecular mechanisms of
these changes can be provided. For such change, Western blot or immunofluorescence
studies can be performed [21,22]. The first approach provides information on the global
abundance of a TJ protein in the cell monolayer, which can be narrowed by blotting the
cell membrane fraction of the monolayer only. This provides a quantitative measure of the
specific cell-to-cell changes of the monolayer, but it is a laborious procedure that requires
a large number of cells [36]. Immunofluorescence provides similar results with the same
cell membrane fraction as Western blotting, as well as a better visual understanding of
the associated changes. A better description of the localization and associated changes
of the TJ proteins could be acquired by confocal microscopy performed on the mono-
layer in the Transwell filter [22]. Automated imaging provides the possibility to analyse
large amounts of samples simultaneously and is time-efficient compared to other imaging
techniques. Moreover, confocal microscopy, which is a standard imaging method in TJ
analysis, providing Z stack-based analysis covering the whole range from basolateral to
apical sides of the cell, may result in fluorophore bleaching. Thus, imaged monolayers
cannot be used for further analysis like SMLM due to the higher laser power needed for
visualization [37]. For the generation of data at the ultrastructural level of TJ, either TEM
or FFEM is employed, but the evaluation of specific TJ molecules is not possible as a totally
different sample preparation procedure is required [23,24]. Recent advances in SMLM
have provided opportunities for a more detailed assessment of the TJ changes with high
spatial resolution, as we have recently demonstrated in studies involving ZO-1 in human
endothelial cells [25]. In such a case, the standard preparation for immunofluorescence
on the monolayer is required allowing for the serial combination of different techniques
prior to the SMLM experiment [26]. This approach, therefore, allows for the use of a
single monolayer grown on Transwell filters after being subjected to TER, dextran leakage
measurements, and immunocytofluorescence staining for specific TJ molecules, to be used
for the evaluation of the TJ changes on the nanoscale.

Our experimental workflow provides several advantages. Fewer experiments are
needed to collect all the relevant results, and this way the variability among experiments
using two or three different monolayers is eliminated, and powerful paired statistical
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analysis can be performed [38,39]. The issue of reproducibility in life sciences has long
been debated and adopting approaches that yield several experimental results from a
single experimental setup leads to more robust results and a reduction in the associated
costs. Primary cells are usually preferred, but this imposes a pressing need for performing
experiments within the first few passages to prevent bias by cell dedifferentiation [40,41].
The application of our experimental workflow that increases the output of results is of con-
siderable advantage. On the same note, as the 3R (replacement, reduction and refinement)
principle is further adopted in research laboratories, our experimental workflow can be an
asset in studies where primary cell cultures are derived from animal models of disease [42].
Lastly, our experimental workflow is widely applicable in practically all cell types that
form monolayers, and paracellular permeability and TJ study is of value, e.g., in epithelial,
mesothelial, and endothelial cells [43]. The fact that PC filters were shown to be suitable
for this workflow suggests that, with small modification, this workflow could be used in
Ussing chamber experiments where Snapwell PC filters are used.

The limitations of the proposed experimental workflow include the fact that it is
currently challenging to obtain access to automated immunofluorescent imaging systems
like ACQUIFER and to SMLM facilities. However, these technologies will be progres-
sively more accessible. A future challenge is to broaden the possibilities of the automated
immunofluorescence and SMLM analyses, e.g., to three TJ components studied in terms
of colocalization.

4. Materials and Methods
4.1. Cell Culture

Human umbilical vein endothelial cells (HUVEC) were commercially purchased
(PromoCell, Heidelberg, Germany) and kept in endothelial cell growth medium with
supplement and antibiotics (PromoCell, Heidelberg, Germany) in an incubator at 37 ◦C
and 5% CO2. All experiments were performed on cells within the first 5 passages.

4.2. Trans-Endothelial Resistance

To establish a model of HUVEC monolayers in vitro, a cell suspension (5 × 104 cells/cm2)
was seeded and cultured on a polyester/polycarbonate mesh (Transwell, 0.4 µm pore
size, 12-well type; Costar, MA, USA) using standard culture conditions. The apical and
basolateral chambers of the Transwell were filled with 0.2 mL and 1 mL culture medium,
respectively. Transendothelial electrical resistance (TER) was measured daily using an
EVOM volt ohm meter equipped with STX-2 electrodes (World Precision Instruments,
Sarasota, FL, USA). The electrodes were inserted into both ends of the mesh. An alternating
current of less than ±20 µA was applied between the electrodes at a frequency of 12.5 Hz.
To calculate the normalized TER of each monolayer, the background TER of a blank filter
was subtracted from the TER of the respective cell monolayer. The resistance of each
monolayer was multiplied by the effective surface area (0.33 cm2) corresponding to the
filter size in order to obtain the electrical resistance of that monolayer (in Ω·cm2). The
treatment was initiated when each monolayer was fully formed as demonstrated by a
plateau in the TER (4–6 days post-seeding), and the baseline TER was >10 Ω·cm2. The data
are presented as % fold change of the cells cultured in standard culture conditions (control).

4.3. Paracellular Endothelial Barrier Dextran Transport Assessment

The paracellular permeability of the HUVEC monolayers was determined by measur-
ing the flux of 10 kDa fluorescein isothiocyanate (FITC) labelled dextran (obtained from
Sigma Aldrich, Taufkirchen, Germany) from the apical to the basolateral compartment
of a Transwell chamber as a function of time. More specifically, 1 mg/mL was added
in the apical compartment of a Transwell chamber and the increase of the fluorescence
intensity in the basolateral Transwell compartment after 4 h. An equimolar amount of
unlabeled dextran was added to the basolateral compartment of the transwell system to
maintain an isotonic condition. At 4 h after the addition of the 10 kDa FITC-dextran, a
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10 µL volume of each sample was collected from both sides of the chamber. Each sample
was assessed using a fluorescence spectrophotometer (F-2000; Hitachi, Tokyo, Japan) at
an excitation wavelength of 490 nm and an emission wavelength of 520 nm. A calibration
curve was established and used for the calculation of the amount of FITC dextran, which
was transported to the lower compartment. Results are presented as % fold change of the
cells cultured in standard culture conditions (control).

4.4. Immunostaining

Coverglasses/filters were fixed in absolute ethanol at −20 ◦C for 5 min, washed,
permeabilized (0.5% Triton X in PBS for 10 min), washed again and blocked (5% bovine
serum albumin in PBS) for 1 h at room temperature (RT). Incubation with the primary
antibody was performed overnight at 4 ◦C. The appropriate secondary fluorescent antibody
was added on the next day for overnight at 4 ◦C. For double-staining, coverglasses/filters
were fixed again with 4% PFA for 20 min at RT, washed and incubated again with the
primary antibody. Polyclonal antibodies were incubated first. Nuclei were stained with
DAPI (1:1000). After washing, the filters were cut out from the plastic by a needle tip, put
on glass slide, covered with Prolong Gold (Thermo Fischer Scientific, Dreieich, Germany)
and let harden at least for 24 h at RT in the dark and kept at 4 ◦C until analysis. PBS
(1.25 mM Ca++and 1.75 mM Mg++ was used to stabilize the cell membranes throughout
the staining procedure.

4.5. Automated Imaging and Image Analysis

Fully developed HUVEC monolayers were used for automated immunofluorescence
imaging of ZO-1 and CLDN5 on an ACQUIFER Imaging Machine, a widefield high-content
screening microscope (ACQUIFER Imaging GmbH, Heidelberg, Germany). The Imaging
Machine is equipped with NIKON objectives, a white light emitting diode (LED) array for
brightfield imaging combined with a LED fluorescence excitation source, a HAMAMATSU
sCMOS camera (resolution 2048 × 2028 pixels), and an immobile microplate slot with a
temperature controller. A key feature is the moving optics that are software controlled
and allow for precision imaging with no platform drift. The focal plane was detected
in the 4′,6-Diamidin-2-phenylindol (DAPI) channel (385 nm) using a built-in software
autofocus algorithm. Filters and coverglasses were embedded in Prolong Gold and fixed
on glass slide. Medium controls and AlaGln treated cells were put on one glass slide for
the imaging.

For each condition z-stack images (10 slices with 3 µm slice distance) using excitation
light of 385 nm, 555 nm and 647 nm were acquired using a 20× NA 0.45 objective. The
filter emission detection ranges are: 415–480 nm, 580–640 nm, and 660–710 nm. Integration
times were fixed at 100% relative LED intensity and 200 ms exposure time for 555 nm and
647 nm channels, and 40% relative LED intensity and 20 ms exposure time for the DAPI
channel.

Post imaging analysis was performed using Fiji software (GPL v2) [44]. Greyscale
images were used to create z-stack projections using maximum intensity method to obtain
a clear signal from cell membrane areas. Ten stacks were used for every condition. Ten
different areas per condition were analyzed, and data are presented as intensity from grey
scale image/analyzed area. Secondary analysis was limited to the tight junction areas. For
this purpose, cell membranes were annotated manually, while intensity was measured and
corrected for analyzed area to obtain a final result.

4.6. Single Molecule Localization Microscopy (SMLM)

For the SMLM experiments, a custom-made apparatus based on an iMic microscope
(Till Photonics, FEI) was used [36,45,46]. The SMLM system is equipped with an Acousto-
Optical-Tunable-Filter (AOTF), a variable beam expander (Standa Ltd., Vilnius, Lithua-
nia), a Flat-Top-Profile forming optics—PiShaper (AdlOptica GmbH, Berlin, Germany),
a 100×/NA 1.46 oil plan apochromatic objective lens (Carl Zeiss Microscopy, Göttingen,
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Germany) and four lasers: 405, 491, 561, and 642 nm with maximal laser power of 120,
200, 200, and 140 mW, respectively. In our study, 561 nm laser was used at 70% output
power (corresponding to 150 mW) and 642 nm laser at 100% output power (140 mW),
respectively. The system was maintained free from environmental influences by ther-
momechanical stabilization (±10−2 K), constant monitoring of the temperature in the
measurement environment and liquid cooling of the main critical components. The SMLM
measurements were initiated after allowing an hour for thermal equilibrium used in order
to avoid thermal expansion effects. The fluorescent light was recorded by an iXon Andor
Ultra EMCCD camera (Andor Technology, Belfast, Northern Ireland) (80 nm/px, EM-gain
set to 100). To allow for comparisons among measurements, the following automatized
image acquisition protocol was employed: After a 10 s and 20 s flash at 150 mW and
140 mW, respectively, fluorophores were set into a reversible bleached state. Subsequently,
2000 images (100 ms integration time) were recorded and stored as a 16-bit grey-scale
*tiff image stack. In addition to the SMLM data stack, a widefield image of the relevant
specimen region was recorded.

4.7. SMLM Data Analysis

SMLM data analysis was performed with and in-house developed python-based
package and the use of MATLAB software [28,47]. Noise reduction was achieved by the use
of a threshold of 3 and discarding the first 30 frames of each time-stack. Following visual
inspection, masks were interactively determined in order to limit analyses to membrane
areas of neighboring cells. The programs detect the position of the blinking dye molecules,
use a 2D Gaussian to calculate their position, and compile a matrix containing the signal
amplitude, the x- and y- coordinates, and the corresponding errors. Based on this matrix,
relative pairwise distance distribution histograms (0–200 nm) for Ripley’s structuring
analysis [28], signal counts, and pointillistic images of the CLDN5 and ZO-1 stained
junction areas between two endothelial cells were created.

4.8. Statistical Analysis

Experiments were performed at least 4 times in at least 3 replicates. Data are pre-
sented as mean ± standard deviation (SD) after being checked for normal distribution
(Shapiro–Wilk test and graphically). For image analysis, at least 10 random areas per
condition were analyzed (final n = 40). Histograms were created from 20 different spots
per treatment condition. A two-sided student´s t-test was used for statistics, p < 0.05 was
considered significant.

5. Conclusions

In conclusion, combining different methods, like the Transwell monolayer TER moni-
toring and solute transport studies, with digital, total cell layer immunocytochemistry, and
single molecule localization microscopy provides a multi-level approach which eliminates
the background noise of inter-experimental variation and overcomes the limitations of
each method by the provision of respective complementary information. Our novel experi-
mental workflow should allow for more in-depth analyses in complex processes such as
paracellular solute transport across TJ and the structural and functional modulation by
respective compounds.
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