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Abstract

For functional MRI with a multi-channel receiver RF coil, images are often reconstructed

channel by channel, resulting into multiple images per time frame. The final image to ana-

lyze usually is the result of the covariance Sum-of-Squares (covSoS) combination across

these channels. Although this reconstruction is quasi-optimal in SNR, it is not necessarily

the case in terms of temporal SNR (tSNR) of the time series, which is yet a more relevant

metric for fMRI data quality. In this work, we investigated tSNR optimality through voxel-

wise RF coil combination and its effects on BOLD sensitivity. An analytical solution for an

optimal RF coil combination is described, which is somewhat tied to the extended Krueger-

Glover model involving both thermal and physiological noise covariance matrices. Com-

pared experimentally to covSOS on four volunteers at 7T, the method yielded great

improvement of tSNR but, surprisingly, did not result into higher BOLD sensitivity. Solutions

to improve the method such as for example the t-score for the mean recently proposed are

also explored, but result into similar observations once the statistics are corrected properly.

Overall, the work shows that data-driven RF coil combinations based on tSNR consider-

ations alone should be avoided unless additional and unbiased assumptions can be made.

Introduction

The blood oxygenation level-dependent (BOLD) functional MRI (fMRI) contrast increases

with magnetic field strength [1], but still represents only a few percent of signal change. Ther-

mal noise, head motion, scanner instabilities and a variety of physiological phenomena such as

breathing and cardiac pulsations potentially make the signal changes due to neural activations

hard to detect reliably.

Current state of the art in MRI acquisition uses multi-receive channel RF coils to increase

SNR [2] and benefit from parallel imaging [3, 4]. In accelerated acquisitions that utilize

GRAPPA, images from each receiver channel are often reconstructed individually, resulting in

a multitude of images per time frame that are generally combined during reconstruction. The

most standard coil combination to reconstruct a single image per time frame is the root Sum-
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of-Squares (SoS), due to its convenient implementation and SNR quasi-optimality [5]. A pre-

whitening can be done at this stage for further performance by inserting the thermal noise

covariance matrix computed from noise pre-scans [2, 6], a method labelled here covSoS.

While solidly motivated by the theory in the thermal noise regime, the method however is not

necessarily optimal in terms of temporal SNR (tSNR), indicative of signal stability and thus of

more relevance for fMRI data quality. It has been well known that according to the model of

Krueger and Glover [7], non-thermal sources of noise such as physiological noise and scanner

instabilities can lead to a plateau of tSNR despite SNR boosts, even on phantoms [1]. When

benchmarking sequences with pilot tests before applying an fMRI paradigm on a cohort, as a

result the temporal aspect of the signal or, ideally, the neural activations themselves should

always be taken into account [8]. Computed from the ratio of the activation spike amplitude

over the standard deviation of the noise time-series, the functional Contrast to Noise Ratio

(fCNR) is conceptually a very accurate metric to measure the quality of a task-based fMRI

acquisition. However, because the location of the activations and their strengths are in theory

unknown, tSNR has remained arguably one of the most popular metrics to guide the experi-

menter’s choices [9].

tSNR mathematically consists of assessing signal stability through time for each voxel via

the ratio of the mean to the standard deviation of the time-series. But because temporal-corre-

lations may also exist [10], this metric has also been shown to be less well correlated with t-

scores than the t-score for the mean, which in essence is the same as tSNR but after GLM anal-

ysis and thus taking temporal correlations into account [11]. Moreover, although the tSNR has

already been shown to not correlate well with t-scores [12, 13], it is still in general believed that

the t-score versus tSNR relationship is an increasing function [11, 14].

Alternative coil combinations have already been proposed to specifically improve tSNR.

Drawing the parallel with the thermal noise covSOS approach, Triantafyllou et al. [15] sug-

gested considering the use of the time-series noise covariance matrix Ct to account also for the

physiological noise. Likewise, Huber et al. [16, 17] proposed the STAbility weighted RF coil

Combination (STARC) method consisting in a voxel wise tSNR optimized weighted sum of

channels. Initially solved through a gradient descent method and thus hardly implementable

into online reconstruction, we provide here an analytical solution to the problem, which turns

out to exploit the total noise covariance matrix Ct from Triantafyllou et al. [15]. Variants of

this solution are also explored; the first consisted simply of optimizing the weights based on a

pre-scan and then applying them to the fast-event fMRI scans. The second consisted of directly

optimizing the t-score for the mean [10], which after GLM analysis, aimed at filtering out the

activations while maximizing signal stability so that activations did not influence the computa-

tion of the weights. The revised STARC method and its variants are compared to covSoS

through fMRI experiments on four healthy volunteers at 7T. Temporal SNR, activation maps,

and scatter plots linking tSNR gains versus t-score gains are computed and compared. Exam-

ple of optimization results with bar graphs and signal time courses are also provided to illus-

trate further the behaviour of STARC compared to covSoS.

Theory

Throughout this work, for a given image voxel K, we denote by SK(n) its Nc×1 signal vector at

the volume repetition n through all receive channels with Nc the number of receive channels

and A the matrix of dimension N×Nc concatenating the signal time courses from all coils of

that voxel: A ¼

SKð1Þ
H

..

.

SKðNÞ
H

0

B
B
B
@

1

C
C
C
A

. The tSNR is expressed as tSNR ¼ meanðIÞ
stdðIÞ where mean(I) is the
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temporal mean of image voxel K, std(I) its temporal standard deviation while I is the resulting

voxel intensity after coil combination. The superscript H denotes Hermitian conjugate.

The SoS and covSoS combinations have their image voxel intensity computed as

ISoSðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SKðnÞ
HSKðnÞ

q

; IcovSoSðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SKðnÞ
H
C0

� 1SKðnÞ
q

The current gold standard is the covSoS approach where the Nc×Nc channel covariance

matrix C0 computed from noise only pre-scans (scans without RF) is inserted between signal

vectors. When C0
−1 is decomposed into its Cholesky form, this operation can be seen as a pre-

whitening process uncorrelating the channels and penalizing the noisiest ones.

In [15], Triantafyllou et al. extended the Krueger-Glover model by substituting to the scalar

coefficient expressing the effective strength of the physiological noise with a physiological

noise covariance matrix Cp such that the time-series covariance matrix Ct, calculated from the

covariance matrix of A, could be separated into Ct =C0+Cp. The paper concluded by suggest-

ing thatCt could thereby be leveraged in the coil combination to optimize tSNR, just as the

covSOS approach does for SNR, as intuition would dictate:

IcovSoStðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SKðnÞ
H
Ct
� 1SKðnÞ

q

with Ct ¼ covðAÞ:

Originally introduced by Huber et al., STARC [16] is a voxel-wise data-driven tSNR optimi-

zation yielding a weighted sum of channels written as ISTARC = AX with X the Nc×1 coil combi-

nation vector to determine for each voxel. The STARC problem was originally written as

X ¼ argmax
X

meanðISTARCÞ
stdðISTARCÞ

The optimization had to be performed on each voxel independently via a gradient descent

method and was thus time-consuming. However, it is possible to provide an analytical solution

to this problem by recasting it as

X ¼ argmin
X

VarðISTARCÞ s:t:EðISTARCÞ ¼ b;

where E(ISTARC) and Var(ISTARC) denote respectively the expectation and the variance values

of the time signal ISTARC. Their respective expressions are

E ISTARCð Þ ¼ u0X; Var ISTARCð Þ ¼
1

N
X0 A0A � uu0ð ÞX ¼ X0cov Að ÞX;

with u the Nc×1 columnwise (temporal) mean vector of A and cov(A) is the covariance matrix

of A. b is an arbitrary scalar and can be set to b = mean(ISoS) so that after optimization the

mean temporal image is conveniently the same as for SOS. As a result, the optimization prob-

lem is a quadratic program under a linear constraint whose solution satisfies the Karush–

Kuhn–Tucker (KKT) conditions [18]. The Lagrangian multiplier method yields for the

Lagrangian

LðX; lÞ ¼ X0covðAÞX þ lðu0X � bÞ;

with λ the Lagrange multiplier. The solution can be found by setting the derivatives of the
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Lagrangian with respect to X and λ to zero such that

@L
@x
¼ 2CtX þ lu ¼ 0

@L
@l
¼ uX � b ¼ 0

8
>><

>>:

The solution then is X ¼ � lcovðAÞ� 1u
2
¼ �

lC� 1
t u
2

. λ is equal to � 2b
u0C� 1

t u to meet the constraint so

that X ¼ bC� 1
t u

u0C� 1
t u. Conveniently in this final expression b and the denominators are scalars and

therefore can be potentially omitted with no impact on the tSNR. The STARC voxel intensity

thus finally simplifies to ISTARC ¼ AC� 1

t u.

This expression has some similarities with the one of covSOSt in that both exploit the time-

series covariance matrix, but they are not identical. This result can already provide hints on

the behaviour of STARC: because it uses the inverse of the time-series covariance matrix C
� 1

t ,

STARC will penalize the channels with the highest variability, regardless of its origin (neural

activations or noise). We will experimentally show that this type of combination indeed greatly

improves tSNR. But it comes at the cost of weaker t-scores because activation spikes are not

dissociated from the rest of signal variability.

Therefore, in order to ignore activation-related signal fluctuations during the STARC opti-

mization, a first simple solution would be to calibrate the weighting vector X based on a sepa-

rated in vivo pre-scan acquisition with no stimuli and apply it to the fMRI acquisition,

assuming reproducibility. We will denote this coil combination STARCps.

A second alternative consists of replacing the tSNR as cost function by the t-score for the

mean described by Corbin et al. [11], yet still neglecting temporal correlations to preserve an

analytical solution for simplicity. The t-score for the mean of a voxel is the ratio of the tempo-

ral mean of the signal by the standard deviation of its residual after the General Linear Model

fit (GLM). For clarity, the key aspects are reminded here. The detection of BOLD signal in

fMRI exploits the General Linear Model [19], which describes the voxel-wise fMRI signal I
with a design matrix D containing the explanatory variables such that

I ¼ Dbþ ε;

with β, the regression coefficients estimated via least squares method and ε the residual of the

estimation assumed to follow a centred Gaussian distribution. Their respective expressions are

b ¼ ðD0DÞ� 1D0I ¼ DþI; ε ¼ I � Db ¼ ðId � DDþÞAX ¼ PAX;

where Id is the identity matrix and D+ the pseudo inverse of D. The matrix P defines a projec-

tion because PP = P. The typical method to infer on neuronal activations uses t-score statistics

to assess the significance of given explanatory variables on the fMRI signal. The t-score is cal-

culated with

t ¼
c0b

sε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c0ðD0DÞ� 1c
q ;

where c is a vector selecting a specific contrast. σε2 is the variance of ε computed as

VarðεÞ ¼ sε
2
¼

1

N
X0 PAð Þ

0PA � uPAuPA
0

� �
X ¼ X0cov PAð ÞX ¼ X0CtsmX;

with uPA the column-wise (temporal) mean of PA. By the same token, just like for the STARC
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optimization, consequently optimization of the t-score is written as

X� ¼ argmin
X

VarðεÞ s:t: c0b ¼ c0DþAX ¼ b;

where b is again an arbitrary scalar. The t-score for the mean metric makes use of the expres-

sion of t where c is made of zeros everywhere except one at the index corresponding to the col-

umn of the design matrix fitting the mean of the signal (hence the name “t-score for the

mean”). The t-score for the mean as a result can be interpreted as a tSNR where the standard

deviation of the signal is calculated in the vector space orthogonal to the subspace spanned by

the columns of D (i.e. its image). That way, noise evaluation elegantly disregards what is

believed to be activations. The function to maximize here is the t-score for the mean, the solu-

tion is found to be X ¼ � lcovðPAÞ� 1c0DþA
2

¼ �
lC� 1

tsmutsm
2

through the same Lagrangian multiplier

method as for the STARC optimization. Finally, the expression for the coil combination opti-

mizing for the t-score for the mean yields for image intensity

ISTARCtsm
¼ ACtsm

� 1utsm (omitting again scalar coefficients with no impact on the t-scores).

The pseudo-code for the t-score of the mean optimization is provided in S1 File.

Because this strategy actively uses the GLM design matrix D for denoising, the degree of

double-dipping [20] to which STARCtsm is prone has to be determined. t-scores normally fol-

low the Student’s t-distribution, but in the case of a high number of degrees of freedom (>30),

this distribution is in practice set to be equivalent to a standard normal distribution of mean

zero and standard deviation of one when there is no activation (null hypothesis). Double-dip-

ping bias will be confirmed if STARCtsm does not follow this distribution.

Materials & methods

Sequence, pulse design and fMRI paradigm

This study was approved by the local ethics committee and four healthy volunteers were

scanned after providing written informed consent. In vivo experiments were performed on a

Magnetom 7T (Siemens Healthineers, Erlangen, Germany) with software version VB17A step

2.3 and equipped with a parallel transmission (pTX) 8Tx/32Rx head coil (Nova Medical, Wil-

mington, MA, USA).

For each volunteer, anatomical scans were performed with a 0.8 mm isotropic resolution

MPRAGE sequence and functional scans were acquired with 3D-EPI [21]. Imaging parameters

for the MPRAGE were TR/TI/TE 2600/3.44/1100 ms, flip angle (FA) 4˚, 192 sagittal slices,

FOV 256 mm, acceleration factor 2 with GRAPPA. Parameters for the 3D-EPI were chosen to

be as close as possible to the ones from the 7T Human Connectome Project (HCP) resting-

state fMRI protocol. Parameters were: TR/TE 55/22 ms (TRvol = 1.2 s), 88 sagittal slices, 1.6

mm isotropic resolution, FOV 208 mm, acceleration factor 2×4, partial-Fourier (PF) 7/8,

CAIPI shift Δkz = 2, BW = 1832 Hz/Px, Posterior to Anterior phase encoding, total acquisition

time 5:26 mins for 260 repetitions. A brief 3D-EPI scan with the same parameters was acquired

with an inverted phase encoding (Posterior to Anterior) for distortion correction.

To improve the RF transmit field, universal pulses [8, 22] were specifically designed for the

3D-EPI sequence via an offline optimization algorithm, using a database of 20 B1/B0 field

maps. Flip-angle normalized root mean square error was reduced from 21% in CP-mode to

12% with universal pulses. The optimized pulse was a three kT-points RF pulse of flip-angle

15˚ and 3 ms total duration for water selection [8].

In order to assess the differences in BOLD sensitivity between the different RF coil combi-

nations, a localizer fMRI paradigm was used [23]. It is a fast event-related fMRI paradigm
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consisting of a succession of ten types of stimuli such as checkerboard, auditory/visual sen-

tences, calculations and right/left clicks.

Data analysis and comparison strategy

The 3D-EPI data were reconstructed with a custom GRAPPA reconstruction code and yielded

uncombined channel images. The three dimensional time series obtained after each coil com-

bination were normalized so that their mean temporal signal was set equal to the mean tempo-

ral of SoS and then saved into NifTI format. Image alignment, 2 mm3 FWHM Gaussian spatial

smoothing and brain normalization on 2mm3 MNI were done with SPM12 [24]. A distortion

correction was performed with topup [25] from the FSL library (FMRIB, Oxford UK) between

image realignment and registration steps. The GLM design matrix included task onsets con-

volved with a canonical hrf with their first derivative, signal drift, mean and six motion regres-

sors (three translation, three rotations) obtained from the motion compensation post-

processing step (after coil combination).

For all volunteers, we implemented the covSoS, STARC, STARCps and STARCtsm combina-

tions from the same acquisitions to ensure a fair comparison. Only the coil combination dif-

fered. An additional acquisition with the same sequence and parameters of 100 repetitions

with RF but without any stimuli was performed in order to obtain optimised weights; the

weights were then applied on the uncombined fMRI data to get the STARCps reconstruction.

tSNR maps were computed by taking the ratio of the temporal mean to the standard deviation

over the 260 volumes. For each coil combination, boxplots of the tSNR distributions pooled on

the four volunteers were also computed with a brain mask to exclude non-brain voxels. By fit-

ting the post-processed data with the GLM, SPM returned t-score maps as indication of activa-

tion strength. Apart from visual qualitative analysis to ensure no absurd activated clusters,

quantitative analysis consisted in the evaluation of the number of activated voxels for different

p-values and for each coil combination strategy. In order to analyze the link between tSNR

and t-score, we generated a scatter plot of the tSNR ratio STARC/covSoS versus the t-score

ratio STARC/covSoS. Likewise, to determine whether an increase in t-score for the mean is

sufficient to get an increase in t-score, we also generated a similar plot of the t-score for the

mean ratio STARC/covSoS versus the t-score ratio STARC/covSoS. Activated voxels from

motor and auditory contrast activation maps (covSoS) were considered. A regression coeffi-

cient was computed for each plot in which all points were pooled together. Monte Carlo simu-

lations were performed to evaluate the tendency of STARCtsm to double-dipping. 32 Gaussian

random noise waveforms with 260 points each were generated. Their mean was uniformly and

randomly distributed between 0 and 50 and the noise level was set to be 5% of the weakest sig-

nal mean. No correlations among the channels were imposed. The null hypothesis for t-score

testing assumes no activation; therefore, no activations were added to the waveforms. These

signals were combined with the covSoS method and STARCtsm, as presented in the Theory

section. The thermal noise covariance matrix input was the noise level squared times the iden-

tity matrix. Simulated covSoS and STARCtsm signals were then fitted with the GLM and a t-

score was calculated for a single task contrast and saved. The design matrix used was the same

as the one used for the in vivo experiment excluding motion regressors. This process was

repeated 105 times to yield a smooth t-score probability density function for covSoS and

STARCtsm. In order to understand how STARC sets the weights for each channel, the mean,

the standard deviation and the optimized weights for each channel were displayed by means of

bar plots for two activated voxels. Scatter plots of the mean versus the standard deviation

across receive channels were also displayed for each voxel, a linear fit including the ten stron-

gest channels was plotted on top of them. Finally, the time series of two activated voxels
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(according to auditory and visual covSoS contrast maps p<0.001) were plotted for covSoS and

STARC coil combinations. All time series had their mean previously normalized to allow a fair

comparison. The time-series of the stimuli onsets convolved with the canonical hrf was like-

wise displayed to ease the distinction between noise and activations.

Results

Before exploring the results, we briefly remind for clarity the key principles of each coil combi-

nation. STARC is a weighted sum of channels optimized to yield the best tSNR. The tSNR of a

voxel is defined here by the ratio of its temporal mean and its standard deviation. Because neu-

ronal activations have also an influence on the tSNR, two other modified STARC versions

were investigated. STARCps consists in optimizing the weights on a task-free scan and then

applying them to the fMRI scans. Finally, STARCtsm is a weighted sum of channels optimized

to yield the best t-score for the mean. The t-score for the mean is similar to tSNR but normal-

ized by the standard deviation of the residuals of the GLM. Believed neuronal activations are

thus not included as noise.

Fig 1 reports the tSNR returned from covSoS, STARC, STARCps and STARCtsm coil combi-

nations. STARC showed the best overall tSNR performance up to a twofold tSNR increase

compared to the gold standard covSoS. STARCtsm also greatly improved tSNR but not as

much as STARC, indicating the influence of the potential activations on the tSNR evaluation.

On the other hand, STARCps did not improve tSNR at all compared to covSoS which shows

that the optimized weights can be scan dependent.

Fig 2 displays activation maps, from the same volunteer as in Fig 1. While STARC yielded

the highest tSNR, it performed poorly compared to the covSoS in terms of BOLD detection. Its

activation map has smaller clusters and weaker t-scores. STARCtsm (without correction of the

statistical bias induced by double-dipping) apparently improved the detectability since poten-

tial activations were removed before optimization. Given the fact that STARCtsm yields a

Fig 1. tSNR results. a–tSNR map from the same volunteer, scan and sagittal slice after covSoS, STARC, STARCps and

STARCtsm coil combinations. STARC yielded the highest tSNR map. b–Ratio of STARC and covSoS tSNR maps after

median image filtering. STARC always improves tSNR, up to a factor 2. c–tSNR distributions pooled across all

volunteers. Overall, STARC outperforms the other coil combinations in terms of tSNR. A brain mask was used to

ignore non brain voxels.

https://doi.org/10.1371/journal.pone.0259592.g001
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slightly smaller tSNR, we see that part of the preserved variations is linked to neuronal activity.

STARCps shows again the lowest performance confirming that calculated weights here are

irrelevant if used on different scans. Moreover, since the method is a voxel-based optimization,

inter-scan motion can also make the weights suboptimal.

Fig 3 shows for each activated voxel the effect of tSNR improvement on BOLD detection.

All plotted voxels have an improved tSNR thanks to STARC coil combination but their t-score

Fig 2. Activation results. a–Activation maps for the motor contrast at p<0.001 (no correction) for covSoS, STARC,

STARCps and STARCtsm. No double-dipping correction was applied to STARCtsm. The shown maps are from the same

volunteer as in Fig 1. b–Total number of activated voxels relative to the total number of voxels at different p-values and

for different coil combinations, pooled over the volunteers. STARCps and STARC have the poorest performance in

terms of BOLD detection. CovSoS has the highest number of activations for the lowest p-values but STARCtsm

(without double-dipping correction) reports more activations for the highest p-values.

https://doi.org/10.1371/journal.pone.0259592.g002
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is for most of them reduced. The regression coefficient of -0.41 suggests that tSNR not only is

poorly correlated with t-scores but also indicates a negative trend when using such data-driven

optimization approaches. An increase of tSNR with STARC can lead to an increase of t-score

for the mean, though non-linear [11]. Yet again, Fig 3B shows in this case poor correlation

between t-score for the mean and t-scores, when using the proposed strategy. The few voxels

where the tSNR is reduced after STARC are likely due to the combination of no tSNR

improvement and successive post-processing operations that slightly reduced the tSNR.

Fig 4 shows that the null hypothesis of STARCtsm seems to have a distorted distribution

compared to covSoS with a higher variance. The distortion is significantly different to covSoS

(p< 0.05). A simple solution consists in dividing the t-statistics of STARCtsm by the standard

deviation characterized here under the null hypothesis, to enforce a standard normal distribu-

tion. This double-dipping correction reduced the number of activated voxels by almost a factor

of 2.

Fig 5 shows by means of bar plots for two different voxels located in grey matter, how dis-

tributed the weights are across channels depending on the signal strength. Because there is a

clear correlation between signal strength and signal variability, the STARC approach promotes

channels with weak variance and thus of weak signal. Moreover, if the signals between two

Fig 3. t-score gains versus tSNR or t-score for the mean gains. a—Scatter plot linking the activated voxels, the tSNR

gain with STARC to its t-score gain for motor contrast. b–Scatter plot linking the t-score for the mean gain with

STARC to its t-score gain for motor contrast. c–Same plot than a but with auditory contrast. d–Same plot than b but

with auditory contrast. Each point corresponds to an activated voxel (p<0.001) according to the covSoS combination

maps. In general, an increase of tSNR did not yield a better t-score.

https://doi.org/10.1371/journal.pone.0259592.g003
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channels are highly correlated, e.g. when there are activations, then STARC can subtract one

to another to remove them. The linearity between mean and standard deviation in the scatter

plots favours the physiological noise regime hypothesis because thermal noise is not propor-

tional to signal strength. Here, the slope of the fit corresponds to a rough estimation of 1/

tSNR. However, we see that the weakest channels have their respective points not aligned with

the others suggesting that the weaker the signal, the more the noise will be in the thermal

regime.

Fig 6 plots the time series from covSoS and STARC combinations from the same activated

voxels. covSoS time series yield the highest activation peaks but also has the highest variability.

In the end, even if STARC has the highest tSNR (tSNR covSoS/STARC 35.4/67.6 and 67.2/85.0

for the first and second voxels respectively), the t-scores will be smaller than for covSoS (t-

scores covSoS/STARC are 14.1/9.1 and 11.8/8.5 for the first and second voxel respectively).

The chosen voxels here were strongly activated, which translates into very high activation

peaks. These peaks representing the bulk of signal variability are thus reduced to increase

tSNR with STARC.

Fig 4. Double-dipping results. a–T-score distributions of covSoS and STARCtsm from noise signals and Monte Carlo simulations.

The distribution of STARCtsm under the null hypothesis is distorted compared to covSoS because of double-dipping. b–Total

number of activations relative to the total number of voxels at different p-values and for covSoS, STARCtsm and its double dipping

corrected version for the in vivo scan. After correction, the number of activations from STARCtsm markedly drops. c–Activation

maps on one volunteer for visual vs auditory contrast at p<0.001 (no correction). After double-dipping correction, activations are

weaker and clusters smaller.

https://doi.org/10.1371/journal.pone.0259592.g004
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Fig 5. Weights distributions from STARC optimization for two voxels. a–Brain image from volunteer #2 axial view,

the red points labelled A and B are the voxels whose weights are analysed. b–For both voxels A and B, the bar plots

display the temporal mean, the temporal standard deviation and the optimized STARC weights. The channels

receiving the strongest signal have the highest variability but will be given the lowest weight. c–Scatter plot of the mean

versus the standard deviation for each channel, the slope of the linear fit of the ten strongest channels is also plotted.

The signal variability is highly proportional to the signal strength.

https://doi.org/10.1371/journal.pone.0259592.g005

Fig 6. Signal time series for two activated voxels for covSoS and STARC. A time series of the stimuli onset

convolved with the canonical hrf is also displayed. Each graph corresponds to a voxel. CovSoS has higher activation

peaks than STARC but the latter has the highest tSNR.

https://doi.org/10.1371/journal.pone.0259592.g006
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Discussion

Motivated by the stagnation of tSNR despite the increase in SNR in the presence of scanner

instabilities and/or physiological noise, and by the preference of tSNR over SNR as quality

metric in fMRI, we investigated in this work tSNR and t-score for the mean optimality through

voxel-wise data-driven coil combinations.

We showed that optimality could be reached for each voxel in the image by providing the

right formulation of the optimization problem. Minimizing the temporal variance of the

resulting signal while having its mean equal to an arbitrary constant yielded an analytical solu-

tion that uses the coil-to-coil (total) noise covariance matrix. Despite a great improvement of

tSNR, activation maps obtained after STARC coil combination were not as good as those from

covSoS. Indeed, signal variation contains noise but also neuronal activations. By reducing the

variations, noise was reduced but activation spikes were reduced too. By looking closer at the

coil combination weights, STARC penalizes the coils with the highest signal and promotes the

weakest ones because the physiological noise or activations are most of the time proportional

to signal strength while thermal noise can be roughly constant across all coils. This means that

the STARC signal for a given voxel location will be mostly made from the receive coils that are

the farthest to that location. Moreover, the poor results in tSNR and t-score from the pre-scan

strategy (STARCps) show that the optimization can be scan-dependent despite the use of the

same sequence with same settings. The covariance matrix of the signals across channels (Ct)

indeed can be sensitive to the particular signal instance or random noise sample. Unless the

time-series are particularly long, the covariance matrix calculated with modestly long time

series will exhibit fluctuations. This gives to the STARC approach an “opportunistic” behav-

iour when it comes to reduce the signal variability. The most extreme scenario would be a

time-series of length Nc, where STARC would return infinite tSNR (assuming linear indepen-

dence of the Nc signals), i.e. no signal variation. Applying the same optimized weights on

another time-series would not return the same result because of a different noise sample.

The STARC method was unable to distinguish physiological noise from neuronal activity

without any a priori while no assumptions about the nature of the noise or its statistics here

were made. This motivated the change of strategy by optimizing the t-score for the mean

instead of tSNR. Mathematically, it was shown to be a projection of the STARC problem onto

a space orthogonal to the one spanned by the design matrix of the fMRI experiment. By doing

so, potential activations were removed prior to variance minimization and an analytical solu-

tion again could be obtained. This strategy allowed having more activations than STARC but,

as the Monte-Carlo simulations showed, this was an illusory consequence of double-dipping

[20]. Once the null-hypothesis was characterized properly, the necessary corrections revealed

no gain compared to covSOS. The optimization recipe provided in fact can be applied for any

contrast optimization, but would lead again to double-dipping.

The t-score results of STARC do not follow those from the original abstract [16] but they

confirm the results from a pilot experiment [17] where STARC returned also lower t-scores at

higher resolution acquisitions, i.e. more in the thermal noise regime. The discrepancy could be

temptingly explained by the fact that the original STARC algorithm consisted in a gradient

descent with maximum and minimum constraints on the weights. These constraints could

have possibly alleviated the destructive effects of the approach on the activations. Since an ana-

lytical solution was obtained, we wanted in this study to not include such constrains but rather

emphasize the risks of searching for the best tSNR possible in data-driven optimization

approaches. Despite the agreement between our observations and the results described in [17],

we do not rule out the possibility of obtaining more activations in some other fMRI protocols

based on such data-driven optimization principles.

PLOS ONE Temporal SNR optimization through RF coil combination in fMRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0259592 November 8, 2021 12 / 15

https://doi.org/10.1371/journal.pone.0259592


In their paper [15], Triantafyllou et al. extends the KG-model by adding a new term to its

expression. They define it theoretically as not scaling with signal strength. They confirm exper-

imentally its physiological noise origin by showing that the value of this term was higher on in

vivo than on phantom acquisitions. They propose examples of noise that do not scale with sig-

nal strength. These being seen simultaneously across channels, it can also presumably be

reduced with linear combinations as in STARC. In our case, the strong proportionality

between signal strength and signal variability shown in Fig 5 suggests that this type of noise

here did not have an important influence on the STARC weights.

tSNR can increase if the signal mean increases (with constant or slower increase of vari-

ance) or if the variance decreases (with constant or slower decrease of mean). If the tSNR is

computed on acquired fMRI scans, both cases do not necessarily represent a favourable situa-

tion to see more activations, because in the first case, the physiological noise is most of the

time proportional to signal temporal mean [7, 15] and in the second case minimizing all signal

variations can erode activation spikes. Although tSNR still remains an interesting metric to

benchmark sequence settings, these results shed light on its limits. The results of this work sug-

gest that tSNR should not be considered alone when evaluating or comparing acquired in vivo

data because it contains neuronal fluctuations. The t-score for the mean is an interesting alter-

native to tSNR that does not take into account neural activity. However, we showed that an

increase in the t-score for the mean is neither a necessary nor a sufficient condition to get an

increase in t-score, but it depends on the strategy with which the t-score for the mean increase

is obtained [11].

In conclusion, we presented tSNR and t-score for the mean optimal coil combination meth-

ods. Despite the proven optimality of these coil combinations for these data quality measures,

activation maps did not improve compared to the gold standard covSoS coil combination,

thereby indicating potential limits of tSNR and t-score for the mean metrics when assessing

the quality of already acquired fMRI data. Although their approximate nature had already

been reported in the literature, this work emphasizes the pitfalls associated with data-driven

optimization approaches. Moreover, introducing prior information about the activations

through the use of the GLM design matrix failed to outperform the covSoS coil combination

method, once the statistical bias was taken into account properly. Although the theory leading

to covSoS does not incorporate non Gaussian temporal fluctuations related to scanner instabil-

ities or physiological noise, it appears that it remains so far more reliable for fMRI than data-

driven coil combination methods being able to boost tSNR.

Supporting information

S1 File. STARC and STARCtsm pseudo code algorithms.

(PDF)

Acknowledgments

We thank Laurentius Huber for valuable discussions. We also thank the reviewers for their

valuable comments.

Author Contributions

Conceptualization: Redouane Jamil, Alexandre Vignaud, Nicolas Boulant.

Data curation: Redouane Jamil.

Formal analysis: Redouane Jamil, Caroline Le Ster, Nicolas Boulant.

PLOS ONE Temporal SNR optimization through RF coil combination in fMRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0259592 November 8, 2021 13 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259592.s001
https://doi.org/10.1371/journal.pone.0259592


Funding acquisition: Nicolas Boulant.

Investigation: Redouane Jamil, Nicolas Boulant.

Methodology: Redouane Jamil, Franck Mauconduit, Nicolas Boulant.

Project administration: Redouane Jamil, Nicolas Boulant.

Resources: Philipp Ehses, Benedikt A. Poser, Nicolas Boulant.

Software: Redouane Jamil, Franck Mauconduit, Caroline Le Ster, Philipp Ehses, Benedikt A.

Poser, Nicolas Boulant.

Supervision: Nicolas Boulant.

Validation: Redouane Jamil, Nicolas Boulant.

Visualization: Redouane Jamil.

Writing – original draft: Redouane Jamil, Franck Mauconduit, Caroline Le Ster, Philipp

Ehses, Benedikt A. Poser, Alexandre Vignaud, Nicolas Boulant.

Writing – review & editing: Redouane Jamil, Franck Mauconduit, Caroline Le Ster, Philipp

Ehses, Benedikt A. Poser, Alexandre Vignaud, Nicolas Boulant.

References
1. van der Zwaag W, Francis S, Head K, Peters A, Gowland P, Morris P, et al. fMRI at 1.5, 3 and 7 T: Char-

acterising BOLD signal changes. NeuroImage. 2009 Oct 1; 47[4]:1425–34. https://doi.org/10.1016/j.

neuroimage.2009.05.015 PMID: 19446641

2. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson

Med. 1990; 16[2]:192–225. https://doi.org/10.1002/mrm.1910160203 PMID: 2266841

3. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: Sensitivity encoding for fast MRI.:

11.

4. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, et al. Generalized autocalibrating

partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002; 47[6]:1202–10. https://doi.org/10.

1002/mrm.10171 PMID: 12111967

5. Larsson EG, Erdogmus D, Yan R, Principe JC, Fitzsimmons JR. SNR-optimality of sum-of-squares

reconstruction for phased-array magnetic resonance imaging. J Magn Reson. 2003 Jul; 163[1]:121–3.

https://doi.org/10.1016/s1090-7807(03)00132-0 PMID: 12852915

6. Triantafyllou C, Polimeni JR, Wald LL. Physiological noise and signal-to-noise ratio in fMRI with multi-

channel array coils. NeuroImage. 2011 Mar; 55[2]:597–606. https://doi.org/10.1016/j.neuroimage.2010.

11.084 PMID: 21167946
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