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Abstract: Kidney cancer and chronic kidney disease are two renal pathologies with very different
clinical management strategies and therapeutical options. Nonetheless, the cellular and molecular
mechanisms underlying both conditions are closely related. Renal physiology is adapted to operate
with a limited oxygen supply, making the kidney remarkably equipped to respond to hypoxia.
This tightly regulated response mechanism is at the heart of kidney cancer, leading to the onset of
malignant cellular phenotypes. Although elusive, the role of hypoxia in chronic kidney diseases is
emerging as related to fibrosis, a pivotal factor in decaying renal function. The present review offers
a perspective on the common biological traits shared between kidney cancer and chronic kidney
disease and the available and prospective therapies for both conditions.
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1. Introduction

In healthy adults, both kidneys receive about 20–25% of the cardiac output. When
considering their relatively small volume and weight, in comparison to other systems, the
kidneys are the most perfused organs, receiving a substantially high flow of oxygenated
blood [1]. Despite this fact, there is a paradoxical discrepancy between the oxygen levels
perfused through the kidney and its actual tissue disposition and consumption. It is
estimated that roughly only 10% of the oxygen reaching the kidney is consumed in cellular
processes [2]. Arterial oxygen tension (pO2) is approximately 100 mmHg (including in
the renal artery, leading blood into the kidney) and systemic venous pO2 is approximately
30 mmHg. In blood exiting the kidney, via the renal vein, pO2 is approximately 70 mmHg.
The reason behind this physiological attribute is the peculiar architecture of the renal
vasculature [2]. The renal artery and vein branch-out in a parallel pattern, where arterioles
and veins are arranged side-by-side, in close proximity [3]. This system allows oxygen to
diffuse from the arterioles into the veins with little transit through the capillary network,
therefore limiting the concentration of oxygen in the surrounding tissue. The nephrons—
the functional units responsible for renal secretion—are exposed to variable levels of pO2. In
the renal cortex (outer-region) the glomerulus and convoluted tubules experience a higher
pO2 than the renal medulla (inner-region), approximately 30 and 10 mmHg, respectively.
Arguably, the evolution of renal vasculature benefited the secretory functions of the kidneys
at the expense of oxygen distribution to the tissue [4].

The kidneys are metabolically demanding organs that require a significant energy
output to fulfil their blood filtering and reabsorption roles. Post-glomerular filtration
processes depend on an array of membrane-bound transporter proteins, expressed in
both the proximal and distal convoluted tubules, responsible for the removal of metabolic
bi-products and xenobiotics as well as the reabsorption of solutes, water, glucose, amino-
acids, and micro-nutrients [5]. In particular, the renal proximal tubules can concentrate a
variety of compounds against steep concentration gradients [6]. Highly specialized renal
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proximal tubule epithelial cells (RPTEC) remove drugs and toxins from the blood while
recovering large concentrations of glucose and sodium from the filtrate back into systemic
circulation. RPTEC are rich in mitochondria, responsible for generating the adenosine
triphosphate (ATP) necessary to power their active-transport machinery. With a high rate
of aerobic respiration and a limited oxygen supply, renal cells constantly operate under
potentially precarious pO2 conditions [7]. Accordingly, the kidneys are often referred to
as hypoxic organs due to their low pO2. Hypoxia ensues when O2 consumption exceeds
supply, and renal cells have developed remarkable adaptations to function with borderline
oxygen levels. An intricate regulatory mechanism maintains a fine balance between energy
consumption and oxygen supply, preventing the kidneys from falling into an actual hypoxic
state, where normal physiological processes can no longer be assured.

The aim of the present review is to offer a perspective about how the pathophysiologi-
cal aspects shared by kidney cancer and chronic kidney disease can impact their diagnostics,
the development of prospective therapies, and the discovery of novel biomarkers.

2. Regulating the Oxygen Supply to the Kidneys

The central mechanism in the cellular response to fluctuating O2 levels is the activity of
the Prolyl hydroxylases—Hypoxia-Inducible Factors (PHD-HIF) axis. This interaction func-
tions as a cellular O2 sensor, as PHD consume intracellular O2 to catalyze the hydroxylation
of HIFs, the nuclear transcription factors that regulate gene expression. HIFs activity is kept
in check by continuous PHD-mediated hydroxylation [8]. When physiological O2 levels are
maintained (normoxia), hydroxylated HIFs are targeted for proteolytic degradation, which
limits their expression. When O2 levels drop, PHD activity is inhibited and HIFs expression
is upregulated, prompting a response to counter the effects of reduced O2. Several HIFs
and PHD isoforms are differentially expressed across renal cells, promoting differential
hypoxic responses [9]. A hallmark in renal hypoxic response is the increase of systemic
erythropoietin (EPO). This hormone is produced in the fibroblasts of the peritubular in-
terstitium that express PHD2 and stimulates the production of red blood cells, with the
objective of increasing the concentration of O2 delivered to the kidneys. Glomerular cells
respond to hypoxia by releasing vascular endothelial growth factor (VEGF). This growth
factor mediates microvasculature growth and repair by stimulating the proliferation of
endothelial cells, leading to facilitated blood flow. While these responses are seemingly
aimed at restoring renal pO2 levels by augmenting supply [8], cells also manage hypoxic
events by limiting O2 consumption. The activity of adenosine triphosphate (ATP) depen-
dent membrane carriers is reduced and the expression of glycolytic enzymes is enhanced
in a push to preclude oxidative phosphorylation in the mitochondria in favor of non-O2
mediated anaerobic metabolism ensuring ATP production. These mechanisms, among
others, and the fact that they can be readily reversed when physiological O2 levels are
restored, illustrates the plasticity of renal cells in their hypoxic responses. Beyond the
direct role of the PHD-HIF axis in sensing O2 levels, this mechanism has a far-reaching
impact in cellular regulation. PHD1 and PHD2 suppresses the activity of the nuclear
factor-kappa B (NF-kB) pathway, which is involved in cell proliferation and inflammatory
responses. PHD3 directly interacts with pyruvate kinase to inhibit glycolytic activity, in a
way, by-passing HIF activity. Conversely, HIF activity is also induced independently of
O2 levels. Post-transcriptional regulation (e.g., phosphorylation) also plays an important
role in recruiting the activity of these factors to meet different physiological needs under
normoxic conditions. HIF is reported to control the expression of well over 500 genes
involved in cell growth, energy production, mobility, angiogenesis, cell cycle, and even
gene expression itself (chromatin remodeling) [10]. These pathways are critical to maintain
cellular and tissue homeostasis, hence their importance in the hypoxic response.

3. Hypoxia Response and Renal Pathophysiology

The PHD-HIF axis plays a prominent role in renal pathophysiology. Kidney cancer
and chronic kidney disease (CKD) are two diametrically opposed pathologies; however, at
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their core is the regulation of PHD-HIF and associated pathways. Both pathologies share
the main, non-hereditary risk factors, including age, high-blood pressure, obesity, diabetes
and smoking. Kidney cancer is also a risk factor for renal insufficiency and vice-versa [11].
Renal physiology with its low pO2 is susceptible to hypoxic damage, in particular from con-
ditions that compromise blood supply to the kidneys such as vasoconstriction and vascular
damage. The resilient nature of kidney cells enables them to adapt and extensively recover
from injury events and resume their physiological functions. In particular, the RPTEC,
considering their high energy demand, are able to steer their physiology through hypoxic
conditions. Mounting evidence underlines the fact that faults in their stress-response
machinery are a major contribution to the onset of these renal pathologies (Figure 1).

Figure 1. Cellular response to oxygen levels. (A): Under normal conditions, PHD have access to
sufficient oxygen levels to promote the hydroxylation of HIF and maintain a stable expression of these
transcription factors. Excess HIF is a target for proteolytic degradation mediated by VHL. (B): When
cellular oxygen levels drop below the levels required to ensure PDH activity, HIF expression is
destabilized. VHL is precluded from recognizing HIF and a lack of degradation leads to the activation
of a myriad of genes with diverse functionalities. HIF activity will ensure cell survival and facilitate
the restoration of physiological oxygen levels. Unchecked HIF activity can result in the sustained
expression of inflammatory factors. (C): In RCC, the loss of VHL activity leads to the constitutive
activation of HIF and a predominantly inflammatory and unbalanced cellular activity. (D): The
differential activity of HIF in low oxygen conditions or in the absence of VHL leads to upregulation
of several interconnected cellular pathways.

The most common type of kidney cancer is Renal Cell Carcinoma (RCC). RCC orig-
inate from RPTEC that differentiate and acquire a malignant phenotype. Depending on
their aggressiveness, RCC can be fast-growing and invasive tumors. This carcinomas are
characterized by the loss of function of the von Hippel-Lindau (VHL) protein [12]. This
inactivation can result from hereditary factors, sporadic mutations or epigenetic modifica-
tions (e.g., DNA methylation), and its end-result is the constitutive activation of HIFs. VHL
recognizes hydroxylated-HIF and facilities the activity of the E3 ubiquitin ligase complex,
which then mediates HIF proteolytic degradation via ubiquitination. By removing VHL
from this mechanism, HIF expression is stable and no longer kept in check leading to the
deregulation of its target genes [13]. The balancing act between VHL suppressing and
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HIF activity is a major determinant in RCC onset, progression and outcome. Two HIF
variants, -1α and -2α, are recognized by VHL and are of particular relevance in clear cell
RCC (ccRCC), the most common RCC subtype. In the kidneys, HIF-1α is predominantly
expressed in tubular cells, while HIF-2α is present in glomerular cells, fibroblasts and
endothelial cells. In RPTEC, HIF-1α is key to the regulation of baseline glycolysis and the
cell cycle, acting in this way as a tumor suppressing gene. With the onset of the malignant
phenotype, cells acquire HIF-2α expression, a factor otherwise absent. HIF-2α is crucial
for tumorigenic activity, and it upregulates proliferation, angiogenesis, and mediates in-
flammatory responses [14]. As cancer cells differentiate further, HIF-1α expression can be
completely lost, with HIF-2α assuming its regulatory activity. RCC are highly glycolytic
and angiogenic tumors that overexpress glucose membrane transporters and VEGF to meet
the needs of their anaerobic metabolism [15].

Epidemiological studies show an interdependent link between CKD and the develop-
ment of urogenital cancers, both direct and indirect. Early stages of renal insufficiency are
not correlated with cancer onset, however late stage CKD patients have a 10–20-fold higher
cancer incidence. This is understood to be derived from the systemic accumulation of
toxic metabolites and, eventually, pharmaceuticals after diminished renal function, a factor
that leads to both cellular toxicity and an impaired immune response [16]. On the other
hand, several chemotherapeutical agents can induce kidney damage, given their cytotoxic
nature and renal excretion. The latest generation of anti-cancer drugs (e.g., tyrosine ki-
nase inhibitors, biopharmaceuticals) dramatically reduced nephrotoxic effects, overcoming
chemical-induced renal damage associated with drugs of preceding generations, cisplatin
being the classical example. Partial nephrectomy, the surgical procedure to remove an
RCC tumor, frequently requires clamping of the renal vessels, effectively interrupting
blood flow. This iatrogenic ischemia can also result in hypoxic damage to the kidney.
There is a positive association between RCC diagnosis and CKD, however any underlying
mechanisms connecting both pathologies are still largely unknown [11].

While the role of the PDH-VHL-HIF axis is well-characterized in RCC, its impact and
the role played by hypoxia in CKD is far more elusive. CKD is characterized by the loss
of overall kidney function and is a complex, multifactorial and insidious disease. It often
leads to renal failure over time without appropriate clinical management [17]. Contrary
to RCC, this pathology virtually affects all cell types in the nephron and not exclusively
RPTEC. The effects of hypoxia in CKD are traditionally assumed to follow detrimental
damage to the renal capillary network [18]. A restricted blood flow leads to a chain reaction
where O2 deprived renal cells promote scaring of the peritubular space and irreparable
damage to nephrons and the vasculature. This damage is derived from renal fibrosis, one
of the most prominent factors contributing to CKD pathophysiology, characterized by
the deposition of extracellular matrix (ECM) proteins in the peritubular space. In an O2
deficient environment, the turn-over of RPTEC is compromised, and aging epithelial cells
result in the loss of tubules and degrading renal function [19]. The understanding of the
impact of hypoxia in CDK is challenged by the contradictory activities of HIF-1α, described
across a multitude of comprehensive studies. On one hand, HIF-1α activity facilitates
the recovery of damaged tubular cells by controlling their de-differentiation and growth,
suppresses inflammation, fibrosis and improves renal function. On the other, HIF-1α
seemingly promotes the opposite, increasing fibrosis and accelerating tubular and glomeru-
lar damage. Interestingly, most detrimental effects were observed in studies involving
the overexpression or knock-out of HIF-1α, while most positive effects were observed in
studies using pharmacological interventions. This evidence is detailed by Faivre et al. [20],
and arguably the experimental models used may be an important factor in the HIF-1α
activity reported. Nonetheless, these dual effects suggest that HIF-1α post-transcriptional
regulation, rather than its expression, dictate its physiological impact. Dedifferentiating
renal epithelial cells can acquire a proto-fibrotic phenotype and drive tubulointerstitial
inflammation [8]. HIF-1α appears to drive both regeneration and epithelial to mesenchy-
mal transition (EMT) prompting the proliferation of differentiating RPTEC that did not
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fully recover their epithelial phenotype. These proto-fibrotic cells deposit extracellular
matrix and can acerbate functional losses by promoting tissue fibrosis [21]. In a similar
fashion, interstitial fibroblasts, in the peritubular space, can proliferate and deposit ECM
when pushed towards a predominantly anaerobic metabolism. This process is mediated
hypoxia-independently, with the transforming growth factor beta (TGF-β), a cytokine that
controls cellular proliferation, inhibiting the activity of PHD2 resulting in unbalanced HIF
expression [22]. The role of inflammation as another hypoxia-independent activator of
HIF in pathophysiological conditions is now emerging, with different regulatory pathways
interacting with HIF. The tumor necrosis factor alpha (TNF-α) is a cytokine released by
macrophages in response to cellular stress, and can indirectly stabilize the cellular levels of
HIF-1α via the transcriptional activity of the NF-kB.

4. Common Traits in RCC and CKD

Contrary to RCC, no evidence suggests that VHL expression and activity is compro-
mised throughout the onset and progression of CKD. This supports the fact that a key
difference between both pathologies is that HIF activity does not go completely unchecked
during CKD. RCC, particularly in advanced stages, are highly inflammatory tumors. RCC
release an array of cytokines believed to contribute to the maintenance of its microenviron-
ment and the self-regulation of its cancer phenotype. Interleukin-6 (IL-6) and TNF-α play
major roles in cancer proliferation by regulating cell growth and metabolism. Recently,
systemic inflammation has been proposed as a marker for RCC progression [23]. The
secretion of cancer-specific cytokines and chemokines enables advanced RCC to sequester
the activity of immune cells to facilitate a metastatic cascade, leading to the spread and
engraftment of cancer cells outside of the primary tumor [24]. The inflammatory nature of
RCC can be considered as a mechanism responsible for cancer survival and proliferation,
with tangible effects in systemic inflammation. Intra-tumor fibrosis (ITF), is the result
of a complex interaction between cancer and infiltrating cells that results in dense ECM
deposits populating primary tumors and plays an important role in maintaining the cancer
microenvironment and as a repository of immune cells [25]. Circumstantial evidence shows
an association between ITF and the progression of RCC into invasive tumors with poor
clinical prognosis; however, to date little is known about the role that ITF plays in RCC
pathophysiology [26]. The same mechanisms involved in renal fibrosis (e.g., TGF-β, EMT)
are present in ITF tissue, and a better understanding of how prominent fibrosis is on RCC
onset could shed light on the common causes of both diseases before they evolve and
develop their intrinsic phenotypes. Moreover, the impact that both inflammation and ITF
have on normal renal physiology is uncertain.

5. Available Therapies for RCC and CKD

Clinically, both pathologies present diverse outcomes. When detected at an early stage,
RCC treatments offer a good prognosis. Tumor resection is the front-line treatment for
localized RCC, enabling the removal of the tumor with limited impact on kidney function.
Advanced RCC are associated with a poorer prognosis and about a third of RCC patients
are estimated to be diagnosed with metastatic tumors. CKD is a progressive disease with
very limited treatment options. About one in ten adults globally is estimated to experience
some form of CKD. Managing lifestyle by controlling diet and blood-pressure -as well as
maintaining physically active remain the best options to minimize the effects and slow
the decay of renal function. Nonetheless, CKD often leads to renal failure, requiring
renal replacement therapy, begins with dialysis and eventually leads to kidney transplant.
RCC is stealthy and challenging to diagnose given its lack of symptoms during initial
stages. This pathology does not seem to interfere with normal kidney function, even in
a mid to advanced stage, rendering common markers to evaluate renal function, such as
glomerular filtration rate (GFR), anemia and decreased systemic sodium, ineffective for
its detection. Most RCC cases are detected by chance, when patients undergo diagnostic
imaging (e.g., ultrasound, tomography scan) for unrelated reasons. Frequently, tumors
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are detected in patients in a risk group for renal insufficiency (e.g., high blood pressure,
diabetes) that are tested for renal damage. Over the past two decades the treatment of RCC,
namely in its advanced stages, saw a dramatic improvement. Patients with previously
poor clinical prognosis have benefited from the introduction of, mainly, two novel drug
classes, immune check-point inhibitors (ICI) and multi tyrosine kinase inhibitors (TKI). ICI
are large biological immune-therapy molecules, either whole antibodies or antigen-binding
fragments (Fab), that block the binding of check-point receptors in T-cells to their respective
membrane ligands. Check-point receptors regulate immune responses and, under normal
physiological conditions, help T-cells to discriminate between autologous, healthy and
foreign cells, preventing disproportionate immune cascades. RCC cells shield themselves
from the immune system by presenting specific check-point ligands in their membrane.
ICI facilitate the activation of T-cells by exposing RCC as disease tissue, inducing cellular
death pathways in tumor cells. TKI are small-molecule drugs that target the activity
of specific tyrosine kinase proteins that regulate key cellular processes. TKIs effective
in the treatment of RCC mainly target different subtypes of VEGF receptors and block
their angiogenic activity. These drugs prevent endothelial cells in the vasculature from
responding to VEGF secreted by RCC, compromising the tumor’s angiogenic activity
and blood supply and therefore hindering cancer proliferation. Additionally, inhibitors
of the mammalian target of rapamycin (mTOR) are also used to treat RCC [27]. The
mTOR pathway is an upstream regulator of VEGF synthesis and plays a central role in
cell proliferation and differentiation [28]. Its inhibition blocks VEGF release and hampers
the proliferation of cancer cells, hence the benefits of mTOR inhibitors in RCC. Current
front-line pharmacological interventions to treat RCC, depending on disease severity and
risk factors at the time of diagnosis, consist of therapies combining ICI and TKI or different
ICI molecules (Nivolumab and Ipilimumab) [29]. As of 2021, there are about 15 molecules
approved for the treatment of RCC as single agents or within combinations by the European
Medicines Agency (EMA) and the Federal Drug Administration (FDA) [30,31].

Contrasting with this scenario, the first molecule to treat the progression of CKD
was FDA, which was approved in 2021. Dapagliflozin is a sodium glucose transport
protein 2 (SLGT2) inhibitor, developed (and approved) to treat type 2 diabetes (T2D).
It lowers blood sugar levels by preventing the RPTEC in the kidney from reabsorbing
filtered glucose. This drug was repurposed to treat CKD after it substantially reduced the
risk of renal failure and the onset of end-stage renal disease in patients with or without
T2D [32]. In addition to blocking glucose uptake, SLGT2 inhibition in RPTEC reduces
sodium uptake, which in turn reduces the workload of the Sodium-Potassium-ATPase
(Na/K-ATPase) efflux pump. Na/K-ATPase are highly expressed in RPTEC and central
to their physiology (e.g., maintaining electrochemical gradients, concerted activity with
SLGT2, osmotic balance) and it is estimated that these pumps consume over a third of the
cellular ATP production [33]. The downregulation of Na/K-ATPase activity is seemingly
beneficial to renal physiology since it minimizes energy demand and incidentally reduces
O2 cellular consumption. With diminished pressure on their O2 supply, HIF physiological
regulation is restored and cells become more resilient to hypoxic events. Additionally,
lower secretion of sodium into the renal medulla alleviates vasoconstriction. This reduces
the stress in endothelial cells, improves their function and minimizes vascular damage,
while restoring renal O2 supply [34]. Dapagliflozin represents a direct pharmacological
intervention to counter the progression of CKD; nonetheless, other therapies destined to
manage other conditions can additionally help to prevent renal damage and the onset of
CKD. Anti-hypertension drugs may exert a long-term protective effect in the kidneys by
minimizing the effects of high blood pressure and facilitating vasodilation [35]. Moreover,
evidence also shows that SLGT2 inhibitors have a cardioprotective role, given their anti-
inflammatory and anti-fibrotic effects in cardiomyocytes derived from lower intracellular
sodium levels [36]. Allegedly, one of the reasons behind the very limited therapeutic
options for CKD is our limited understanding of its pathophysiology. This is compounded
by the fact that kidney function decays with age, affecting the pharmacodynamics of
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several therapeutical agents and therefore precluding their potential use in the treatment
of CKD [37].

6. Prospective New Therapies for RCC

RCC, despite its complexity, has at its heart a phenotypical de-differentiation driven
by the PDH-VHL-HIF axis that leads to high angiogenic activity. This fact, together with
evidence from extended cancer research, enabled the development of targeted therapies,
not only for RCC but for cancers that share similar regulatory pathways [38,39]. More-
over, the vast majority of drugs and treatments currently under development for RCC
are focused on novel ICI and TKI molecules and the combination of approved drugs,
respectively [34,35]. This illustrates the efficacy of the current therapies available. Note-
worthy are ongoing trials to investigate the effects of combining ICI with experimental
cancer vaccines (NCT02950766). The objective of this new approach is to improve the
efficacy of immunotherapy including in patients with a limited response to treatments [40].
Mutations in developing tumors create neoantigens, a type of proteins that are unique
to individual cancers. Contrary to conserved immune-histocompatibility antigens that
are shared amongst human populations, neoantigens are recognized by T-cells as foreign
entities and can trigger an immune response [41]. However, factors such as limited immune
cell infiltration, tumor-derived T-cell inhibition and a high neoantigen turn-over restrict
the response under normal circumstances. Evidence from pre-clinical studies shows that
mRNA-based vaccines encoding neoantigens substantially amplify T-cell mediated tumor
cell death and maintain an adaptive immune response [42]. This effect is achieved thanks to
the priming of a substantial pool of T-cells to recognize neoantigen expressing tumor cells
and memory B-cells. Given the unique nature of neoantigens the clinical trial for this novel
therapy requires a personalized medicine strategy where tumor samples are analyzed and
target neoantigens sequenced to produce a patient-specific mRNA vaccine [43]. RCC is a
promising cancer type for ICI—mRNA vaccine combination, considering their relatively
stable mutation rate and a high proportion of neoantigens [44]. The rationale behind this
strategy is to amplify and sustain the ICI immune response by activating a substantially
higher numbers of T-cells to target tumors. This can potentially overcome poor ICI response
in certain patients (e.g., with depressed immune systems) by zooming T-cells directly to
the tumors, bypassing the tumors immune-suppressive microenvironment. One of the
challenges facing this new approach is tumor heterogenicity and the chance of neoanti-
gen depletion, where only tumor populations cells with a specific set of neoantigens are
targeted leaving others, that have mutated, unscathed to proliferate [45]. Tools that can
predict neoantigen sequences and vaccines incorporating multiple targets can overcome
these issues, as well as early detection of RCC, minimizing the consequences of an aggres-
sive cancer phenotype [46]. As of 2021, current phase I clinical trials are in the recruiting
stage and expected to yield results in the coming years. With no RNA-based vaccines yet
approved for cancer treatments as well as the challenges of developing and producing
patient-specific molecules in the timeframe required for an effective therapy, real-world
applications of ICI-mRNA vaccines are, arguably, still several years away. Nonetheless, this
innovative therapy is set to represent another substantial improvement in the treatment of
RCC patients.

7. Prospective New Therapies for CKD

Extensive research into CKD pathophysiology has revealed promising therapeutic
targets for CKD that could effectively treat the disease, beyond mitigating its onset and
progression. The dissemination of omics techniques and the advent of novel bioinformatic
analytical tools that can scout over large metadata sets are also contributing to the iden-
tification of candidate CKD druggable targets [47,48]. Renal inflammation and fibrosis
mechanisms are the focus of new therapeutic approaches, unsurprisingly, given their rec-
ognized role in the progression of CKD [49]. Bardoxolone is an inducer of the Nuclear
factor erythroid 2-related factor 2 (NRF2) and was a promising therapeutical agent [50].
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Different clinical trials reported that patients diagnosed with diabetic nephropathy, late
stage CKD [51], glomerulosclerosis and polycystic kidney disease had a significant recov-
ery in GFR when treated with bardoxolone [52]. NRF2 is a transcription factor central
to several regulatory mechanisms in mice models in which this factor is dysregulated
or knocked-out; the animals developed glomerular damage and fibrosis leading to the
loss of renal function [53]. NRF2 keeps inflammatory responses in check by mediating
the expression of anti-oxidant proteins that preserve cellular redox balance and maintain
cellular homeostasis [54]. Despite its benefits, cardiovascular safety issues hampered the
clinical implementation of bardoxolone [49]. Nonetheless, this drug showed that targeting
inflammatory cytokine release is a viable clinical avenue to treat CKD. Strategies to treat
renal fibrosis have targeted TGF-β inhibition [55]. These efforts aim to prevent phenotypic
changes in renal cells by blocking proliferation and differentiation pathways, namely pre-
venting RPTEC from becoming proto-fibrotic. Pirfenidone is a growth factor inhibitor used
to treat pulmonary fibrosis, and it has been reported to also block TGF-β activity [56,57].
Previous trials did not determine a positive effect of pirfenidone in GFR loss. Nonetheless,
an ongoing clinical trial (NCT04258397) is investigating the effects of this drug in prevent-
ing the development of renal fibrosis using comprehensive methodology (e.g., Imaging,
renal function biomarkers). Neutralizing monoclonal antibodies are highly specific drugs
that minimize off-effects and can efficiently block TGF-β activity [58]. Human trials of
these molecules did not meet their efficacy endpoints, with no significant improvement in
GFR after treatment, despite promising pre-clinical results. This was attributed to the tissue
distribution properties of the antibodies and limited delivery to the kidneys and affected
organ areas [59]. Direct targeting of TGF-β continues to be a promising therapeutic strategy,
providing that the pharmacokinetic issues surrounding renal delivery of biological drugs
are addressed.

Commonly prescribed medications are also being sought as potential CKD treatments.
The inflammatory process stimulates Angiotensin II (AII) in a positive feedback loop. There-
fore, reducing AII availability negatively impacts the release of inflammatory factors [60].
Angiotensin-converting enzyme inhibitors (ACE) effectively reduced renal inflammation
and fibrosis, independently of blood-pressure, in pre-clinical models [61]. Clinically, and
across multiple studies, ACE reduced the levels of systemic inflammatory factors and
pro-inflammatory monocytes, and have overall renoprotective effects, ameliorating disease
progression and reducing the risk of dialysis in CKD patients [62]. Despite their benefits,
ACE are, so far, recommended as a preventative medication for CKD in patients with
pre-existing conditions and not necessarily as a treatment.

8. Perspective on the Use of New Drugs Modalities in RCC and CKD

Experimental molecules with a biological activity, physical-chemical properties and
pharmacokinetics substantially different from conventional molecules—commonly known
as small-molecules—and are often referred to, unofficially, as new drug modalities
(NDM) [63]. NDM include a very diverse collection of molecules and have drawn much
attention from drug makers given their potentially very high efficacy and marginal toxic-
ity [64].

A prominent class of NDM are RNA based drugs; which can be designed to upregulate
or block the expression of target proteins [65]. The aforementioned mRNA vaccines
targeting RCC can be considered a type of RNA drug. Anti-sense oligonucleotides (ASO)
are highly-stable, short, single-stranded oligonucleotide sequences that bind mRNA and
prevent protein translation. ASO can be tailored to virtually block the expression of
a protein of interest [66]. These molecules are hampered by limited distribution and
tend to accumulate in tissues while having very slow elimination rates. Interestingly,
ASO accumulate in the kidneys in large amounts, mainly in the proximal tubules, via an
endocytic mechanism not yet fully understood [67]. Therefore, ASO have been considered
as a vehicle to easily reach therapeutic targets in RPTEC, and the latest generation of ASO
has shown remarkable renal safety [68]. Autosomal polycystic Kidney Disease (APKD),
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is a hereditary condition characterized by the formation of large fluid-filled renal cysts,
and leads to renal failure [69]. Its genetic roots and molecular mechanisms of disease are
reasonably understood [70]. ASO directed at the mTOR complex normalized the kidney
function while reducing weight and cyst size in an orthologous mice model for APKD [71].
Alport syndrome (AS) represents another hereditary disease leading to renal failure and is
characterized by deficient collagen IV, which results in glomerulonephritis [72]. ASO
designed to truncate the expression of the COL4A5 gene (collagen IV alpha-5-chain)
successfully improved survival in male animal models of X-linked AS [73]. In the kidney
cancer field, ASO directed at VEGF successfully promoted the remission of tumors in RCC
xenografts [74]. While pre-clinical data is promising, ASO development is complex and
requires the identification of highly specific genetic targets. Despite advances in ASO
safety, concerns remain about the pathological effects of the long-term accumulation of
ASO in RPTEC [75], a main reason behind the slow pace of clinical ASO research. In
the search for a CKD target, genetic variants of apolipoprotein L1 (APOL1) have been
extensively associated with the development of CKD [76]. APOL1 expression leads to
the loss of podocytes and, incidentally, renal function, and a recently initiated phase I
trial (NCT04269031) is set to start evaluating the potential of anti-APOL1 ASO in treating
CKD [77].

Anticalins are genetically modified lipocalins, a family of small human binding pro-
teins, and represent artificial proteins that act as antibody mimetics [78]. An advantage of
these synthetic peptides is their small size relative to conventional monoclonal antibodies
(about 1/8 of the size). This fact explains anticalins’ improved tissue penetration properties,
benefiting drug delivery and better clearance properties and minimizing potential side-
effects due to prolonged exposures [79]. In a first-in-human trial involving RCC patients,
an anti-VEGF anticalin effectively rendered VEGF undetectable in systemic circulation [80].
Ensuing pre-clinical studies demonstrated that this anticalin inhibits the VEGF-mediated
proliferation of endothelial cells, reduces micro vessel density, and improves vascular
permeability. Relative to Bevacizumab, an approved anti-VEGF monoclonal antibody,
anticalins show improved safety with no platelet aggregation or thrombus formation
observed [81].

Proteolysis Targeting Chimeras (PROTAC) are bifunctional molecules that mediate
selective protein degradation [82]. PROTAC consist of two protein binding domains linked
together; one domain interacts with E3 ubiquitin ligases and the other with any given
protein [83]. Therefore, PROTAC are designed to bind a protein of interest and target it for
degradation by activating the ubiquitin-proteasome system. PROTAC are highly specific
and efficient in knocking-out their target proteins and, relative to other new modality drugs,
their pharmacokinetic properties are closer to those of small molecules, and do not tend to
accumulate in tissues over time [84]. The interest in these molecules is gaining momentum
in oncology research, considering their potential ability to remove upregulated or abnormal
proteins responsible for malignant phenotypes [85]. PROTAC research is still in its infancy,
with the first E3 ligase chimera reported in 2008 [86]. Nonetheless, the opportunity to
develop therapies for common diseases lacking effective treatments has driven the interest
in PROTACS [87]. This is illustrated by the development of ARV-110, an androgen receptor
degrader currently undergoing phase II trials (NCT03888612) for the treatment of castration
resistant prostate cancer [88]. There is limited research in the PROTACS applications to
tackle renal pathologies. Noteworthy is the development of VHL-recruiting PROTACS [89].
Although VHL-degraders are likely ineffective in RCC with VHL loss of function [90],
they could potentially bypass VHL activity and target HIF directly to ubiquitin ligases.
On the other hand, small molecule inhibiters of the VHL-HIF interaction, such as VH298,
have been developed. These molecules mimic hypoxia, stabilize HIF activity [91], and
represent a step forward in our toolbox to better understand and develop pharmacological
interventions to treat renal hypoxia, which represent the common root of RCC and CKD.
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9. Biomarkers in RCC and CKD Early-Diagnosis

Beyond the development of innovative therapies, the identification of early biomarkers
can substantially improve the clinical management of both pathologies. Early diagnosis
of RCC will enable the timely implementation of treatment, improving patient prognosis
as well as decreasing the risk of cancer associated CKD and vice versa [16]. In recent
years, two different classes of biological molecules have emerged as active players in
both RCC and CKD pathophysiology and have been proposed as potential biomarkers.
MicroRNA (miRNA) are ubiquitous single-stranded non-coding RNA molecules that can
assume multiple regulatory functions, namely acting as post-transcriptional regulators.
With more than 2500 human miRNA identified [92], several have been characterized as
extracellular miRNA, found in circulation or in body fluids (e.g., urine) in both healthy
and diseased conditions. It has long been postulated that identifying a unique miRNA
signature will help not only to diagnose a disease, but to provide information about
its severity. miR-21 expression was found to be induced by TGF-β and correlated with
an increase in renal fibrosis in pre-clinical CKD models and patients experiencing renal
failure [93]. Concurrently, miR-21 induction, in vitro, resulted in the upregulation of fibrotic
and inflammatory mediators including TGF-β and IL-6 [94]. Fibrosis and the deposition
of ECM components (e.g., collagen I, fibronectin) is also associated with the activity of
miR-433 and miR-484. On the other hand, deteriorating renal function and the onset of
fibrosis is also correlated with the downregulation of certain miRNA. Decreased miR-
29c expression is associated with interstitial fibrosis and, interestingly, HIF-1α activation
restores miR-29c levels, leading to ameliorated fibrotic conditions [95]. Characterization
studies have shed some light on the miRNA profiles across different conditions leading to
renal failure. miR-1, miR-133 and miR-223/miR-199 were found to be upregulated only in
the urine of APKD patients relative to CKD patients, suggesting a specific profile for these
conditions [96]. In a CKD patient cohort, miR-21 serum levels were consistently increased
relative to healthy controls [97]. The identification of these profiles may prove beneficial in
monitoring disease progression and treatment response rather than as early biomarkers,
since they reflect conditions where the loss of kidney function is already substantial.

In a similar fashion, several miRNAs have been associated with RCC. Several studies
have identified a substantial number of deregulated miRNA, a common trend in cancer, as
miRNA play, arguably, an important role in tumor homeostasis [98]. Deregulated miRNA
in RCC are reported to impact genes involved in the regulation of cytokines, placing them
as mediators of RCC immunogenicity [99]. miR-21 seems to be a promising candidate for a
diagnostic use in RCC and for disease monitoring. The expression of miR-21 is reported
as elevated in RCC patient serum and found to be decreased after tumor resection [100].
Most interestingly, miR-21 is equally elevated in CKD patients and associated with fibrosis,
while in RCC it has been linked to tumor invasion and angiogenesis [101]. An in depth
understanding of miR-21 regulation will help us to understand the role of fibrosis in both
CKD and RCC and clarify whether its presence in CKD patients represents a hidden
sign of tumorigenesis. Other detectable miRNAs reportedly involved in RCC include
miR-200a, which in early stage RCC is elevated in serum and decreased in urine [102],
and miR-150, which has serum levels that correlate with patient survival [103]. Overall,
miRNA associated with RCC may prove to be a tool to monitor treatment and disease
progression. However, their implementation as diagnosis biomarkers still requires a
significant understanding of their functional roles and profiles in both heathy conditions
and disease.

The neutrophil gelatinase-associated lipocalin (NGAL) is a recognized biomarker for
CKD [104,105]. Levels of this low-weight protein are increased in the urine of patients with
renal injury, and are reported to reflect the severity of the disease [106]. This biomarker is
used not only for diagnosis but also to evaluate CKD progression. NGAL acts as mediator
of the innate immune response to bacterial infections, and its expression is induced by
TNFα and IL-6 [107]. It is shed from RPTEC in response to inflammation [108]. On the other
hand, little is known about the role of NGAL in RCC. Different studies have determined
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that NGAL expression is upregulated in kidney cancer tissue at the mRNA and protein
levels [109,110]. However, the significance of NGAL levels in RCC patients is currently
unresolved [111], and further research in the role of NGAL in RCC pathophysiology may
elucidate the future impact of this biomarker in kidney cancer. Interestingly, a study
shows that NGAL levels in the serum of RCC patients treated with sunitinib have a strong
correlation with progression-free survival [112]. This suggests that the serum levels of
NGAL have the potential to monitor RCC treatment outcomes, as opposed to its urine
concentration, which is used in the follow-up of patients with CKD.

Thioredoxins (TRX) are a family of ubiquitous proteins that maintain the cellular redox
balance and act as molecular switches in multiple regulatory pathways [113]. The cellular
redox balance has long been recognized as an import factor in disease. An increase in the
oxidation status of molecules is associated with damage to the genetic material and cell
death. O2 easily sequesters electrons (e-), acting as a potent oxidizer. To counter this effect,
TRX act as e- donors and help to restore the redox balance. Thanks to the oxidative nature
of aerobic respiration, the cellular redox state is tightly controlled, and beyond transferring
e- to oxidized proteins, TRX regulate cellular energetics by directly controlling glucose
uptake and glycolysis. The inhibition of Thioredoxin 1 (Trx1) results in increased glycolytic
activity, while suppression of the Glutaredoxin 1 (Grx1) yields the opposite effect [114],
and the activity of Thioredoxin-interacting protein (TXNIP) down-regulates the expression
of the glucose uptake transporter 1 (GLUT1), impacting the intracellular availability of
glucose. Clinical association studies determined that a reduced TXNIP expression in RCC
corelates to a poor survival outcome [115]. TRX are believed to play a role in remote-
sensing and cell-to-cell communication. In diabetic patients, Trx1 and TXNIP are found
in urine, however, TXNIP is only found in cases where renal function is declining [116].
TRX are believed to play a role in remote-sensing and cell-to-cell communication; they
can be found in blood and urine, although their secretory mechanism remains unresolved.
Extensive research is still required to understand the role of TRX in hypoxia and renal
disease, nonetheless the characterization of secreted TRX profiles in CKD and RCC patients,
similarly to miRNAs, may prove a valuable tool to discriminate between both pathologies
at an early stage.

10. Conclusions

While the introduction of targeted and immune-therapies dramatically improved
the treatment of RCC [117], there has yet to be a major development in CKD therapy.
Nonetheless, the next generation of pharmaceuticals may deliver such a breakthrough.
A better and more comprehensive understanding of renal disease pathophysiology is
driving the identification of new therapeutic targets and contributing to the unravelling
of the DMPK—disposition, metabolism and pharmacokinetics—, safety and efficacy of
novel, less permeable and more chemically stable molecules. The genetic and molecular
mechanisms governing pathologies such as APKD, AS or even RCC are currently fairly
understood, a factor that dramatically contributes to the design and development of specific
therapies. The heterogenicity of CKD, which effectively represents a collection of different
renal conditions, has posed a challenge in unravelling a druggable target. While the role
of fibrosis in CKD is now evident, its contribution to the onset and progression of RCC
remains elusive. On one hand, tackling fibrosis in CKD may improve renal function and
prevent its decay by preserving tubular structures. On the other hand, fibrosis is likely
involved in the RCC self-preserving inflammatory firewall, and reducing it may expose
tumors and facilitate the activity of immunotherapy. Identifying common factors and
regulatory pathways in CKD and RCC, such as hypoxic response regulation, is a step
towards the discovery of biomarkers that can be used to diagnose and discriminate both
pathologies at an early stage.
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Abbreviations

ACE angiotensin-converting enzyme inhibitors
AII angiotensin II
APKD autosomal polycystic kidney disease
AS alport syndrome
ASO antisense oligonucleotide
ATP adenosine triphosphate
CKD chronic kidney disease
COL4A5 collagen IV alpha-5-chain
ccRCC clear cell renal cell carcinoma
DMPK disposition, metabolism and pharmacokinetics
ECM extracellular matrix
EMA european medicines agency
FDA federal drug administration
GFR glomerular filtration frate
GLUT1 glucose uptake transporter 1
HIF hypoxia inducible factor
ICI immune check-point inhibitors
IL-6 interleukin-6
ITF intra tumor fibrosis
miRNA micro ribonucleic acid
mRNA messenger ribonucleic acid
mTOR mammalian target of rapamycin
Na/K-ATPase sodium/potassium ATPase
NF-kB nuclear factor-kappa B
NGAL neutrophil gelatinase-associated lipocalin
NRF2 nuclear factor erythroid 2-related factor 2
PHD prolyl hydroxylase
PROTAC proteolysis targeting chimeras
RCC renal cell carcinoma
RPTEC renal proximal tubule epithelial cells
SLGT2 sodium glucose transport protein 2
TGF-β transforming growth factor beta
TKI tyrosine kinase inhibitor
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