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Abstract

One hallmark feature of consolidation of episodic memory is that only a fraction of original information, which is usually in a
more abstract form, is selected for long-term memory storage. How does the brain perform these differential memory
consolidations? To investigate the neural network mechanism that governs this selective consolidation process, we use a set
of distinct fearful events to study if and how hippocampal CA1 cells engage in selective memory encoding and
consolidation. We show that these distinct episodes activate a unique assembly of CA1 episodic cells, or neural cliques,
whose response-selectivity ranges from general-to-specific features. A series of parametric analyses further reveal that post-
learning CA1 episodic pattern replays or reverberations are mostly mediated by cells exhibiting event intensity-invariant
responses, not by the intensity-sensitive cells. More importantly, reactivation cross-correlations displayed by intensity-
invariant cells encoding general episodic features during immediate post-learning period tend to be stronger than those
displayed by invariant cells encoding specific features. These differential reactivations within the CA1 episodic cell
populations can thus provide the hippocampus with a selection mechanism to consolidate preferentially more generalized
knowledge for long-term memory storage.
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Introduction

The hippocampus plays a crucial role in converting recent

episodic events into long-lasting memories, a process termed

memory consolidation [1–5]. While our brains can recall a great

amount of detail immediately after the event (within the time

domain of short-term memory), there appears to be a gradual loss of

many specific details in the domain of long-term memory [1,6,7]. In

other words, long-term memory eventually contains only partial

information about the original experiences, usually retaining more

general and abstract information rather than a full set of specific

details. Two major possibilities could underlie such biased memory

storage processes: 1) the brain somehow preferentially consolidates

general information over specific information (selective consolida-

tion hypothesis); 2) both general and specific information are

initially equally consolidated, but specific details somehow degrades

more easily over time than does general information (degradation

hypothesis). In the present study, we investigate if and how the

hippocampus may engage in differential consolidation of memory

patterns that were triggered by robust episodic events.

Since the hippocampus is well known for its crucial role in

converting an episodic memory from short-term into its long-term

form, it is of great interest to use episodic memory paradigms for

the identification of memory traces in its networks [8,9].

Investigating the neural mechanism of episodic memory consol-

idation can be approached by examining the activity replay in the

hippocampus. For example, large-scale recording and decoding

methods show that the real-time encoding patterns seem to

reappear in the hippocampus within seconds-to-minutes after the

animals encounter startling or emotionally charged episodic events

[10,11] or fear conditioning [12]. Moreover, it has been shown in

the trace fear conditioning paradigm that conditioned tone

responses and tone-shock association patterns undergo trial-

dependent increase in the numbers of replay during learning,

correlating tightly with increased immediate freezing [12]. This is

the first evidence that links memory pattern replay with behavioral

performance scores [12]. In addition, it seems that a significant

fraction of pattern replays are associated with ripples [12] which

may be related to memory consolidation [13–15]. Studies in using

place cells with overlapping place fields also suggest reactivations

after running [16–20], although the relationship between such

place cell replays and spatial memory is unclear. Nonetheless, the

various observed pattern replays is, in general, consistent with the

explanation of its potential roles in memory consolidation.

To our knowledge, however, there is no report aimed at

addressing the following important question: how and why does

the hippocampus only convert a fraction of original information

into long-term memory? In the present study, we set out to

investigate how the distinct cell populations in the CA1 region of

the hippocampus may engage themselves during the post-learning
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consolidation of episodic experiences. We used a set of fearful

episodic events, coupled with large-scale neural ensemble

recording methods [10,11,21], for investigating episodic memory

consolidation mechanisms. We report that the CA1 cells which

encode different aspects of episodic events, tend to be reactivated

differently during the post-learning period.

Results

Organization of CA1 cell assemblies in responses to
different robust episodes

To investigate CA1 neural activity patterns during and after

learning period, we exposed naive mice to four types of the fearful

episodic events: 1) A sudden drop of animal in a small elevator

(Elevator-Drop); 2) A sudden air-blow to animal’s back (Air-Blow);

3) A sudden earthquake imitated by shaking the animal in its cage

via vortex machine (Quake); and 4) A startling acoustic sound

(Sound). Using a 96- or 128-channel Plexon neural data acquisition

system, we recorded bilaterally from the dorsal region of

hippocampus using a microdrive with adjustable stereotrodes as

described previously [10,12,21]. Recorded units were spike-sorted

(Figure 1). Only units with clear boundaries and less than 0.5% of

spike intervals within a 1 ms refractory period were included in the

present analysis. The location of electrode bundle tips in CA1 was

confirmed by physiological markers through the occurrence of

sharp-wave associated ripples (100–200 Hz) as well as by histolog-

ical staining of the post-experiment brain sections (Figure 2). Based

on spike waveforms, firing rates, and inter-spike intervals, the

recorded CA1 units were divided into two classes: principal

excitatory units (putative pyramidal neurons) (Figure 3) and

inhibitory units (putative interneurons) (Figure 4). Putative pyrami-

dal cells are characterized by lower firing rates, wider waveforms,

and complex bursts with 2–10 ms inter-spike intervals, reflected by

their autocorrelograms (Figure 3). In addition, we calculated the

complex spike index, defined as the percentage of spikes with first

lag inter-spike intervals that fall between 2 and 15 msec and whose

second spike is smaller than the first. The averaged complex spike

index from these recorded pyramidal cells was 14.960.63. On the

other hand, putative interneurons are characterized by higher

discharge rates, narrower waveforms, and autocorrelograms with a

much slower decay (Figure 4). Simultaneous recordings of local field

potentials also exhibited characteristic theta oscillations during

running (Figure 5A) or high frequency ripples during slow wave

sleep (Figure 5B), confirming the CA1 location of our electrodes. In

general, pyramidal cells constitute the majority of the recorded cells

in the CA1 region. The stability of the recordings was also

confirmed by the near identical waveforms of the units before,

during, and after the various startling events (see the top, middle,

and bottom insets of each subpanel in Figure 3 and 4).

To efficiently deal with the large datasets, we employed

hierarchical clustering analysis to examine the firing responsive-

ness of those units among all of the recorded mice. Our analysis

shows that each specific event is represented by a set of CA1 cell

assemblies, or neural cliques, that respond with a range of

selectivity, from the general response to all four events to the

specific response to a single event (Figure. 6A, data from one

mouse), although, we note here that significant subpopulations

were unresponsive to any of those fearful events. As a result, the

hippocampal responsive cells can be classified based on their

response selectivity for different types of episodic events. For

example, we found that a large number of cells exhibited broad

responses to all types of episodic stimuli including the elevator-

drop, earthquake, air-blow, and loud sound. These cells were

termed as general responsive cells, or the general clique (top rows

in Figure 6A). In the case of the sub-general cells or subgeneral

cliques, they responded to a combination of two or three types, but

not to all of the episodic events. In addition, there were groups

which exhibited high specificity towards one specific type of event

(middle rows with one response per category in Figure 6A). In

agreement with the simultaneously recorded data [10], the pooled

dataset from all of the recorded mice again show the existence of

this overall hierarchical arrangement in CA1 cell response

selectivity (from general to specific-response features) (Figure 6B).

Encoding of episodic events by intensity-sensitive cells
and intensity-invariant cells

While many CA1 cells changed their firing rates in response to

external inputs or experiences, it is not clear to what degree the

activations of hippocampal cells by such episodes reflect memory

encoding or merely represent sensory inputs. Our hypothesis is

that the neural responsiveness should reflect changes in input

intensities (intensity-sensitive neurons) if it is mere representation

of sensory inputs. On the other hand, some neurons in CA1 may

exhibit fairly equal firing responses despite changes in event

intensities (Intensity-invariant neurons) because they may be more

geared towards the encoding of invariant important features.

Thus, we conducted a series of parametric experiments and varied

the level of intensity of the two episodic events (drop and air blow).

We set the dropping height of at 5 cm, 13 cm and 30 cm,

respectively, for the drop; adjusted airflow at 200 ms, 400 ms and

800 ms, respectively, for the air blow. Our parametric experiments

reveal the existence of two major types of responsive cell groups in

CA1, namely, intensity-sensitive responsive neurons and intensity-

invariant responsive neurons. The input-sensitive group contains

units that either increase or decrease their firing rates in a monotonic

fashion with changes in the amount of stimulus inputs (Fig. 7A and 7B

for an example of a drop intensity-responsive neuron, and Fig. 7C

and 7D for an example of an air-blow intensity-responsive neuron). In

contrast, intensity-invariant responsive neurons are characterized by

similar changes in their firing rates irrespective of the magnitude of

the stimulus inputs (see Fig. 7E and 7F, for an example of a drop

intensity-invariant neuron; and Fig. 7G and 7H for an example of an

air-blow event-invariant neuron, respectively). It is noteworthy to

point out that these episodic events can trigger firing changes in the

vast majority of both intensity-sensitive and intensity-invariant cells

independent of the animal’s specific location within a given

environment and the locomotor states of animals (such as running

or in rest). For example, during the course of repetitions of air-blow or

shake, the mice usually moved from one location to another and

change their locomotion behavior, say from quiet wakefulness, to

running, glooming, or exploring, etc. This suggests that the

effectiveness of startling episodes in triggering CA1 responses is not

constrained by specific place location or locomotory state of the

animals [10,12,22]. There is, however, a small number of cells whose

firing changes are dependent on both the event and the overall

environment in which the event took place (thereby, reflecting the

integration of both event and contextual information) [10].

From a total of 1623 units recorded from 7 mice, 583 units

(35.9%) responded to various startling stimuli. Of them, 284 units

belong to the intensity-invariant cell group and 299 units exhibit

intensity-sensitive changes of their firing rates, close to 1:1

distribution ratio. We have further analyzed the interaction between

the intensity-sensitivity categories vs. event-response selectivity

categories. We found that percentages of invariant neurons that

belong to general to specific categories are: 54% for the general-

responsive category (152 out of a total of 284 intensity-invariant

neurons), 26% for the sub-general responsive category (75/284),

and 20% for the specific event-encoding cells (57/284). Similarly,

Differential Reactivations of CA1 Episodic Cells
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the percentages of intensity-sensitive neurons that belong to general,

subgeneral and specific modulated neurons are 45% (134/299),

25% (75/299) and 30% (89/299), respectively (Figure 7I).

Stronger event-intensity produces better pattern
separation

To seek a statistical description of ensemble neural activity

patterns from the recorded large datasets, we employed Multiple

Discriminant Analysis (MDA) which has been shown to be an

effective method for statistical pattern classifications of large neural

data collected from well defined event categories [10,12,22,23].

Using this method, we find that these ensemble activity patterns

corresponding to these four different episodes can be quantitatively

classified and intuitively visualized as distinct ellipsoid clusters in

MDA subspaces (Figure 8). By and large, the clusters correspond-

ing to lower-intensity episodic stimuli are situated closer to the

basal activity class, while the highest-intensity clusters are located

furthest away. The intermediate classes often lie in between (see

Figure 8 for results from three mice that include parametric

changes in drop and air-blow intensities, Data from Mouse#1 is

presented in A and B; Mouse#2 in C and D, and Mouse#3 in E

and F, respectively). Our analysis of all data further shows that this

is a general trend across all seven recorded mice (See Table 1,

where absolute distances were normalized by the standard

deviation corresponding to the Rest cluster to allow for uniform

comparison across multiple data sets).

Figure 1. Separation of multiple single units by a single stereotrodes. (A) Six single units were detected by a single stereotrode. (B) The
spike raster plot for the corresponding six units was shown together with the original field potential and the filtered ripple signal from one channel.
doi:10.1371/journal.pone.0016507.g001
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Transient dynamics of CA1 ensemble traces
To dynamically monitor the population firing patterns, we

applied a sliding-window technique to the MDA method which

enabled us to directly visualize the real-time network-level memory

encoding dynamics [10,12,22]. Using the fixed matrix coefficients

produced by the MDA method, we computed the instantaneous

projection of neural responses during the entire experiments (using

two 500-msec width-bins, sliding at 10-msec time resolution). As

such, the temporal evolution of the ensemble activity patterns can

be directly visualized as dynamical trajectories in the encoding

subspace [22]. For example, during the baseline state prior to a drop

event, the instantaneous projection was confined to the Rest

ellipsoid. Upon the sudden drop, however, we observed a planar

trajectory that began in the Rest cluster, quickly visited the

corresponding Drop cluster and then returned to Rest (an example

for Drop is shown Figure 9A). By separately calculating the

dynamical evolution of the neural activity in the encoding subspace,

we found that both types of CA1 responsive cells (namely, input

intensity-sensitive cells and input intensity-invariant cells) can

produce robust event-encoding trajectories of the startling episode

(Fig. 9B and 9C - note that these two encoding subspaces are

computed based on the input obtained after partitioning data into

two subsets). This indicates that intensity-sensitive and intensity-

invariant cells all contribute to the CA1 ensemble classification and

representation of the actual event at the time when it happens.

By scanning through the recorded CA1 neural activities in the

post-event period, we observed that these transient encoding

patterns triggered by startling stimuli reactivated spontaneously as

indicated by dynamical trajectories with similar geometric shapes

but at smaller amplitudes (Figure 9D). These reappearances of

transient trajectories usually occurred within several seconds to

minutes after the actual events, in agreement with our previously

published research [10–12]. We note here that each one of the

episodic events may be followed by these spontaneously-emerging

patterns and that no discernible pattern can be observed regarding

the timing of these putative reactivations that presumably are

related to the processing of the newly-acquired memory traces.

More precisely, these reactivations do not require the presentation

of a full sequence of events in order to become manifest, instead they

may arise immediately following the first episodic event. By taking

advantage of the ability of using the MDA encoding subspace to

monitor the neural ensembles dynamics during whole duration of

the experiments, we applied a sliding window technique to compute

the projection of neural activities to identify the exact time point at

which reactivations took place. As a result, our identification of the

putative memory reactivation is determined by MDA analysis. We

then asked how intensity-invariant and intensity-modulated neurons

would contribute to the ensemble pattern classifications and

representations during events and during post-event reactivations.

Interestingly, our analysis revealed that the intensity-sensitive

(intensity-modulated) cell population, by and large, exhibited only

negligible reactivation or no reactivation at all (Fig. 9E). On the

other hand, the invariant cells seemed to produce reliable and

substantially larger reactivation trajectories (Figure 9F). This sub-

categorical analysis thus indicates that the invariant cell population

accounts for most of the ensemble reactivations during these time

periods. This trend generally holds true for all reactivations

encountered during a recording session, as evaluated by the

statistics for the magnitude of all of the corresponding trajectories

during the actual events and their reactivations (see Fig. 9G–I for

results on all responsive, intensity-sensitive and intensity-invariant

populations). Interestingly, there is no temporal evolution among

the invariant units driving the reactivation of these memory patterns

(e.g. the sequenced reactivations of the general units, followed by the

subgeneral units, does not occur).

Validation of reactivation patterns
To ensure that our MDA analysis truly captured the CA1

encoding traces as well as reactivation traces, we carried out a set

of control and validation tests. First, we determined the class

membership for these test data points, which was based on the

proximity to the clusters corresponding to the training data points.

For example as shown in Figure 10A, a collection of 10 test data

points (5 random startle points for air-blow, low drop, medium

drop, high drop, and shake, as well as their corresponding 5 rest

samples) was used to cross-validate the predictive power of models

constructed using all other points (training). Average performances

for class prediction were obtained by repeating MDA 1000 times

Figure 2. Evidence for confirming the position of recording electrodes in CA1. (A) Local field potentials from ten separate recording
electrodes. (B) Filtered ripples from the corresponding ten electrodes. (C) Histological confirmation of electrode placement. Nissl-staining coronal
section through the CA1 field of the hippocampus shows the position of the electrodes.
doi:10.1371/journal.pone.0016507.g002
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with random partitioning into training and test points (Figure 10A).

We noted that in general, the prediction performance is strongly

correlated with the number of startle-responsive cells in the

datasets, a feature that relates to the robustness within the

encoding population.

As expected, when the neural activities collected during events

were shuffled among different units, our cluster structure collapsed

(see Figure 10B). As a result of this shuffling, the drop and shake

clusters have a very large degree of overlap, in comparison to the

original classifications prior to data shuffling, thus greatly

diminishing the classification power. Even in rare occasions in

which a distinct representation (e.g. one air-blow, and one drop

event) could still be computed from a subset of the shuffled training

data, it was apparent that the classification was incorrect. For

example, one air blow or one medium drop event were totally

misclassified (see these two misclassified points with arrows in the

panel of Figure 6B). The data scrambling technique, therefore,

demonstrates that the MDA discriminating power would be lost if

the data were shuffled and any random change in the population

activity could not fall into 5 distinct categories.

Because of the statistical classification that was used, the

directionality and shape of the trajectories in MDA subspaces now

provide a highly valuable means to compare and visualize the

encoding patterns with any other random events [10–12,22]. We

further examined the effect of random changes of activity by

shuffling the data specifically duration reactivations and then

plotting the transient trajectories using sliding-window technique.

In the first case (see pre-shuffle data in Figure 11A–F and the

shuffled data in Figure 11G–I), we shuffled the spike responses of

the top 50 invariant units during a drop reactivation. We focused

on a time window of 2 seconds before and after the occurrence of

the reactivation and we shuffled the spike times uniformly during

the 4 second time interval. This was implemented by placing the

spikes in 10 ms time bins and performing random permutation of

the whole sequence within a given cell. As a result, the projected

reactivation trajectories produced by shuffled data were found to

be located mainly inside the rest clusters (Figure 11G for whole

population, 11H for the intensity-modulated neurons, and

Figure 11I for Invariant neurons).

The second method we used for shuffling reactivation data was to

switch the identity of the neural units randomly during this putative

reactivation. As illustrated in Figure 11J–L, this led to large

trajectories that wandered out into unusual portions of the space

regions unassociated with any pre-defined event categories. These

two data-shuffling analyses have demonstrated the validity of MDA-

sliding window method for elucidating ensemble encoding traces as

well as reactivation traces. In other words, the statistical

classification achieved by MDA methods, as described by the

directionality and shapes of the transient trajectories, can provide a

highly valuable means to compare and visualize the ensemble traces

at both learning and post-learning periods.

In addition, we further analyzed the relationship between event

intensity and the amplitudes of reactivation traces. Interestingly,

we have noticed that the magnitude of ensemble reactivations

tends to remain more or less constant regardless the original event

intensity. For example, we saw that high drop and low drop events

produced similar magnitudes of reactivation trajectories of the

episodic stimuli (Figure 12).

Intensity-invariant neurons exhibit elevated correlation
during reactivations

To further confirm and explore the nature of the pattern

reactivation, we applied two widely used methods, namely, pair-

wise correlations [16], and explained variance [24]. Using the pair-

wise cross-correlation method, we systematically assessed the

coordination levels in firing changes among neurons belonging to

either the intensity-modulated population or the intensity invariant

population. We first analyzed the joint-firing tendency among the

intensity-modulated neurons before, during, and after the episodic

events (see Figure 13A for correlation graphs examples from mouse

#1). Due to the intrinsic limitation of pair-wise correlation in terms

of presenting the large neuron pairs, we plotted here a pooled set of

30 neurons containing the top best neurons from each class to

visually illustrate how these top neurons’ cross-correlation change

over experiences. As expected, a significant number of neurons

showed significant increase in their correlation during stimulus

presentation (Figure 13A and B). However, the heightened cross-

correlations among intensity-modulated cells largely came back to

the basal levels once the episodic stimuli ended (Figure 13A). This is

consistent with our MDA analysis that the intensity-modulated cell

population contributes to the process of encoding, but is inactive

during re-emergence of reactivation patterns. In contrast, the same

kind of cross-correlation analysis revealed that in general the

invariant cells exhibited significantly more correlated activity during

the immediate post-event time periods (see Figure 13B for

correlation graphs for the intensity-invariant neuron groups during

basal, event and reactivation time periods, respectively). This, again,

is in line with the MDA observation that the intensity-invariant units

remained significantly more active during the putative reactivations

than did the intensity-modulated groups. For the larger population

of neuron pairs whose the minimal activation correlations were

above a set threshold value of 0.05 (315 pairs for the intensity-

invariant group and 254 pairs for intensity-modulated group),

similar results were observed. That is, overall the intensity-

modulated cells did not exhibit statistically significant increase in

the cross-correlation (Figure 13C), whereas the intensity-invariant

cells had the elevated increase in their co-firing tendency during the

post-event reactivation period (Figure 13D).

Second, we also applied the Explained Variance analysis [24]

and computed the correlation coefficients for each of the three

conditions: pre, run and post session and followed by a regression

analysis. This method essentially computes the correlation

between correlation coefficients from correlation pairs in pre-

event and event, pre-event and post-event, also event and post-

event. We calculated Expected Variance (EV, see methods) for the

data set from the reactivation period shown in Figure 13B (right

side sub-plot). This analysis shows that the post-event value of EV

is 0.26860.04 in comparison to the pre-learning period (basal

firing) value of 0.0460.01 (Figure 13E). The explained variance

analysis further confirms the elevated cross-correlation during the

reactivation period for these invariant neurons.

While these two cross-correlation based methods confirmed our

MDA observation on the preferential reactivations by intensity-

invariant cell population, we performed two additional tests: 1) We

compared the cross-correlations between the time points at which

MDA analysis detected putative reactivations (during a 2 sec before

and 2 sec after the reactivation event) vs. the post-event time points

Figure 3. Stable recordings of pyramidal cells, as confirmed by the waveforms and inter-spike interval (ISI) histograms. Eight
representative putative pyramidal cells are shown here. The left columns are waveforms and the right columns are inter-spike interval histograms.
The waveforms were plotted during 70-sec recordings before (top row), during (middle row), and after trace-conditioning trials. A 10-sec recording
for each trial was plotted. The ISIs were analyzed by using the corresponding data and the bin size is 0.005 s.
doi:10.1371/journal.pone.0016507.g003
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at which trajectories were absent; and, 2) We shuffled the spike data

specifically associated with transient reactivations of MDA trajec-

tories. In the first test, it is expected that pair-wise correlations

between cells should be more similar between the events and the

subsequent ‘‘reactivations’’ time points. In contrast, these correla-

tions should become much less similar during randomly chosen time

periods of similar length chosen from the non-reactivation time

points during the same post-event period. Indeed, our analysis

showed that correlations within the invariant cells during the post-

event non-reactivation periods showed little increase (Figure 14A).

Furthermore, when we shuffled the invariant cells’ spike data at

those reactivation time points with other randomly chosen cells’

spike data from the same period, the computed correlations among

the shuffled spike trains were reduced to values close to zero for the

whole population (Figure 14B). Thus, the above analyses strongly

suggests that the elevated correlation is indeed derived from these

intensity-invariant cells during the reactivation time points detected

by MDA methods.

Stronger correlation among invariant cells encoding
general features

Since we showed earlier that intensity-modulated cells can be

divided into a set of subpopulation based on their response

selectivity to multiple events or a specific event, we further

investigated the levels of firing correlations among the intensity-

modulated cells encoding general, subgeneral, and specific features

Figure 4. Stable recordings for putative interneurons in the hippocampus. Waveforms and inter-spike interval histogram of interneurons
(eight representative units) are presented here. The left columns are waveforms and the right columns are inter-spike interval histograms. The
waveforms were plotted from a 70-sec recording before (top row), during (middle), and after trace-conditionings (bottom row). A 10-sec recording for
each trial was plotted. The ISIs were analyzed using the corresponding data and the bin size is 0.005 s.
doi:10.1371/journal.pone.0016507.g004

Figure 5. Simultaneous recordings of many individual units (only 20 units shown here out of over a few hundreds) and local field
potentials in a freely behaving mouse were used for assessing whether our electrodes reached CA1. (A) The activity of the
simultaneously recorded individual units from the hippocampus during mouse exploration. Twenty units from the recorded data were selected for
the illustration. Note that the simultaneously recorded field potential shows the typical theta rhythm oscillations (4–12 Hz) during running. (B) The
activity of the simultaneously recorded individual units from the hippocampus during mouse slow wave sleep. The simultaneous field potential
recording shows the irregular waves as well as the ripple oscillations (150–250 Hz) during sleep. The traces marked with ‘FP’ show the original field
potential recorded from one recording channel. The trace marked with ‘theta’ shows the field potential filtered with the frequency range from 4–
12 Hz from the original one, whereas the traces marked with ‘ripples’ shows the field potential filtered with 150 to 250 Hz from the original one.
doi:10.1371/journal.pone.0016507.g005
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during the reactivation periods (Figure 15A). As expected, while

intensity-sensitive units were also characterized by heightened cross-

correlation during the encoding period, these correlations decreased

dramatically during the post-event reactivation period, regardless of

the particular cell type (general, subgeneral or event-specific

subgroups, Figure 15B–D). In contrast, when following the same

Figure 6. Hierarchical organization of CA1 cell assemblies from general-to-specific response-selectivity. (A) Hierarchical clustering for
simultaneously recorded 219 neurons (mouse #1) suggest a wide range of response selectivity to startling stimuli, ranging from general (top of the
figure, responsive to all four type of startles), to sub-general (responses to a subset of two or three types of events), highly specific (1 type) and non-
responsive units (bottom of the figure, in blue). The following formulas have been used during the hierarchical clustering procedures: the average
responses to a startle Rstartle were first normalized to Rnormalized = (Rstartle – Rbasal activity)/(Raverage + Rbasal activity), where the average population activity
during baseline activity is Raverage <2.7 To facilitate visualization of different classes, we retain only the units that have a positive change in their firing
rates, and we display the quantities T = log(1+ Rnormalized) as a colormap. (B) Although exact percentages for these types of units may vary from
animal to animal depending on the location of electrodes, pooled data from 7 animals (1623 neurons) indicate that this is a general property.
doi:10.1371/journal.pone.0016507.g006

Figure 7. Effects of event-intensity on CA1 cell responsiveness. (A) A representative CA1 unit shows intensity-dependent modulation of its
firing changes in response to different drop heights from 5, 13 and 30 cm (upper, middle and lower raster, respectively). Time is represented on the
horizontal X-axis (23 to 3 seconds) and the trial number is listed on the vertical Y-axis. The vertical red line indicates t = 0. (B) The frequency
responses of the same unit (shown in A) obtained by smoothing the spike count through an asymmetric kernel indicate that this neuron increases its
firing rate monotonically in response to drop heights. (C) Spike rasters of a CA1 cell that show a intensity-dependent unit which increases its firing in
response to various amount of air-blow (for the durations of 200 ms, 400 ms, and 800 ms (upper, middle and lower panel, respectively). (D) The
frequency responses obtained by smoothing the spike count through an asymmetric kernel indicate that this CA1 neuron increases its firing rate
monotonically over change of stimuli amounts. (E) A representative CA1 unit that exhibit invariant firing increase over changes of drop heights (from
5, 13 and 30 cm; upper, middle and lower raster, respectively). (F) Smoothed frequency responses confirm that this neuron is invariant to drop
heights. (G) Spike rasters for a representative neuron that responds in an invariant fashion to air-blow stimuli. (H) Smoothed frequency responses
indicate that this CA1 neuron responds in an invariant fashion to the amount of air being blown. (I) The percentages of units that belong to specific,
subgeneral and general populations are represented schematically by the size of the corresponding circles. 0.20 = 20%. 0.26 = 26%, and 0.54 = 54%. In
addition, the partition between intensity-invariant and intensity-sensitive are displayed in light blue and orange-red.
doi:10.1371/journal.pone.0016507.g007
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Figure 8. CA1 ensemble pattern classification. (A) MDA analysis on mouse #1 shows that CA1 ensemble representation of high drop
experiences is located farther away from the resting state in the projection subspace than the clusters corresponding to low or medium drop episodic
startles. (B) Quantification of the average distances away from the rest origin for all episodic events plotted in panel A illustrates that classification of
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classification scheme, the intensity-invariant cells encoding general

features showed the strongest correlation (Figure 16A and B),

followed by sub-general invariant cells, whereas specific invariant

cells had weak or no significant elevation in their cross-correlation

during the post-event reactivation period (Figure 16C–D).

The trends observed for the correlations among intensity-invariant

neurons as well as among intensity-sensitive neurons are consistently

manifest in the rest of our data sets. More specifically, using pooled

data from 7 data sets, we showed that despite the increase in

correlations for all groups of intensity-sensitive neurons from basal

levels (Figure 17A) to event levels (Figure 17B), these correlations

remain close to rest levels during reactivations (Figure 17C). In

contrast, there are significant correlations among intensity-invariant

neurons even during the reactivation time periods, although at

weaker levels than during the actual startle episodes.

Further analyses of various subclasses of the invariant units

suggest that the degree of correlation is strongest for the general-

responsive units in comparison to the sub-general cells and the

specific neurons (Figure 17D–F); Again, this is in line with the

results from the individual data.

Discussion

A hallmark feature of long-term memory consolidation is that

only a portion of original information about various episodic events

becomes long-term memory. Such information stored in the

domain of long-term memory tends to be more general and

abstract, and many specific details seem to be no longer available.

Despite the many emerging studies which explore consolidation

mechanisms at the molecular level [1–7], the neural mechanisms

underlying this selective consolidation of episodic experiences have

never been experimentally examined, thereby remaining complete-

ly unknown. Such selective consolidation and storage processes are

widely assumed to be a part of normal forgetting process.

By taking advantage of recent large-scale recording and

decoding methods [10–12,21–25], here we designed a series of

experiments to investigate how the hippocampal networks engages

in such selective consolidation of long-term memory. Our present

experiments provide several novel insights into how the hippo-

campal cell population may encode and consolidate episodic

information. First, our parametric experiments demonstrate the

existence of two distinct populations of CA1 episodic cells during

the encoding of discrete episodic events: one for encoding sensory

input intensity (Intensity-sensitive or Intensity-modulated cell

population), and another for encoding mnemonic information

independent of stimulus intensity (Intensity-invariant cell popula-

tion). Second, the CA1 ensemble reactivation patterns were mostly

derived from the intensity-invariant cell population. Third, within

the intensity-invariant cell population there is an overall tendency

that the invariant cells exhibiting general or broader responsive-

ness to multiple episodic events have much stronger firing cross-

correlations than those of cells that respond only to a specific

event. Currently, we do not know how the differential reactiva-

tions are influenced or modulated by behavioral and arousal states

including stress, fear factors, and attentions [26–28]. These

properties will need to be investigated in near future.

Our study on startling episodic events fits well with the reports

that episodic hippocampal cells can undergo reactivations imme-

diately after such events [10,11] or trace fear conditioning [12]. The

differential reactivations within episodic cell assemblies are quite

interesting in considering cognitive significance. Moreover, such

differential reactivation patterns have not been studied or described

in place cell studies [16–20]. Place cells, by definition, encode on-

going specific locations of the animals in a given environment, and

therefore, may require different protocols to reveal such properties.

To provide moment-to-moment decoding of post-event real-time

ensemble activity patterns, we have employed MDA/sliding

window method to monitor and detect the temporal evolution of

CA1 ensemble patterns during and after the startling episodic

events. This dimensionality-reduction method has proven to be

highly useful for intuitively visualizing the real-time transient

dynamics and patterns associated with learning tasks [10–

12,21,22], that is, our method has allowed us to pin-point the

moment at which the ensemble patterns were reactivated. This

MDA method provides intuitive visualization for its patterns (in

terms of both the geometric shape and planar information of the

transient trajectories) which can be further verified by two kinds of

shuffled data analyses. It is important to point out that our analysis

higher drops are indeed located further away from the resting state in the encoding subspace. (C) A data set from another mouse hippocampus
(mouse #2) is characterized by a large separation between high drop (third type of drop from a 30 cm height) and the basal activity cluster, when
compared to the separation between low drop (first type of drop from a 5 cm height) or medium drop (second type of drop from an 11 cm height).
(D) Inspection of the average distances away from the origin of the basal activity (gray), air-blow (light blue) and drop clusters (dark blue) confirm
with the trends suggested by panel C. (E) Results from a third data set (mouse #3) indicate that while air-blow at low intensity evoked little ensemble
response, air-blow at middle and high intensity evoked considerably larger responses. (F) Quantification of distances away from origin by various
clusters is in agreement with panel E. Overall, these three examples illustrate the general tendency from all our data sets: the stronger the parametric
stimulus, the better the separation from rest cluster in encoding subspace.
doi:10.1371/journal.pone.0016507.g008

Table 1. Distance from the rest origin for various event clusters.

Data set Acoustic sound Air 200 ms Air 400 ms Air 800 ms Shake Drop 5 cm Drop 11 cm Drop 31 cm

Mouse #1 2.41 3.09 5.24 6.64 3.78 3.87 7.55 8.02

Mouse #2 1.58 0.86 2.14 2.42 2.29 1.52 2.16 3.61

Mouse #3 0.91 0.25 2.88 4.11 5.48 1.54 2.07 5.82

Mouse #4 3.35 0.75 1.78 1.54 5.11 5.83 6.20 6.82

Mouse #5 1.51 1.33 3.35 4.13 2.71 1.23 1.56 2.44

Mouse #6 0.84 0.82 2.56 3.08 1.55 2.88 2.98 5.17

Mouse #7 0.61 1.02 2.81 3.70 3.03 4.55 3.56 4.66

doi:10.1371/journal.pone.0016507.t001
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of firing sequences of individual episodic cells in the recorded data

did not reveal any obvious sequential replay. This is not surprising

since a given episodic event triggers co-activation of a unique cell

assembly through which various groups of responsive cells

simultaneously come together to encode different aspects of features

of the event (from general to specific features) [10–12,26]. In other

words, a discrete startling event is represented by simultaneous co-

activation of various episodic cells at that single moment.

Reactivations patterns of episodic experiences revealed by

MDA/Sliding-window method were further corroborated by both

pair-wise cross-correlations, and explained variance. In addition,

we have found that preferential reactivations of distinct subgroups

of intensity-invariant neuronal population seem to be responsible

for ensemble pattern reactivations. More importantly, our analysis

further revealed that during the reactivation time periods

invariant, cells encoding general features of all or multiple events

seem to be more correlated the cells encoding for specific events.

This preferential reactivation mechanism may position the

hippocampus toward extraction of generalized features from

individual experiences of these events for long-term consolidation

and storage. On the other hand, relatively weak cross-correlation

among specific invariant cells may be a contributing factor in

explaining why details of a given event tend to be more difficult to

retain. Another contributing factor may be that such specific cells

were detected in smaller percentages in our experimental data.

This suggests that these cells may be prone to weakening of

Figure 9. Pattern reactivations are mainly driven by the invariant subpopulation. (A) A typical trajectory during a drop event from 30 cm
(gray/cyan/green/blue clusters indicate rest/sound/air 800 ms/drop 30 cm) is plotted using all of the responsive units. (B) Activation dynamics can be
also observed in the MDA encoding subspace which uses only the modulated subpopulation of cells. (C) Activation dynamics can be further
observed in the MDA encoding subspaces constructed from the invariant subpopulation only. (D) A typical reactivation trajectory is detected in
whole population activity. (E) However, at this time point little reactivation is observed in the intensity-modulated subpopulation. (F) In contrast, the
invariant responsive subpopulation exhibits a significant reactivation. Please note that the directionality of trajectory towards the drop cluster and
away from the air-blow cluster or acoustic metal sound is confirmed in other rotated 3-D dimensions. (G) Comparison of distances from the resting
state for all reactivation occurrences when using all of the responsive units reveals significant differences between basal states and reactivations. (H)
No statistically significant reactivations in the intensity-modulated subpopulation. (I) Significant reactivations are observed in the intensity-invariant
subpopulation (p,0.05).
doi:10.1371/journal.pone.0016507.g009
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synapses over time during storage. This hypothesis needs to be

tested in future experiments.

Our finding of preferential reactivations of cells encoding

general and subgeneral features provides a strong experimental

validation for the computational modeling work which simulates

that the finer distinctions of specific events or knowledge may be

more easily lost than the more general ones during the

consolidation stage [29–31]. While the computation models were

originally built to describe cortical binding function, our results

suggest that such preferential consolidation properties are readily

implemented at the level of the hippocampus.

Furthermore, our present study reveals a novel aspect of

hippocampal consolidation principles unparalleled to those

implied by the previous studies of place cell replays. Here, we

show that hippocampal reactivations of episodic cell ensembles

patterns are more than mere ‘imitation’ or ‘repetition’ of original

patterns. In other words, the preferential and stronger reactiva-

tions of the invariant cells encoding general features enables the

hippocampus to extract these major features of a given episodic

experience and subsequently integrate them into the brain’s

general knowledge structure and semantic memory. This expla-

nation may explain why patients with damaged hippocampi have

great difficulty in forming episodic memories as well as concepts

and general knowledge about these events.

Cognitively, episodic memory refers to memory of episodic

events, and it is the major type of memory we encode in our daily

life. In contrast, semantic memory refers to memory of facts and

knowledge that are no longer ascribable to a particular occasion in

life (without necessarily remembering where and when a person

acquires it) [32]. Our recent discovery of the feature-encoding

pyramid organizing principle in the hippocampus suggests an

overall population-level mechanism for linking the formation of

episodic memory with the emergence of semantic memory [11,33–

36]. Our present findings have further revealed how these two

types of memories may be processed and organized through the

regulation of neural network dynamics for long-term memory

storage. It may also provide a new mechanistic framework for

explaining and testing how semantic memory might be created

through either single or repeated episodic experience [1,3,8].

In summary, our present study describes the subclassification

properties among CA1 episodic cell assemblies encoding robust

episodic events, and reveals their varying degrees of dynamic

participation in post-event pattern reverberation and consolida-

tion. Specifically, the event-intensity invariant CA1 neurons are

largely responsible for the post-learning pattern reactivations.

Moreover, during these transient reactivation periods, intensity-

invariant cells encoding general features tend to exhibit stronger

cross-correlations than do those cliques which encode specific

features. Such post-event preferential reactivation of these

general/subgeneral cell cliques may provide a key neuronal

population-level mechanism for achieving the consolidation and

storage of general information and knowledge in the brain.

Materials and Methods

Ethics Statement
All animal work described in the study were carried out in

accordance with the guidelines established by the National Institutes

of Health in the US regarding the care and use of animals for

experimental procedures, and was approved by the MCG

Institutional Animal Care and Use Committee at Georgia Health

Sciences University (Approval AUP number: BR07-11-001).

In vivo recording and spike sorting
We employed 96 and 128-channel recording arrays to record

from the hippocampal region of freely behaving mice [10,12,21].

The multi-channel electrodes consist of two-independently mov-

able bundles of stereotrodes or tetrodes, which were constructed

by twisting a folded piece of 2 or 4 wires, respectively

(STABLOHM 675, H-FORMVAR, 25 mm for stereotrode,

California Fine Wire). After surgery, the mice were kept in their

home cages for recovery for three to five days. The electrodes were

then advanced slowly toward the hippocampal CA1 region, in

daily increments of about 0.07 mm, until the tips of the electrodes

had reached the CA1 region, as deduced from an assessment of

field potential and neuronal activity patterns.

We subsequently recorded the ensemble activity from a large

number of individual neurons during freely behaving states. The

recorded spike activities from those neurons were processed in the

manner as previously described [10,12,21]. Briefly, the spike

waveforms and their associated time stamps for each of 128-

channels were stored in data files using Plexon system format

(*.plx). The artifact waveforms were removed and the spike

waveform minima were aligned using the Offline Sorter 2.0

Figure 10. Shuffling of the data leads to the collapse of classification of population patterns. Scrambling technique revealed large
overlap between the drop, shake and rest clusters (B) in comparison to the distinct clusters prior to shuffling (A). When the neural activities collected
during events were shuffled among different units, the overall cluster structure collapses. In the case of air cluster, data shuffling leads to the
misclassification and poor prediction of the test data (see the open circle symbol from an air-blow testing data was totally misclassified).
doi:10.1371/journal.pone.0016507.g010
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software (Dallas, TX), which resulted in more tightly clustered

waveforms in principal component space. The Plexon system data

files (*.plx) were then converted to Neuralynx system format (*.nst)

and spike-sorted with the MClust3.3 program. This program

permits classification of multidimensional continuous data. Its

cluster splitting feature yields superior accuracy in comparison to

the other available spike-sorting software and is therefore

particularly suitable for spike sorting of hippocampal signals.

Figure 11. Shuffling techniques illustrate the specificity of the encoding patterns during learning and reactivations. We shuffled the
spike responses of the top 50 invariant units during a drop reactivation using a time window of 2 seconds before and after the occurrence of the putative
reactivation (by placing the spikes in 50 ms time bins and performing random permutation of the whole sequence). As a result, the projected trajectories
are now located mainly inside the rest clusters (6G, H and I, are listed). The prior to shuffling was presented in panel A-F for comparison.
doi:10.1371/journal.pone.0016507.g011
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Principal component analysis was used to extract defining

features from the spike wave shapes that were then used as part of

the input for the MClust3.3 spike sorting program. The first two

principal components, as well as the peak height, valley value,

FFT and total energy of spike waveform parameters were

calculated for each channel, and units were identified and

isolated in high-dimensional space through the use of an

autoclustering method (KlustaKwik 1.5) [37]. After autocluster-

ing, the clusters containing non-spike waveforms were deleted

using ‘KlustaKwik Selection’ function, and then the units were

further isolated using a manual cluster cutting method in MClust

(see an example in Figure 1). Only units with clear boundaries

and less than 0.5% of spike intervals within a 1 ms refractory

period were included in the present analysis. At the end of

experiments, the mouse was anesthetized and a small amount of

current was applied to four channels in the microdrive to mark

the positioning of the electrode bundle. Histological Nissl

staining (NeuroTraceH blue fluorescent Nissl stain) was used to

confirm the electrode positions.

Parametric changes in intensity of startling stimuli
We exposed mice to four types of robust episodic events: 1) a

short and loud acoustic startle (intensity 85 Db, duration 200 ms),

2) A sudden air-blow to the animal’s back (termed Air- Blow, 10

p.s.i); 3) A sudden drop of the animal inside a small elevator

(termed Elevator-Drop, vertical freefall height); and 4) A sudden

shake-like cage oscillation (termed Shake, 200 ms; 300 rpm). To

maintain the consistency of stimulus inputs and yet minimize

possible prediction of upcoming stimuli, the stimuli were

triggered using a computer and delivered for seven times at

randomized intervals within a few minutes. We previously

showed that seven repetitions are sufficient for obtaining an

adequate sampling of the neural responses, while minimizing the

risk of habituation to the noxious stimuli [10,11]. We varied the

intensity of two types of episodic stimuli by changing the height of

the drop (5, 13 and 30 cm) and the amounts of the air that were

blown (200, 400 and 800 ms). The other two startling stimuli, the

starling loud sound and shaking of the cage, were delivered at

fixed intensity.

In our experiments we started recordings 30 minutes before a

series of startling episodes were delivered to the mice. Each given

type of startling event (e.g. Drop with a fixed height or Air puff

with a fixed duration) was delivered in a single session for seven

times with pauses ranging from 1-to-3 minutes at randomized

intervals (inter-trial-intervals). A single event session lasted for

about 20 minutes and the mice were then brought back to home

cage for a brief rest for 5-to-10 minutes. This was followed by a

different session consisting of either different startling events or the

same event but at a different intensity (inter-session-intervals). All

together, the mice would undergo three sessions of the same events

(say Drop events with three chosen heights), plus two additional

and distinct event sessions (e.g. Airpuff and Shake). Our typical

experiments thus consisted of five event sessions which lasted for

about 2.5 to 3 hours. The randomized inter-trial-intervals (1–3

minutes) were intended to minimize possible habituation and

reduce the animal’s ability to predict its upcoming event. We

recorded population activity patterns in the CA1 region of the

hippocampus from seven freely-behaving mice that were subjected

Figure 12. Similar magnitudes of reactivated trajectory distances among drop ensemble traces following low, medium, and high
drop. The MDA distances were used as a way for averaging the mean of reactivated trajectories. The distances from sound, air puff, and shake
clusters to the rest cluster center were also listed on the right side of the plot.
doi:10.1371/journal.pone.0016507.g012
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to the following set of episodic stimuli: acoustic startling sound,

cage shake, air-blow and elevator drop.

Characterization of unit responses to startle stimuli
For our data analysis we selected only clearly separated single

units that remained stable throughout the duration of the whole

experiment. To select the responsive units, we first evaluated the

changes in the firing frequencies in time bins of 500 ms

immediately after the event start. The width of the time bins used

here is appropriate to characterize the overall frequency changes

after a startle event. To facilitate comparison between neurons that

exhibit different increases/decreases over baseline activities, we

used the transformation Rstartle i~jfstartle i{f0j=(g0zf0). Here

fstartle i and f0 represent average frequency responses during

startles of type i or rest states, and g0 is the average population

activity during rest states. We maintained only the units which

Figure 13. Correlations among intensity-sensitive and intensity-invariant neurons during basal, event and reactivation time
periods. (A) Basal states correlation coefficient among 30 top neurons belonging to specific, subgeneral and general intensity-sensitive units (each
category contains 10 cells) are displayed as colored lines that unite these 30 unit (left panel). Bluer colors indicate negative correlations and redder
colors indicate positive correlations. While a significant number of units are more correlated during startle events (middle panel), these correlations
mainly return back to basal values during reactivation time periods (right panel). (B) In contrast, for intensity-invariant neurons (10 for each of the
specific, subgeneral and general categories, for a total of 30), although basal states are also characterized by low value for the magnitude of
correlation coefficients (left panel), and by high values during the startle events (middle panel), these units remain highly correlated during the
reactivation time period (right panel). (C) Statistics of the 254 pairs for intensity-sensitive group, which have been obtained by eliminating the pairs
that are very weekly correlated during non-basal time periods (magnitude less than 0.05) are in agreement with the visual information displayed in A,
indicating that the values during event time period are significantly different from the base levels, but the correlation levels during reactivation are
not. (D) In contrast statistical analysis of the 315 pairs for the intensity-invariant group (obtained by excluding the correlations that have a magnitude
less than 0.1) indicate that correlations are elevated during both events and time reactivation. (E) Explained variance during the time period before
the stimuli and the time period after the stimuli have been delivered also suggest that correlations among units remain at higher levels in the post-
stimuli time period, which is in agreement with the heightened correlation among intensity-invariant neurons.
doi:10.1371/journal.pone.0016507.g013
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have high scores based on this metric. Note that this transforma-

tion allows for uniform quantification of the significant changes in

firing patterns for units with both low- and high baseline firing

rates. More precisely, changes in responses of low-firing units are

proportional to absolute firing rate changes (since f0 % g0), while

response differences for the high-baseline units become propor-

Figure 14. Comparison of correlations during reactivations, outside reactivation and during reactivation with shuffled neural
activities. (A) No weak correlation coefficient among 30 top neurons belonging to intensity-invariant units outside reactivation periods; (B) no
significant correlation with shuffled neural activities.
doi:10.1371/journal.pone.0016507.g014

Figure 15. Cross-correlation analysis of the intensity-modulated subpopulation. (A) Correlations between top representative intensity-
modulated units from mouse #1 encoding a specific type of event (top row), subgeneral features (multiple but not all types, second row), and
general features (response to all types of events, third row), are displayed as colored lines during basal activity periods (first column), the actual event
periods (second column) and at the time of reactivations (third column). High and low correlations are plotted with red and blue lines, respectively.
(B) While the correlations increase significantly for the general-encoding and intensity-sensitive subpopulation during the startle episodes, these
correlations return to values that are close to the baseline correlations. This trend is also manifest for the (C) subgeneral-encoding and intensity-
sensitive and (D) specific encoding and intensity-sensitive subpopulations.
doi:10.1371/journal.pone.0016507.g015
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tional to the relative changes from the baseline activities (since

f0 & g0).

Hierarchical clustering
Similar to our previous research [10,22], we employed

hierarchical clustering methods to investigate the structure of

our neural data. We briefly outline the procedure here. We start

by defining N clusters, one for each initial vector containing the

responses to all types of startle stimuli. At each step, we proceed by

uniting the two closest response vectors, or after a few steps, two

closest groups. The two vectors or groups are merged into a new

cluster and its mean is re-computed. These steps are then repeated

and the nearest-neighboring groups are successively merged until

they eventually form a single group. At each intermediate step of

this procedure, the two clusters to be merged are aligned and

linked at their best matching endpoints, forming a larger group.

Projection analysis methods
We then used Multiple Discriminant Analysis (MDA) projection

methods to classify the neural responses corresponding to different

episodes into different classes [10,12,22]. Projection analysis

methods are powerful tools that are well-adapted to deal with

the complexity of large neural data sets data sets. These methods

generate an encoding subspace of low dimension (on the order of

number of classes). The use of these projection methods is

particularly useful in revealing the inherent hierarchical structure

that may exist in large-size neural populations.

To account for transient changes that may occur immediately after

the startle events, we computed firing frequencies (f) in two 500 ms

time bins immediately after the delivery of the stimuli. Baseline

activities were characterized by computing the average firing rates

during time intervals preceding the startle stimuli. We set aside

randomly chosen population activities from one of each type of startle

stimuli; this constitutes our test data set. The rest of the sampled

population activities were then used to train our MDA statistical

model. The matrix of mean responses during each category (rest and

startle states) were then computed and used to compute the between-

class scatter matrix SB~
PN
i~1

ni(mi{m)(mi{m)t [22]: Here ni is

thenumber of elements in each class, N is the number of classes, mi is

the mean vector for each class, m is the global mean

vector and the symbol t indicate the transpose operator. To take

Figure 16. Cross-correlation analysis of various feature-encoding units belonging to the intensity-invariant subpopulation. (A)
Correlations between top representative CA1 invariant units from data set #1 encoding a specific type of events (top row), subgeneral feature (two
or more types of events, second row), and general feature (response to all four types of events, third row), are displayed as colored lines during basal
activity periods (first column), the actual event periods (second column) and at the time of reactivations (third column). (B) In contrast to the
intensity-sensitive results, significant average correlations are maintained during the reactivation period for the general intensity-invariant subgroups.
These trends are maintained, although to a smaller degree, for the Subgeneral intensity-invariant population (C), and are not statistically different for
the specific intensity-invariant subpopulations, although the very small sample size makes it impossible to draw any strong conclusion from this
particular case (D).
doi:10.1371/journal.pone.0016507.g016
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into account the variations occurring for each class we also

computed the within-class scatter matrix SW, which is defined as:

Sw~
PN
i~1

Vi~
PN
i~1

P
x[Di

(x{mi)(x{mi)
t. Here Di represents the set

of population responses triggered by the ith startle type. Using these

two matrices, it follows that a set of at most N-1 discriminant

projection vectors can be determined by computing the eigenvalue

decomposition of the matrix S{1
W
:SB.

For our data sets, the class covariance matrices SW were non-

invertible, which is a direct consequence of data under-sampling,

since the number of recorded neurons is much higher than the

number of repeated trials. In practice, the matrix SW can be

rendered invertible using a regularization technique which changes

each class covariance matrices based on the following formula: Vi’
= (1 - l) Vi + l I, where Vi is the covariance matrix for the ith

class, l is a regularization parameter between 0 and 1, and I is the

identity matrix. We determine the parameter l automatically for

each data set based on the optimization procedure we developed

previously; each particular choice is determined by the particular

distributions within each data set [22].

After computation of the N – 1 discriminant dimensions is

computed, we projected the neural patterns during startle episodes

in this low-dimensional encoding subspaces. We then used the

multivariate Gaussian distribution probability functions

(P(x)~
1

(2p)N=2 Vj j1=2
exp({(x{m)tV{1(x{m)=2)) to fit the

projections for each class. We subsequently enhanced our intuition

about the relationships among classes by visualizing the 2s
boundary ellipsoids for each class. We tested the robustness of our

MDA statistical model by employing different partitions of the

training and test data points. In general we find that the

performances for our model do not depend strongly on the

particular choice of the training and test data selection.

In addition, we used a sliding window method to monitor the

evolution of the population state throughout the duration of the

experiment and to identify the occurrences of patterns similar to

the ones experienced during the episodic events [10,12]. A

putative reactivation is deemed to have occurred whenever there

are trajectories of significant amplitudes from the rest cluster

towards the corresponding startle cluster. Inspection of the clusters

generated by our use of Multiple Discriminant Analysis technique

indicates that all different types of stimulations, including the

parametric ones, can be successfully classified.

Projection analysis methods with Shuffled Input
To rule out that the statistical properties of our projection

analysis methods are creating classifications out of random data

sets, we carried out these methods on noisy data obtained through

two shuffling procedures.

We first created an input data set where the spike activities are

shuffled among neural units at all times during the experiment. When

Figure 17. Cross-correlation analysis of various feature-encoding units belonging to the intensity-invariant subpopulation (the
results were pooled from all 7 data sets). In agreement with results from data set #1, averaged correlations of various intensity-sensitive units
pooled from all datasets from 7 mice increase from basal state (A), to higher values during the time of actual events (B), before they return to low/
basal values during reactivation intervals (C) (p.0.05 for all conditions). In contrast, averaged correlations of various intensity-invariant encoding
units not only increase from basal states (D) to higher values at time of actual events (E), but they also remain at elevated values during reactivations
(F). These properties are stronger for the general units and weaker for the specific units, as compared to the subgeneral population (p,0.05 for all
conditions).
doi:10.1371/journal.pone.0016507.g017
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these data are used as an input to previously computed cluster

representations, the trajectories corresponding to different startle and

reactivation events are mapped in the regions of the MDA encoding

subspace where no other trajectories have been observed when the

correct input has been presented. As such, this is an indication that the

previous reference points, namely the cluster representation, are no

longer useful in describing the trajectory dynamics.

We then proceeded to create a second data set where the input

has been manipulated temporally. More precisely, the spike

activities of all units have been shuffled within in a 4 second time

period among bins of 50 ms width. As a result of the loss of

simultaneous changes in activities across the neural population, the

projected activities are now located mainly inside the basal

activities rest cluster. Together, these two tests using shuffled data

indicate that there is information loss regarding the startle events

and their reactivation, and that the statistical methods no longer

have a meaningful interpretation when these data are used.

Correlation analysis
Since the correlation parameters cannot be computed between

units recorded from different animals, we restricted this analysis to

data recorded simultaneously from a single mouse. In order to

allow for uniform quantification of changes in correlation between

units during different temporal intervals across multiple data sets,

only the top correlation pairs from the simultaneously recorded

neurons of each mouse were used to compute the statistics. More

precisely, we used the 10/20/30 pairs for the specific/subgeneral/

general units respectively, reflecting the increasing number of units

recorded in each one of these categories.

We used the following formula for computing correlations

between pairs of neurons:

C(xi,yi)~

N
PN
j~1

xijyij{
PN
j~1

xij

PN
j~1

yijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
PN
j~1

x2
ij{

PN
j~1

xij

 !2
vuut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
PN
j~1

y2
ij{

PN
j~1

yij

 !2
vuut

,

where N is the number of repetitions for each startle stimuli, while

xi and yi are the two vectors that contain the binned frequency

responses during the ith repetition. The correlation coefficients

were computed during baseline activities, or during the one second

time intervals following the startle stimuli, using frequency

sequences computed in 50 ms time bins (here xij indicates the

binned frequency during the jth time bin of the ith startle

repetition). To ensure that noisy correlation values are not

included in the data sets, we set a low threshold (e. g. 0.05 or

0.1) and excluded them from the analysis.

To rule out the possibility that correlation results can be

attributed to random changes in the neural population, we again

used data sets where the spike activities were shuffled among

neural units at all times during the experiment. Not surprisingly,

all correlations among all neural units decrease to values close to

zero in this case.

Explained variance
We used the measure of Explained Variance (EV) [24] to

further validate our cross-correlation analyses. We define the

following three time periods: PRE, during the time interval prior

to the startle events, EVENTS, during the startle events and

POST, during the time period of putative startle memory

reactivations. The EV value then is defined by:

EV~r2
EVENT ,POST jPRE~

rEVENT ,POST{rEVENT ,PRErPOST ,PREffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1{r2

EVENT ,PRE)(1{r2
POST ,PRE)

p
 !2

where the correlation coefficients can be obtained using the

formula for computing correlations between pairs of neurons. A

low value of EV would indicate that there is no learning effect

attributable to the EVENT session (values are restricted between 0

and 1), while larger and larger values indicated stronger and

stronger learning effects.
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