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Long‑term evaluation on urban 
intensive land use in five 
fast‑growing cities of northern 
China with GEE support
Yiqun Shang1,5, Xinqi Zheng1,5*, Rongqing Han2,5, Wenchao Liu3,4,5 & Fei Xiao3,4,5

Intensive land use (ILU) is a multi-objective optimization process that aims to simultaneously improve 
the economic, social, and ecological benefits, as well as the carrying capacity of the land, without 
increasing additional land, and evaluation of the ILU over long time series has a guiding significance 
for rational land use. To tackle inefficient extraction of information, subjective selection of dominant 
factor, and lack of prediction in previous evaluation studies, this paper proposes a novel framework 
for evaluation and analysis of ILU by, first, using Google Earth Engine (GEE) to extract cities’ built-up 
land information, second, by constructing an index system that links economic, social and ecological 
aspects to evaluate the ILU degree, third, by applying Geodetector to identify the dominant factor on 
the ILU, finally, by using the S-curve to predict the degree. Based on the case study data from northern 
China’s five fast-growing cities (i.e., Beijing, Tianjin, Shijiazhuang, Jinan, Zhengzhou), the findings 
show that the ILU degree for all cities has increased over the past 30 years, with the highest growth 
rate between 2000 and 2010. Beijing had the highest degree in 2018, followed by Tianjin, Zhengzhou, 
Jinan, and Shijiazhuang. In terms of the time dimension, the dominant factor for all cities shifted from 
the output-value proportion of secondary and tertiary industries in the early stage to the economic 
density in the late stage. In terms of the space dimension, the dominant factor varied from cities. It is 
worth noting that economic density was the dominant factor in the two high-level ILU cities, Beijing 
and Tianjin, indicating that economic strength is the main driver of the ILU. Moreover, cities with high-
level ILU at the current stage will grow slowly in the ILU degree from 2020 to 2035, while Zhengzhou 
and Jinan, whose ILU has been in the midstream recently, will grow the most among the cities.

Since the 1990s, China has experienced massive population growth and rapid socio-economic development, 
resulting in numerous challenges, particularly land problems1. These problems are especially severe in northern 
China2. In this context, the shortage of land resources has gradually become a key factor restricting urban devel-
opment. In order to optimize the land use structure and improve the land use efficiency, intensive land use (ILU) 
has become an important strategy to alleviate many conflicts, including the conflict between people and land. It 
is also an inevitable choice for the development of urbanization in China3. Specifically, the ILU refers to meeting 
the appropriate scale of urban development under the current conditions, taking the rational layout of the city, 
optimization of land use structure and sustainable development as the premise, and continuously improving the 
land use efficiency and achieving good economic, social and ecological benefits through increasing the element 
investment level of the unit land area and improving the land management4–7. The definition shows that the 
ILU is a complex process and assessing it requires knowledge from economics, social sciences, urban planning, 
geography, ecology, and statistics, demonstrating its interdisciplinary character. Therefore, this complexity and 
the inherent interdisciplinary characteristics of the ILU determines the difficulty of the comprehensive evalua-
tion. How to scientifically evaluate and analyze the ILU, to provide references for Sustainable Development Goals 
(SDGs) has become a hot topic in recent years5,8,9.
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Recently, a considerable amount of literature has grown up around the theme of evaluation for ILU. From 
the perspective of spatial scales, the evaluation scales in existing studies are various, mainly including national, 
provincial, municipal, and village regions, as well as specific land use types such as industrial land and edu-
cational land3,5,8–12. From the perspective of temporal scales, the evaluation scales cover time nodes and time 
series. Meanwhile, a rational and scientific ILU evaluation index system serves as the foundation for accurately 
evaluating the ILU degree in a city. The evaluation system often relies on spatial scales and research objects. 
However, the evaluation involves many indices, including both socio-economic and natural types, so it is also 
vital to select indices with reliable and easily accessible data sources. The traditional evaluation of the ILU degree 
frequently relies on statistical information, which has some drawbacks in extracting the index data required for 
the evaluation13. For instance, some index data was missing due to incomplete statistics in the early years, and 
some data from different years had different statistical scales. Because of the difficulties in extracting reliable 
index information, evaluating the degree in long time series is challenging.

With the development of satellite remote sensing, carrying out research on ground objects (e.g., built-up land, 
cropland) has already been possible under the long time series, so making full use of information extracted from 
satellite images for evaluation can effectively alleviate these problems from statistical data. At present, the applica-
tion of machine learning (ML) algorithms to land use classification has attracted much attention. ML algorithms 
can be divided into two main subtypes: unsupervised and supervised algorithms14. Unsupervised algorithms 
include fuzzy C-means algorithm, K-means algorithm and ISODATA​15. As they do not allow expert knowledge 
input and their classification results are challenging to match with the actual situation, they are not commonly 
selected for use. While the main representatives of supervised algorithms are support vector machines (SVM) and 
maximum likelihood classifiers (MLC)16. They also have some drawbacks. For instance, SVM requires complex 
parameter settings before classification, while MLC can only perform more accurately if the spectral data satisfy 
a normal distribution. To address these challenges, scholars have proposed more advanced algorithms15, such 
as Random Forest (RF) and Classification and Regression Trees (CART). Among them, RF is currently the most 
popular algorithm, and this is because it can achieve higher accuracy than the above algorithms and require less 
parameter tuning17. Hence, we selected RF as the classifier in this paper. However, the traditional classification 
process often relies on the local computer, which requires downloading satellite images to the local computers 
and configuring the software environment. The operation steps are relatively complicated, and the classification 
efficiency is primarily dependent on computer performance. The Google Earth Engine (GEE) platform, combines 
cloud computing power with massive multi-source satellite data and can efficiently investigate scientific topics at 
various spatial and temporal scales18–20. It is valuable to map land use effectively and provides a chance to solve 
the problems listed above. Hence, using the GEE platform to extract land use information in conjunction with 
existing reliable socio-economic data is helpful for efficient ILU assessment.

Analysis of the dominant factor affecting the ILU is essential for understanding the inner mechanism and 
operation law of ILU in cities. Notably, many approaches reveal the driving forces underlying geographical 
phenomena21–23, such as correlation analysis, partial least squares regression, and multivariate regression analysis. 
However, given the spatial heterogeneity of geographical phenomena and the complex process of the phenom-
enon response to the influencing factors, the inflexible linear models are unlikely to accurately reveal the inner 
mechanism between the factor and the phenomenon, and the presence of exogenous covariates (e.g., individual 
choices, policy regulations) can also limit the usefulness of the model24. To address these issues, Geodetector, 
based on the theory of spatial stratified heterogeneity, was proposed to measure spatial stratified heterogeneity 
and explore the driving forces of factors on the phenomenon25. As a result, Geodetector offers an opportunity 
to explore the dominant factor of the ILU degree.

In addition, the prediction of the ILU is significant in guiding future urban development. However, current 
ILU studies have mainly focused on the study area’s past ILU level. Specifically, scholars calculated the study area’s 
ILU in the past to analyze changes in the same region or differences between regions. Although prediction can 
better guide the ILU, few studies have focused on predicting the future ILU through the past ILU degree. There-
fore, this paper explores the method of predicting ILU degree by drawing on forecasting studies related to cities. 
Specifically, Bettencourt26 developed a theoretical framework to predict cities’ properties as a series of scaling 
relations applicable to all urban systems. This finding inspires scholars to find suitable functions to predict the 
cities’ properties in the future. Thus, the key to predicting the ILU level is to find a suitable function. Moreover, 
it is worth noting that many studies27,28 have shown that urbanization evolution in a city can be expressed as an 
S-curve; this curve shows an initial slow growth followed by rapid growth and finally a slow growth again. As 
an indirect indicator to assess the quality of the urbanization evolution, the ILU degree can also theoretically be 
modeled using the S-curve. This finding will provide references for subsequent ILU prediction studies and give 
better scientific support for land use optimization.

Based on the above literature review, we can find the problems in current ILU evaluation studies, including 
difficulties in extracting index information under long time series, subjective analysis of the dominant factor 
on ILU, and lack of prediction. To address these issues, this paper proposes a research framework (Fig. 1) for 
evaluation and analysis of the ILU. It mainly includes, first, selecting the “built-up” and “not built-up” labeled 
samples through nighttime light (NTL) data and using GEE to extract cities’ built-up land information based on 
the Landsat images; second, constructing an index system that links economic, social, and ecological aspects to 
evaluate the ILU degree; third, applying Geodetector to identify the dominant factor on the ILU; finally, using 
the S-curve to predict the degree.
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Materials and methods
Study area.  Northern China’s fast economic development and urbanization have spurred population expan-
sion and exacerbated the tension between land supply and demand over the past 30 years. In order to encourage 
high-quality urban development, it is important to choose representative cities for ILU evaluation and analysis. 
Hence, we considered the northern cities’ economic, demographic, and geographic conditions, and selected five 
cities with high overall strength, including Beijing, Tianjin, Shijiazhuang, Jinan, and Zhengzhou (Fig. 2). They 
play an essential role in guiding regional development and carrying out national strategic goals. Specifically, Bei-
jing and Tianjin are the two municipal cities, which are politically equal to provinces. Shijiazhuang, Jinan, and 
Zhengzhou are the provincial capitals of Hebei, Shandong, and Henan provinces, respectively. As the center of 
politics, culture, and high technology, Beijing covers 16,410 km2, with a population of 21.54 million and a GDP 
per capita of 23,135 USD in 2018. Tianjin is the largest port city and economic center in northern China, and it 
covers 11,903 km2, with a population of 15.59 million and a GDP per capita of 18,242 USD in 2018. Shijiazhuang 
is the political, economic, scientific center of Hebei and a commercial port in northern China. It has an area of 
14,530 km2, with a population of 10.95 million and a GDP per capita of 8421 USD in 2018. Jinan is located in the 
middle of Shandong, a famous national historical and cultural city in China. It covers 7998 km2, with a popula-
tion of 6.55 million and a GDP per capita of 16,064 USD in 2018. Zhengzhou is the core city of the Central Plains 
City Cluster, an important national integrated transportation hub. It covers 7509 km2, with a population of 10.13 
million and a GDP per capita of 16,111 USD in 2018.

Landsat image data.  In order to extract the information of built-up land in the study area, we utilized the 
time series of Landsat Tier 1 Top-of-Atmosphere (TOA) reflectance data acquired for 1990, 1995, 2000, 2005, 
2010, 2015, and 2018 via GEE (https://​earth​engine.​google.​org). Due to the long time series involved in this study, 
TOA data from the Landsat 5 satellite and the Landsat 8 satellite were employed, both of which contain common 
bands of Blue, Green, Red, NIR, and two short-wave infrared bands (SWIR1 and SWIR2) with a spatial resolu-
tion of 30 m. We selected the image data from June to September as the original image set. In order to make the 
most of all acquired images and create the annual cloud-free Landsat composites at each location, we applied the 
algorithm “simpleCloudScore” for the TOA data, and the least cloudy pixels were taken as the composite value. 
The algorithm can evaluate the “cloud score” by integrating indices such as the Normalized Difference Snow 
Index (NDSI), the brightness and temperature from the Landsat TOA reflectance data29,30. Finally, we success-
fully generated the least cloud images covering the study area from 1990 to 2018.

Figure 1.   Research framework of this paper.

Figure 2.   Spatial location of study area. Map created using ArcGIS.

https://earthengine.google.org
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Nighttime light (NTL) data and labeled samples selection.  In this study, the land use information 
required for the ILU evaluation is mainly the built-up land information, so we only mapped the “built-up” land 
and “not built-up” land during the classification process. The NTL data were used to select “built-up” and “not 
built-up” labeled examples31. Given the long time series of this study, a single NTL product cannot cover the 
entire study period, so we used two sources of NTL product, covering two different periods. For the period 
1992–2013, we used the DMSP/OLS Nighttime Lights Time Series dataset (version 4), which has a unique capa-
bility to detect visible and near-infrared emission sources at night with a spatial resolution of 30 arc seconds. The 
“stable lights” band was used, as it has been processed to discard transient events such as fires, so the background 
noise is discarded and replaced with zero values. Since the DMSP/OLS data is not available for 1990, we used 
the closest data to 1992 as a proxy. For the period 2014–2018, we used the VIIRS Day/Night Band Nighttime 
Lights dataset (version 1), which is composited monthly at a resolution of 15 arc seconds and uses a procedure 
to correct for stray light. The “avg_rad” band that represents average Day/Night Band radiance values was used. 
Meanwhile, to maintain consistency in spatial resolution between the two products (i.e., DMSP/OLS data and 
VIIRS data), we projected them to Lambert Conformal Conic projection and resampled them to 500 m.

Since the study area contains five cities, manual selection of sample sets would be a time-consuming task. 
Instead, we applied a new sample selection strategy based on the NTL data, which requires minimal manual 
input31. As pixels with high brightness are associated with artificial structures that emit light, we assume that 
pixels with DN values above the threshold can represent areas with built-up land. Here, we illustrate the opera-
tion steps of Beijing’s NTL data in 2018 as an example, with the following: first, the distribution of DN values was 
created by using a histogram in GEE, then the cumulative frequency was calculated based on the histogram. By 
referring to the empirical thresholds31, we divided the cumulative frequency into three parts: 0–75%, 75–95%, 
and 95–100% (Fig. 3a), and the three parts correspond to the three ranges of DN values, such as I represents 
the range of low-lit pixels, II represents that of the intermediate buffer, and III represents that of high-lit pixels. 
Limited by the over-saturation effect and blooming effect of NTL data, pixels identified as high-lit may poten-
tially include “not built-up” land cover (e.g., vegetation and water bodies). As a result, we removed these land 
cover types from high-lit pixels based on Landsat images’ per-pixel NDVI and MNDWI values31. Specifically, 
by using the Otsu method for NDVI (MNDWI)32, we got its threshold for identifying vegetation (water bodies). 
If a pixel’s NDVI (MNDWI) value is higher than the threshold, we identified it as vegetation (water bodies). 
Then the two types were removed according to the thresholds. Figure 3b shows the spatial result after the above 
operations. Hence we generated the initial samples of “built-up” land and “not built-up” land by using tools of 
ArcGIS software, where “built-up” land samples were produced in the spatial range of high-lit pixels, and “not 
built-up” land samples were acquired in the low-lit pixels. Due to the inevitable errors, these initial samples 
should also be checked against Google Earth to delete inaccurate samples and add samples where appropriate. 
We processed the NTL data of each city in different years according to the above steps and finally generated the 
corresponding labeled samples.

For the subsequent classification of built-up land from 1990 to 2018 for each city, 1200 samples were gener-
ated for each year, with a total of 8400 for each city over the seven years (1990, 1995, 2000, 2005, 2010, 2015, and 
2018). 70% of the samples were used for training, and the remaining 30% were used for validation.

Index selection and socio‑economic data.  Given that land is the spatial carrier of urban economic, 
social, and ecological systems, and also combined with the definition of ILU, it is clear that ILU is not only 
about high-intensity input and high-efficiency output, but also the unification of economic, social and ecologi-
cal benefits, ultimately achieving the coordinated development of economy, society and ecology. Therefore, this 

Figure 3.   The histogram statistics and spatial result of Beijing’s NTL data, which was obtained from VIIRS 
Nighttime Lights dataset in 2018. (a) The histogram statistics of DN values and its cumulative frequency; (b) 
spatial result of DN values divided into three parts after the operations.
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paper constructed the evaluation index system for the ILU degree based on three aspects: economic, social and 
ecological. We adequately selected representative and accessible indices by referring to related studies4–9 and 
the conditions of the study area. Table 1 shows the eight indices that were chosen for the evaluation. The data 
for these indices are mainly from the “China City Statistical Yearbook” and the statistical yearbooks of the five 
cities from 1991 to 2019. In addition, some data were retrieved from the China Economic and Social Big Data 
Research Platform or the official websites of relevant statistical bureaus. All the data format and precision were 
unified and standardized.

Random forest (RF) classifier.  Since the RF algorithm consists of multiple decision tree classifiers, it 
outperforms other popular algorithms in many application scenarios (e.g., SVM or kNN). Up to now, RF is one 
of the most widely used algorithms for land cover classification by using satellite image data29,30,33. Furthermore, 
RF is a machine learning algorithm built into the GEE platform. As a result, we chose RF to extract the built-up 
land. Based on the experiences of previous studies34,35 and data collected, we set ntree to 500, and mtry was set to 
the default value (sqrt of the total number of all input features). Next, we selected nine features as input features, 
specifically, five spectral features, i.e., gray values of Blue, Green, Red, NIR, and SWIR1 bands were selected, one 
textural feature, namely Geary’s C coefficient36 was chosen, three spectral indices, including NDVI37, MNDWI38, 
and NDBI39 were singled out. Table 2 shows the specific information.

The validation process was carried out based on the selected samples using the NTL data and Google Earth. 
Several accuracy assessment metrics were calculated to assess the accuracy of the extraction. Traditional accu-
racy assessment often uses overall accuracy (OA) and the Kappa coefficient to indicate whether the classification 
results are good or bad. However, a growing number of scholars have accepted that the Kappa coefficient has sig-
nificant limitations and is somewhat misleading, so we also calculate the quantity and allocation disagreement42 
as alternatives to Kappa. Specifically, the quantity disagreement describes how well the mapped products repre-
sent the area covered by each class, and allocation disagreement refers to the spatial agreement between mapped 
areas versus the validation data. More details of these metrics can be found in the published studies43,44. The 
equations of OA and Kappa are as follows:

(1)OA =

∑k
i=1xii

x

(2)Kappa =
x
∑k

i=1xii −
∑k

i=1xi∗x∗i

x

Table 1.   Evaluation index system of ILU degree. The index marked with * were calculated by extracting 
built-up land information in the GEE platform, while all other indices were taken from the statistical data. The 
“+” in the Character column means a positive index, and “−” means a negative index.

Type of indices Index Character Calculation method

Economic

Economic density* + Output-value of secondary and tertiary industries/
built-up land area

Output-value proportion of secondary and tertiary 
industries + Output-value of secondary and tertiary industries/

GDP

Employee density* + Number of employee in secondary and tertiary 
industries/built-up land area

Social

Population density* + Number of resident population/built-up land area

Proportion of built-up land* − Built-up land area/city’s area

Road network density + Total length of urban roads/city’s area

Ecological
Public green space per capita + Green space area/number of resident population

Average industrial wastewater discharge on land* − Total industrial wastewater discharge/built-up land 
area

Table 2.   The description of the selected features.

Feature Formula Description References

Geary’s C coefficient
(n−1)

∑n
i=1

∑n
j=1

wij(xi−xj)
2

2
∑n

i=1

∑n
j=1

wij
∑n

i=1
(xi−x)2

Where wij is the spatial weight matrix between units i and j, d is the distance, and xi and xj are the attributes of units 
i and j, respectively. Here, texture feature was extracted by selecting the NIR band

36

NDVI NIR−RED
NIR+RED

Where NIR, RED, GREEN and SWIR1 are the reflectance values for the near infrared, red, green and shortwave 
infrared bands of the images, respectively

40

MNDWI GREEN−SWIR1
GREEN+SWIR1

38

NDBI SWIR1−NIR
SWIR1+NIR

41
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where xii is the number in row i and column i of the matrix, x is the total number of validation samples, and xi* 
and x*i are the total number of samples in row i and column i, respectively.

Entropy weighting method.  As many methods of determining index weight are susceptible to subjective 
factors, the entropy weighting method determines weights based on the dispersion of index values, which is 
relatively objective. This paper refers to the steps of the previous studies45 to calculate the corresponding indices’ 
weights. The steps are as follows:

(1)	 The index data should be subjected to dimensionless processing to normalize the extreme differences, and 
this step can eliminate the influence of the dimension. The j-th index for the i-th city in the λ-th year can be 
expressed in terms of xλij (1 ≤ λ ≤ h, 1 ≤ i ≤ m, 1 ≤ j ≤ n, in this paper, h, m and n are 7, 5 and 8 respectively). 
Equation (3) is used to normalize the positive indices, and Eq. (4) is for the negative indices. Equation (5) 
is used to normalize all the Xλij

where Xλij denotes the value of xλij after the standard normalization of the extreme deviation, Pλij denotes 
the normalized value of Xλij.

(2)	 Calculate the entropy value of each index, where k = 1/ln(h·m).

(3)	 Calculate the redundancy of the entropy values for each index and the corresponding weights.

(4)	 Calculate the ILU degree for each city in each year.

Factor detection by geodetector.  Geodetector is a statistical tool developed by Wang, which is a set 
of methods used to reveal stratified heterogeneity and detect the driving factors behind it25. The method is 
based on the assumption that if the independent variable has a significant influence on the dependent variable, 
the independent and dependent variables’ spatial distribution should be similar. More specifically, according 
to spatial distributions of these data, the method not only can quantify the relationship between two variables, 
Y (geographical phenomenon) and X (influencing factor), but it can also explore the interaction relationship 
between two influencing factors (X1 and X2) to the geographical phenomenon Y, without assuming linearity 
of the association. In this paper, we mainly used the function module Factor Detector of Geodetector to reveal 
the influencing mechanism of the study, which measures the variable X’s explanatory power to the variable Y 
through q value, shown in Eq. (10)

where q is the explanatory power of factor D on ILU degree H, σ2 is the variance of the overall study object’s 
degree, n is the number of cities, m is the number of sub-areas, σ2HD,i is the variance of the sub-area’s degree, q 
is at [0, 1], the larger the q value, the greater the explanatory power of this factor, the factor with the highest q of 
all the factors we regard as the dominant factor.

Prediction of ILU degree by S‑curve.  Through statistical analysis of ILU degree in each city, we found 
the degree of cities largely follows a trend of initial slow growth in the early stage, followed by rapid growth, and 
finally slow growth. Meanwhile, the maximum degree will not exceed 1. Considering the above factors, we found 
that the degree is broadly in line with the S-curve trend. As a result, we used S-curve to predict the degree in the 

(3)X�ij =
x�ij − xmin

xmax − xmin

(4)X�ij =
xmax − x�ij

xmax − xmin

(5)P�ij =
X�ij

∑h
�=1

∑m
i=1 X�ij

(6)Ej = −k

h∑

�=1

m∑

i=1

P�ij ln P�ij

(7)Dj = 1− Ej

(8)Wj =
Dj

∑n
j=1 Dj

(9)S�i =

n∑

j=1

P�ij ·Wj

(10)q = 1−
1

σ
2H

m∑

i=1

nD,iσ
2HD,i
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future46. The study periods include 1990, 1995, 2000, 2005, 2010, 2015, and 2018, all years except 2018 are in line 
with the 5-year incremental trend, and because 2018 is closer to 2020, we used the data from 2018 for 2020. We 
forecasted each city’s ILU degree for the three time nodes: 2025, 2030, and 2035 using these data. The forecasts 
were then used to analyze the land-intensive potential of each city. Each city’s calculation steps are as follows.

(1)	 Solve for the ILU degree after logarithmic conversion, shown in Eq. (11)

where Sj is the ILU degree of the city in year j.
(2)	 Construct a linear equation between Lj and the year, then use ordinary least squares (OLS) to solve the 

parameters a, b (Eq. 12). Then, substitute a, b into Eq. (13) to calculate Ty for each year. Finally, the predic-
tive value can be solved by the Eq. (14)

where j = 1990, 1995, …, 2020, and y = 1990, 1995, …, 2035.

Results
Extraction results of built‑up area.  As the classification results of the built-up land and non-built-up 
land were identified based on the GEE platform, we selected some local areas to compare and test the classifica-
tion results (Fig. 4). The translucent red parts of Fig. 4 in the first row show the extracted built-up land sites, 
including tall buildings, factories, rural settlements, and roads, all of which can be extracted accurately.

The accuracy results of the cities during 1990–2018 can be obtained using the validation samples, with the 
OA of all classification results being above 85%, the Kappa coefficient ranging from 0.73 to 0.85, the allocation 
disagreement ranging from 7 to 13%, and the quantity disagreement ranging from 2 to 7%. These accuracy 
results show that the classification results can completely meet the requirements of this study. The area of built-
up land for each city from 1990 to 2018 is depicted in Fig. 5, which shows that the built-up land area has steadily 
increased over the last 30 years, with the volume of built-up land growth varying between cities, with Beijing 

(11)Lj = ln

(
Sj

1− Sj

)

(12)Lj = aj + b

(13)Ty = ay+ b

(14)Predicty =
eTy

1+ eTy

Figure 4.   Comparison of local areas before and after classification of satellite images, which were obtained 
from Landsat-8 OLI images during June to September in 2018. The translucent red part of the first row of the 
figure shows the extracted built-up land. Map data: Google, ©2021 CNES/Airbus, Landsat/Copernicus, Maxar 
Technologies.
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having the largest increase in built-up land area of 1720 km2, followed by Tianjin, Shijiazhuang, Zhengzhou, and 
Jinan having the smallest increase in built-up land area of 620 km2.

Evaluation results of the ILU degree.  Figure 6 depicts the evaluation result of ILU in each city, with all 
cities showing an upward trend in ILU between 1990 and 2018. While Shijiazhuang fluctuated, Beijing, Tianjin, 
Jinan, and Zhengzhou all showed an ascendant trend over time. In 2018, Beijing had the highest level of ILU 
(0.811), followed by Tianjin (0.762), Zhengzhou (0.672), Jinan (0.571), and Shijiazhuang (0.489). When com-
bined with the cities’ built-up land area, it shows that, despite significant increases in built-up land in Beijing and 
Tianjin over the last 30 years, their ILU degrees remain high, indicating that both cities have a high level of land 
resource allocation and efficient land use, which compensates for the high development intensity. Meanwhile, 
Shijiazhuang also has a more significant increase than Zhengzhou and Jinan in built-up land. However, its cur-
rent ILU degree is lower than the two cities, indicating that it may be making inefficient use of available built-up 
land. In terms of the economic, social, and ecological aspects, the degrees for each city in the three aspects have 
primarily tended to increase over time. However, the increase varies between cities in different aspects. For 
instance, Beijing, Tianjin, and Zhengzhou have the largest increases, primarily in the economic aspect, whereas 

Figure 5.   Area of built-up land in each city during 1990–2018.

Figure 6.   Evaluation result of the ILU degree in each city.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20734  | https://doi.org/10.1038/s41598-021-00285-8

www.nature.com/scientificreports/

Shijiazhuang’s economic or social growth degree is much lower than its ecological growth degree. Jinan, in par-
ticular, differs from other cities in that it has experienced greater economic and social growth.

Table 3 shows the ILU degree growth rate for each city, and it is clear that the rate for each city reached 
its maximum ratio between 2000 and 2010. Except for Shijiazhuang, which experienced a temporary decline 
between 1990 and 2000, all other cities have broadly followed the trend of an initial slow growth followed by 
rapid growth and finally a slow growth again, which is consistent with the S-curve. By quantifying the degree 
of variation between cities in terms of standard deviation, the result is shown in Fig. 7. The standard deviation 
across cities decreased between 1990 and 2000, then gradually increased after 2000. Overall, the gap between 
cities in terms of ILU level has grown over time, with the standard deviation in 2018 being roughly 1.5 times 
that of 1990, reflecting the growing spatial imbalance in the ILU.

Results of geodector.  In order to explore the dominant factor affecting the city’s ILU degree in depth, we 
used the index system’s indices as influencing factors, investigated the dominant factor in time and space dimen-
sions by using Geodetector. The factor with the largest q in each detection was considered as the dominant factor.

(1)	 Exploration of the time dimension.
	   We took the five cities as a whole, then utilized Geodetector to explore the dominant factor from two 

time periods (1990–2000 and 2005–2018). The proportion of secondary and tertiary industries output-
value (q = 0.86) was the dominant factor impacting the ILU between 1990 and 2000, suggesting that the 
rise in the ILU of cities was mostly impacted by the upgrading of industrial structure. After 2000, however, 
economic density (q = 0.97) became the dominant factor, indicating that the growth during this time was 
attributable to the strengthening of the economic level of cities and the economic output efficiency of the 
land.

(2)	 Exploration of the spatial dimension.
	   The dominant factor may vary not just through time but also from city to city. Table 4 shows the results 

of exploring each city during the study period. The dominant factor affecting the ILU in Beijing and Tian-
jin was economic density, showing that the improvement was primarily dependent on the increase of the 
economic output efficiency of the land. While development intensity was the dominant factor in Jinan 
and Zhengzhou, showing the improvement in recent years relied on regulating development intensity 
and making full use of the existing stock of built-up land to avoid the disorderly expansion. Specifically, 
the dominant factor for Shijiazhuang was population density, indicating that increasing the ILU relied on 

Table 3.   Growth rate of ILU degree, with the trend in line with the S-curve.

City 1990–2000 (%) 2000–2010 (%) 2010–2018 (%)

Beijing 32.19 98.71 23.14

Tianjin 41.74 78.34 34.33

Shijiazhuang − 10.81 65.92 20.10

Jinan 63.25 73.29 29.85

Zhengzhou 42.44 72.75 46.26

Figure 7.   Overall degree of difference between cities from 1990 to 2018.
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maintaining a certain rate of land area expansion. It may achieve high population density and improve the 
level of ILU by maintaining a high rate of population growth and attracting people to adjacent cities.

Predictive results of ILU degree.  Using the S-curve to predict the ILU degree, the results of the five cities 
are shown in Fig. 8. The predictive results from 1990 to 2020 show a good fit by observing the parameters R2 and 
RMSE. R2 of all cities is greater than 0.95 except for Shijiazhuang, below 0.9, and RMSE of all cities is lower than 
0.05. These evaluation parameters indicate that the forecast results are indicative on the whole.

In terms of time point, Beijing will still have the highest degree of ILU at 0.945 by 2035, followed by Tianjin 
(0.922), Zhengzhou (0.836), Jinan (0.808), and Shijiazhuang (0.617). This ranking is in the same order as in 
2018. The results for Beijing and Tianjin tend the S-curve from 1990 to 2035. While Shijiazhuang, Jinan, and 
Zhengzhou show a trend close to a line over the same period. By calculating the growth degree between 2020 
and 2035, Jinan has the most growth with 0.217, followed by Zhengzhou (0.203), Tianjin (0.163), Shijiazhuang 
(0.140), and Beijing (0.133). Hence this ranking indicates that Jinan and Zhengzhou are likely to have significant 
increases in the ILU. In contrast, Beijing’s growth will slow down in the future, and Tianjin is essentially similar 
to Beijing. Furthermore, Shijiazhuang’s ILU degree in the prediction is low since it experienced fluctuations 
during 1990–2005, causing its growth stage to diverge from the S-curve trend.

Discussion
Analysis of evaluation results of the ILU.  The ILU development trend in the five cities is similar, but 
there are differences in the ILU degree. The direct reason for the differences is that different cities have different 
economic, social, or ecological strengths. However, the deep reason is that the dominant factor for ILU develop-
ment differs between cities. Specifically, the five cities all show a general upward trend in ILU level over the last 
30 years, and the growth rate of ILU in each city is greatest between 2000 and 2010. On the other hand, there 
are differences in the ILU between the cities. Beijing has the highest level of ILU at the current stage, followed 
by Tianjin, Zhengzhou, Jinan, and Shijiazhuang. In detail, Beijing, Tianjin, and Zhengzhou have the largest 
increases, mainly in the economic aspect, while Shijiazhuang’s economic or social growth degree is far below its 

Table 4.   Detection result of the dominant factor for each city.

City Dominant factor

Beijing Economic density (q = 0.99)

Tianjin Economic density (q = 0.96)

Shijiazhuang Population density (q = 0.99)

Jinan Development intensity (q = 0.98)

Zhengzhou Development intensity (q = 0.97)

Figure 8.   Predictive result of the ILU: (a) Beijing; (b) Tianjin; (c) Shijiazhuang; (d) Jinan; (e) Zhengzhou.
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ecological growth degree. Jinan is a different story. Its growth is strong in both economic and social aspects. Thus 
it is clear that cities making economic progress are more likely to achieve higher ILU degrees. This is due to the 
fact that ILU is an optimization progress without increasing additional land. This process requires measures such 
as increasing building density, technology, and management capabilities, and these measures all need a signifi-
cant capital investment47. Hence, increasing the economic strength can ensure these measures are implemented 
and, as a result, raise the ILU level. The Geodetector results can also validate this hypothesis. Therefore, if cities 
with a low level of ILU want to enhance their ILU, they should learn from high-level ILU cities. For instance, 
cities such as Jinan, Zhengzhou cannot rely solely on control of the built-up land scale to raise the ILU level in 
the future, but also learn from the development experience of Beijing or Tianjin, such as promoting industrial 
transformation or improving technology and capital investment48, thus improving their economic strength and 
enhancing the development potential.

Analysis of the predictive results of the ILU.  Cities with a high level of ILU will slow down in the 
future, whereas cities with medium to low levels of ILU will see a significant increase in ILU. Concretely, we can 
see that Jinan and Zhengzhou will likely achieve a significant increase in ILU degrees during 2020–2035, while 
Beijing and Tianjin’s growth will slow down. Beijing has reached a high level of ILU at the current stage, and 
Tianjin is broadly similar to Beijing. Shijiazhuang’s ILU degree in the forecast is not high because it has experi-
enced fluctuations during 1990–2005, which may prevent S-curve from predicting better. Combining results of 
time nodes with the growth of periods, we can anticipate that, though there will still be a difference in ILU level 
between the cities in the future, it should be lower than it is now because results suggest that cities with high 
ILU at this stage will enter a slow growth phase. In contrast, cities with relatively low-level ILU, which currently 
have more development potential, will enter a period of rapid growth. Thus the gap between cities will gradually 
narrow.

Discussion of the uncertainties.  The uncertainties that exist in this study will have an impact on the 
study’s accuracy. First, the classification results of the Landsat images cannot be completely accurate, introducing 
uncertainty into the following ILU evaluation. Specifically, there are different types of uncertainties in the vari-
ous operations from data acquisition, pre-processing, and classification in the classification process. Therefore, 
this paper attempts to minimize this uncertainty by standardizing the entire classification process as much as 
possible and ensuring the classification accuracy for each city is above 85%. Second, though the S-curve can 
predict the future ILU based on the past ILU degree of cities, it cannot avoid the influence of exogenous variables 
(e.g., future policies of cities), and this uncertainty may have an impact on the model’s prediction. In order to 
mitigate the impact of this uncertainty, this paper avoids predicting the results too far in the future. Furthermore, 
this paper is based on the ILU’s time-series data trend to forecast so that the forecast results can be in line with 
reality.

Research contributions.  The main contributions of this study are as follows: (1) It utilizes the GEE plat-
form into extracting information of key indices for evaluating the ILU degree, solving the problem of inefficient 
and inaccurate extraction of information that has long plagued the evaluation process; (2) it constructs a rela-
tively comprehensive evaluation system by taking three aspects into account: economic, social and ecological, 
and after calculating the ILU level, it uses Geodetector to detect the dominant factor affecting the ILU, thereby 
overcoming the shortcomings of subjective selection of the dominant factor in the evaluation; (3) it innovatively 
uses the S-curve to predict the ILU degree in the future, enriching the theoretical methods to anticipate the ILU.

Limitations and future work.  There are also a few limitations that require further research. One of them 
is that the number of cities selected in this study is relatively small, which may limit our findings on the spatial 
characteristics of ILU. Another shortcoming is the limited number of indices selected for assessment in this 
study due to the limitations of data collection, and the selection can affect the evaluation results of ILU. Hence, in 
the future, to explore the characteristics of urban ILU at a larger spatial scale and to reveal more factors affecting 
the level of ILU, we will consider selecting more cities as the study area and including more indices reflecting the 
ILU. Furthermore, we intend to investigate the fusion and correction of the NTL data to extract the “built-up” 
land samples with greater accuracy.

Conclusion and implications
This paper developed an index system based on the economic, social, ecological aspects, rapidly extracted built-
up land information with GEE support, and used the entropy weighting method to evaluate the ILU degree by 
combining socio-economic statistics. Then, we used Geodetector to explore the dominant factor and S-curve 
to make predictions on the ILU degree, completing a whole framework for the ILU research that included the 
extraction of information, calculation of the ILU degree, detection of the dominant factor, and prediction. The 
findings are as follows.

1.	 Based on the satellite data and the powerful cloud computing capability through the GEE platform, land use 
classification can be extracted efficiently. The increase in the area of built-up land is an inevitable trend in 
urban development, but the results of the built-up land and ILU degree in each city show that the built-up 
land area has an impact on the ILU, but it does not play a decisive role.

2.	 Over the last 30 years, the ILU degree in each city has shown an overall increasing trend, with the highest 
growth rate occurring between 2000 and 2010. Among them, Beijing had the highest degree in 2018, followed 
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by Tianjin, Zhengzhou, Jinan, and Shijiazhuang. Moreover, by analyzing the cities’ growth in economic, 
social, and ecological aspects of ILU, it can be concluded that cities with a greater increase in economic 
aspect are more likely to achieve a higher level of ILU.

3.	 In terms of the time dimension, the dominant factor affecting the ILU of all cities changed with the city’s 
development. It shifted from the output-value proportion of secondary and tertiary industries in the early 
stage to the economic density in the late stage. In terms of the space dimension, the dominant factor varied 
from cities. In Beijing and Tianjin was economic density, and in Jinan and Zhengzhou was development 
intensity, and that of Shijiazhuang was population density. By referencing high-level ILU cities (e.g., Beijing, 
Tianjin), it is evident that improving the economic output efficiency of land and the city’s economic strength 
is the best way to promote the ILU degree at this time.

4.	 There will still be a difference in ILU levels between these cities. Cities with high ILU degrees at the current, 
such as Beijing, would have their ILU increase slowly from 2020 to 2035, while Zhengzhou and Jinan, whose 
ILU degree has been in the midstream recently, their degree will grow the most among the cities during 
2020–2035. Although the ILU level will still vary between cities in the future, this variation should be less 
than at this stage.

As the conclusions show that the built-up land area is not decisive for the ILU, we recommend that the 
government strictly control the total amount of built-up land in cities to avoid excessive urban sprawl, and the 
ILU should be increased by improving the land use efficiency. Specifically, different cities should determine the 
development strategies according to their current ILU level. For the high-level ILU cities (e.g., Beijing, Tianjin), 
which are stronger in economic aspect but weaker in social and ecological aspects. These cities should maintain 
their economic strength while improving their social and ecological strengths, such as increasing road density 
and urban green spaces. For the low-level ILU cities (e.g., Shijiazhuang), their economic, social, and ecological 
strengths are not outstanding. The Geodetector results show that improving the economic strength is an impor-
tant way to improve their ILU level rapidly. Therefore, these cities should increase their economic density by 
utilizing fewer land resources to support higher quality and more efficient economic development. By implement-
ing these measures, these cities will achieve a rapid increase in the ILU in the future, as predicted by the results.

Data availability
All data generated or analyzed during this study are included in the article.
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