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The novel coronavirus is the new member of the SARS family, which can cause mild to severe infection in the
lungs and other vital organs like the heart, kidney and liver. For detecting COVID-19 from images, traditional
ANN can be employed. This method begins by extracting the features and then feeding the features into a suitable
classifier. The classification rate is not so high as feature extraction is dependent on the experimenters' expertise.
To solve this drawback, a hybrid CNN-KNN-based model with 5-fold cross-validation is proposed to classify
covid-19 or non-covid19 from CT scans of patients. At first, some pre-processing steps like contrast enhancement,
median filtering, data augmentation, and image resizing are performed. Secondly, the entire dataset is divided
into five equal sections or folds for training and testing. By doing 5-fold cross-validation, the generalization of the
dataset is ensured and the overfitting of the network is prevented. The proposed CNN model consists of four
convolutional layers, four max-pooling layers, and two fully connected layers combined with 23 layers. The CNN
architecture is used as a feature extractor in this case. The features are taken from the CNN model's fourth
convolutional layer and finally, the features are classified using K Nearest Neighbor rather than softmax for better
accuracy. The proposed method is conducted over an augmented dataset of 4085 CT scan images. The average
accuracy, precision, recall and F1 score of the proposed method after performing a 5-fold cross-validation is
98.26%, 99.42%,97.2% and 98.19%, respectively. The proposed method's accuracy is comparable with the
existing works described further, where the state of the art and the custom CNN models were used. Hence, this
proposed method can diagnose the COVID-19 patients with higher efficiency.

Convolutional neural network
K-nearest neighbor

K fold cross-validation

Data augmentation

1. Introduction achieved by chest's Computed Tomography scan. Mainly CT scan is a

combination of a sequential X-Ray images which are captured from

The novel Coronavirus, which causes respiratory tract illness in
humans, is also known as Coronavirus disease, COVID-19. It can be
transferred to the people by droplets released by coughing, sneezing, or
speaking to infected persons. Someone may become infected with items
in the virus and then contact the eyes, mouth and nose [1]. The first
COVID-19 infected patient was identified in China's city of Wuhan in the
middle of November 2019 and has received a WHO-announced public
health emergency [2,3]. It has spread widely due to not maintaining
proper social distance and having less immunity against this virus [2].
Until 22 August 212, 409, 713 confirmed cases of Covid-19 and 4,441,
800 death reports are counted [4]. A fruitful screening of covid-19 can be

* Corresponding author.

several directions of our body [5]. CT scans generate detailed images of
various organs, blood vessels, bones, and soft tissues, allowing doctors to
examine their internal anatomy [3-6]. CT scans can offer a more accurate
and specific image of the patient's state than normal x-rays. This specific
knowledge will be used to assess the nature and precise location of a
medical condition. Due to the scarcity of COVID-19 kits and the rush in
hospitals for RT-PCR tests, a fast, automatic process of identifying this
virus needs to be developed to prevent its spreading [6]. Besides, the
RT-PCR test requires much time to give the result. Research on 1014
patients of Wuhan, China, underneath COVID CT images and investi-
gated the constancy of chest computed tomography with the contrast of
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RT-PCR is shown [7]. The RT-PCR was employed as a reference, and the
performance of CT testing was carried out for a protracted month. From
1014 patients, 601 (59%) were tested positive in the RT-PCR test, and
888 (88%) were tested positive in Chest CT. Chest CT sensitivity is 97%,
which may be considered the primary diagnostic tool of COVID-19 based
on the RT-PCR test. Researchers say that COVID-19 can be helped by
incorporating the clinical imaging characteristics with laboratory results
more quickly [8,9]. Automated detection with an in-depth knowledge of
this disease can be the best method. For these reasons, several deep
learning approaches have been recommended for COVID-19 detection in
CT images. Deep learning is a sub-set that enables computers to teach raw
dataset characteristics Deep learning [10]. It is an artificial intelligence
research field that develops end-to-end models that can generate
amazing results from input pictures or data without manual function
extraction [11,12].

Cai [13] has combined two publicly available datasets [14,15] and
trained them on ResNet architecture. Instead of having a decent number
of images in the dataset, it shows an accuracy of 94.3%. The proposed
method in Refs. [3,17] has achieved a higher accuracy, but it may not be
implemented on memory restricted devices because of its huge number
of parameters. To tackle these problems, it is proposed to use a 5-fold
cross-validation automated Hybrid CNN-KNN technique that can grade
COVID-19 patients using CT images. Here, multiple layered CNN is
designed for feature extraction, and a well-known classifier, K-nearest
neighbor is applied to classify the CNN features. An automated algorithm
like CNN as a feature extraction can be used because it can produce deep
learned features that can further be used on proven classifiers and a
comprehensive evaluation. The importance of the neural networks of
convolution is the combination of several layers, which have a number of
neurons. These neurons are deeply connected between layers and
perform weight sharing. Significant contributions of this paper are.

e A deep learning-based identification method of COVID-19 from
computed tomography scan images is proposed by combining two
different algorithms CNN and KNN

e To improve the performance of the deep convolutional neural
network, data augmentation is applied, which increases the dataset's
number of images.

e Abasic CNN model is developed with fewer parameters, as opposed to
a pretrained network, which is applicable for mobile device.

2. Background studies

Zheng [18] has proposed a software framework to identify COVID-19
patients from 3-D CT scans using the deep learning concept. Here for
segmentation and training, the dataset pre-trained UNet [19] and 3-D
CNN network named DeCoVNet are used, respectively. This deep CNN
model is split into 3 stages (network stem, 3D residual blocks, progressive
classifier). After preprocessing steps, data augmentation is conducted to
prevent overfitting of the model. The overall accuracy of this system is
90.8%. In Ref. [20], for detection of COVID-19, a deep neural network
named as DeepPneumonia is designed and implemented on a chest CT
scan dataset collected from different hospitals. The methodology of the
proposed system is divided into 3 major steps. Initially, the lung portion
of the CT images are extracted. Secondly, image-level predictions are
acquired from the extraction of top-k formation in images by designing
DRE-Net. Lastly, diagnosis of patient-level is executed and, classification
accuracy, in this case, is 86%. In Ref. [21], loannis developed a technique
based on transfer learning to distinguish positive and negative COVID
patients from chest X-ray pictures. Several pretrained architectures like
Mobile Net [22], Xception [23], VGG19 [23], Inception and Inception
ResNet v2 are trained over a dataset containing a total of 1427 images,
including COVID-19, pneumonia and normal patients. Batch size and the
number of epochs is chosen 64 and 10, respectively, as training hyper-
parameters. The best accuracy of 98.75% and 97.40% are gained from
VGG19 And MobileNetV2 for two class classifications consecutively, but
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Fig. 1. Working procedure of the proposed hybrid system.

the proposed method's overall accuracy is 97.82%. Heidari [25] has
analyzed the CNN performance by applying some preprocessing algo-
rithms for COVID19 detection. A key contribution of this proposed
method is in preprocessing steps. The diaphragm portion of chest x-ray
images is omitted by thresholding, converting to binary images, applying
morphological filters and bilateral low-pass filter consecutively. A pre-
trained VGG-16 model is used to experiment with the method over 8474
chest x-ray images. Final accuracy is 94.5% on average. Ozturk has
proposed a DarkCovidNet model comprised of 17 convolutional layers
for COVID-19 detection [26]. The dataset includes 127 Covid positive
cases of chest x-ray images. Each “DarkNet” block is designed with one
convolutional 2D layer, one batch-normalization layer and a leaky
rectified linear activation function layer. Pooling layers, fully-connected
layers and flatten layer are also applied to establish the proposed model.
The corresponding accuracy for two class and triple class classification is
98.08% and 87.02%. In Ref. [16], three experiments are conducted over
three types of datasets [14,27,28] to detect COVID-19. They have
modified the VGG-19 network with extra 5 layers with a total of 20, 548,
866 parameters. The highest accuracy (95.61%) was obtained for the
dataset [28]. In other words, a patient with a Pneumonia diagnosis is
more likely to be examined as a false positive. The grade-CAM, a color
visualization approach, is also used to make the suggested method more
explicable. The classification performance of four CNN architectures via
transfer learning are investigated in Ref. [29]. In this study, ResNet-50 is
found to be the most effective architecture using 3993 CT images,
although general accuracy is attained at rates that ranged from 0.626 to
0.995. A categorization study has employed ResNet based convolutional
neural networks) and Noisy or Bayesian Function techniques in Ref. [30].
The study has used 618 CT images, and the accuracy rate is determined to
be 0.867.

The researchers have used several transfer learning approaches like
UNet, MobileNet, Xception, VGG-19, Inception, MobileNetV2 and also,
proposed some custom CNN models like DeCoVNet, DarkCovidNet, DRE-
Net. Among the above researches, the highest accuracy of 98.08% is
obtained for two class classifications in Ref. [26] using a custom-CNN
model (DarkCovidNet).

3. Dataset

The dataset consists of SARS-CoV-2 CT scan images with 2482 CT
scans. These CT images have been collected from different Sao Paulo,
Brazil hospitals. Of the 2482 pictures, 1252 images are from covid pos-
itive patients, including 32 males and 28 females and 1230 images are
from covid negative patients including, both 30 males and females shown
in Table .2. In this dataset, no standard size for CT scan images is
maintained. Also, all image's contrast is not the same. The dataset is
available at Kaggle [31] and used in a method [3]. It is compiled by
Soares [14], and is accessible publicly.
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4. Methodology

This paper proposes a hybrid CNN-KNN method to identify COVID-
19 positive and negative patients from CT scan. The working proced-
ure for the proposed hybrid system is shown in Fig. 1.

Deep learning is a subfield of machine learning that is inspired by
brain structure. Deep learning approaches that have been deployed in
recent years continue to perform admirably in the field of medical image
processing, as well as. And many other sectors. CNN architecture can
automatically and efficiently extract features. The extracted features are
then classified using KNN, which improves the overall accuracy.

The proposed system methodology can be subdivided into five steps
are discussed below.

4.1. Preprocessing

Preprocessing is a well-known technique in the area of computer
vision. The objective of the preprocessing is to get an improved version of
an image from a raw image. Several preprocessing steps are applied to
the original SARS-CoV-2 CT-scan dataset, which is shown in Fig. 2.

I. RGB to gray conversion

The images obtained from the dataset are in RGB format. So, they are
converted to gray images at first in Fig. 3(b). The algorithm is simplified

by grayscale and minimizes the time it takes to complete.

original image
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.

4 4

4
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II. Contrast Enhancement

After the gray conversion, contrast enhancement is done to adjust the
contrast of the images since the images of the dataset are of different
contrast (Fig. 3(c)).

III. Median Filter

To eliminate noise from the images, the median filter is employed.
The technique is carried out with a window that slides over an image. It
replaces the center pixel of an N*N neighborhood with the median value
of the associated window. This filter helps to smooth the image and
hence significantly reduces the noise shown in Fig. 3(d). Preprocessed
images of different stages are shown in Fig. 3.

IV. Data Augmentation

Data augmentation is a process where number of training images is
increased by applying the augmentation technique to the original image
[3]. Basically, it generates variations of the actual image. In order to train
the convolutional neural network, the role of data augmentation is
crucial [32]. Expanding the original dataset, data augmentation is done,
which helps the proposed model perform better. Also, it prevents the
overfitting problem of the model. Before training the proposed model,
four types of data augmentation methods are applied to the original
dataset [4]. These techniques are flipping, reflection, scaling and
shearing of the original image dataset. The vertical flip strategy is applied
on 201 images from the Covid-19 class and 200 images from the
non-covid-19 class. For shearing, an image x-shear strategy is used as
shear means the distortion of an image along the axis. The amount of

Table 1
Dataset used to implement the proposed CNN-KNN
method.
Data types Number of classes
Covid 1252
Non-covid 1230
Total 2482

median filtered image

($)

median filtered image

a
(d)

median filtered image

N

contrast adjasted image

‘.’

()

Fig. 3. Examples of non-covid and covid CT scan images where the 1st row images are non-covid and 2nd row are covid images. The figure also shows (a) raw input
image, (b) gray image, (c) contrast-enhanced image and (d) median filtered image.
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Table 2
Dataset description after applying augmentation technique.

Sensors International 4 (2023) 100229

Class Number of Original Images Augmentation Technique Number of Augmented Images
Reflection Scaling Flipping Shearing

COVID-19 1252 203 200 201 200 804

NON COVID-19 1230 200 200 200 200 800

Total 2482 403 400 401 400 1604

d

(&

Fig. 4. Augmented images of original dataset (a) original CT scan of a COVID-19 patient (b) flipped CT scan of a COVID-19 patient (c) rotated CT scan of a COVID-19
patient (d) scaled CT scan of a COVID-19 patient (e) sheared CT scan of a COVID-19 patient.

shearing is defined by s and the range of s is 30°. The dataset details after
adopting the data augmentation technique is given in Table .1 and some
sample augmented images are stated in Fig. 4.

The SARS-CoV-2 CT-scan dataset is comprised of 2482 CT scans. To
increase the number of samples, augmentation strategy is adopted and
4086 images are achieved from data augmentation, where 804 images
belong to the covid-19 class and 800 images belong to the non-covid-19
class.

V. Resizing

At last, as the images from the original dataset are of different sizes,
they are resized into the same pixels. In this case, the dimensions of the
input images are kept 64*64 pixel.

4.2. Splitting dataset using 5-fold cross-validation

In 5-fold cross-validation, the entire dataset is used for part-to-part
training and validation rather than randomly splitting the dataset. The
original dataset comprises 2482 images and the augmented dataset
consists of 4086 images. These 4086 images are divided into 5 equal
parts. This means each part contains 817 images and this process is
repeated 5 times, known as folding. In the first fold, first part, including
817 images is used for validation and the remaining for training. Simi-
larly, in second fold, the 2nd part is used for validation. This process is
continued for the rest of the folding, which is shown in Fig. 5. Thus, by
folding the dataset, overfitting of the model is prevented. As the training
process is done every time with different training sets, the training

Folding-1 | 817 817 [Bgi7 [F817 817
Folding2 | 817 817 || 817 || 817 817 i Fipgtingita
Folding3 | 817 817 |['817 ]| 817 || 817 . Training Set

Folding-4 | 817 817 || 817 || 817 817

Folding-5 | 817 817 ‘ 817 817 817

Fig. 5. Dataset splitting with 5-fold cross-validation.

process doesn't get biased towards training data. Thus, the problem of
overfitting is prevented.

4.3. Proposed CNN architecture

For the detection of COVID-19 patients from CT scans, a unique
hybrid CNN-KNN model is suggested. A CNN architecture comprising 23
layers is designed including four convolutional layers, four max-pooling
layers, one dropout layer, two fully connected layers and a softmax layer
as a classifier. Fig. 6 represents the final model of the CNN model. Pro-
cessed augmented image is fed into CNN network as an input. Both the
length and width of the input images are 64. In the first convolutional
layer, 5*5 kernel and 16 channels are applied to input images, which
produces feature maps. To locate the important features, the filters tra-
verse throughout the entire image [33]. The formula for the output
feature map produced from convolutional layer is
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Fig. 6. Proposed architecture of CNN.
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Where M% defines the output feature map, L denotes the layer, Fy, in-
dicates the filter, number of filters are symbolized by N*~!, B represents
a bias and Mf,’l represents input map. The detailed information of fea-
tures in image is stored by these feature maps. So, in the initial con-
volutional layer, 64*64 input image is convolving with a number of 16
filters. After every convolution layer, a batch normalization layer and
reLu activation layer have utilized. In Fig. 4, one convolutional layer, one
batch normalization layer and one reLu layer are represented within a
block named CN. Here, reLu layers are used as activation functions that
gradually improve the non-linearity of the image. A max-pool layer of
kernel size 2*2 is followed after each convolutional block which down
samples the feature maps obtained from convolutional layers. By
reducing the number of parameters, it lowers the cost of computing [34].
It also summarizes the features arises from a part of the feature map
generated by the convolutional layer. The calculation of convolution for a
single pixel from the previous layer to the next layer is given below [35]:

N(x,y) = (i*w)[x,y] = ZZi[m, njw[x—m,y—n| 2

m n

Here next layer output is defined by N (a, b), i is input image and K
denotes kernel. The convolution operation is represented with the sym-
bol “*. In the second convolutional layer, 5*5 kernel and 32 channels are
passed through the output of the first max-pool layer. Similarly, 3*3 filter
size is specified for third and fourth convolutional 2D layers having 64
and 168 channels, respectively. The filter size and number for each
convolutional layer is given in Table .3.
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Table 3
Filter specification for convolutional layers.

Convolutional layers Number of Filter Filter Size

Convo_1 16 5*%5

Convo_2 32 5*5

Convo_3 64 3*3

Convo_4 168 3*3
Table 4

Total number of parameters.

Layers Activation Shape Learnable Parameters
conv_1 64x64x16 416
batchnorm_1 64x64x16 64

relu_1 64x64x16 0
maxpool_1 32x32x16 0

conv_2 32x32x32 12,832
batchnorm_2 32x32x32 128
relu_2 32x32x32 0
maxpool_2 16x16x32 0

conv_3 16x16x64 18,496
batchnorm_3 16x16x64 256

relu_3 16x16x64 0
maxpool_3 8 x 8 x 64 0

conv_4 8 x 8 x 168 96,936
batchnorm_4 8 x 8 x 168 672
relu_4 8 x 8 x 168 0
maxpool_4 4 x4 %168 0

fc 1 1 x1x520 1,398,280
fc 2 Ix1x2 1042
total 1,529,122

The fully connected layer has two hidden layers of 520 neurons and 2
neurons are connected with the last max-pool layer via a flattening layer.
In last fully connected layer, 2 neurons are chosen for classifying the
COVID-19 and normal patients. In order to regularize the model, a
dropout layer having a 0.5 dropout factor is applied between two fully
connected layers.

Lastly, softmax layer is used for predicting classes as the probability
prediction of the existing classes can be done by it. Table .1 Shows the
learnable parameters required in different layers of the CNN model. Deep
features for identifying COVID-19 are taken out from custom-designed
CNN model. The activations of the layers of the proposed CNN model
show a simple representation of images because when the layer gets
deeper, the representation gets complicated. The activation summarizes
the features that are important in COVID CT scan image classification.
The feature maps obtained from each convolutional layer are given in
Fig. 7. In Fig. 7. (a) The low-level features of the first convolutional layer
having the weight of 16 are shown. In the figure, the feature maps are
mainly local features like edges or corners and shapes. In Fig. 7(d), the
high level feature map of the deeper fourth convolutional layer is shown.
These features are then fed into the K-nearest neighbor classifier.

4.4. Parameters for CNN model

Convolutional layers and FC (fully connected) layers offer learnable
parameters. The weights learned throughout CNN model training are
called parameter. The formula for calculating parameters (Pconv) for
convolutional layer can be evaluated as:

Peom = Fy*Fo* Frun™ Cin + Frum 3

Filter height and width are represented by Fj, and F,, respectively.
The number of filters is denoted by Fnym. The input channel number for
the corresponding layer is denoted by Ci,. Fully connected layer pa-
rameters (Prc) can be expressed as:

Prc = Aprey) *Nunity + Nunir) (©)]
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(b)
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Fig. 7. Feature map of convolutional layers (a) feature map of conv_1 layer (b) feature map of conv_2 (c) feature map of conv_3 and feature map of conv_4.

Where previous layer activation shape(dimension) is represented by
A(prev) and number of units or neurons which are presented in the current
fully connected layer is represented by Nunir). The maxpool layer owns
no learnable parameters. Parameters for the batch-normalization layer
are the multiplication of the amounts of channels used in the previous
convolutional layer with four.

Here the total parameters are 1,530,242, where the number of the
learnable parameters is 1,529,122, and the number of the non-learnable
parameters is 1120.

4.5. Classifiers
L. Softmax

A softmax activation function is used in CNN after the fully connected
layers. The equation of this activation function can be defined as:

e

n (5)
24
Jj=1

Softmax(a;) =

Here, a is the set of n number of variables. The softmax activation
function converts the output into probability measure. This activation

function uses a cross-entropy loss function and the training process of
CNN is driven by this. The equation of cross-entropy loss function:

Li=— in log x; 6)

Where L represents the cross-entropy loss function. x and x* symbolize
the real and predicted value of output, respectively. The loss is low when
the accurate and the predicted value is closer to each other. Cross-
entropy loss function measures how close the actual and predicted
values are and this is important for training and the calculation of the
gradient, specially, in back propagation. But when the incorrect predic-
tion occurs, the mean square error receives a penalty heavily. For this
reason, MSE is not suitable for probabilistic output.

II. K Nearest Neighbor
In the KNN classifier, the Euclidian method uses the root of the sum of

the features to calculate the distance between two points of any system.
The formula of the Euclidian distance method is written below:

)
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Fig. 8. Scattering plots of KNN for (a) 1st fold (b) 2nd fold (c) 3rd fold (d) 4th fold (e) 5th fold.

Here, R refers to the Euclidian distance between two points, (% — yi)
represents the two points in the xy plane where i = 1,2,3, ....., N number
of data points. For applying KNN, it is important to select a suitable value
of K and a precise classification depends on this value [36]. In proposed
work, the value of K or the number of nearest neighbors is taken 3.
Distance between the features specified for training and testing samples
is calculated in the KNN [37]. The majority voting class of training fea-
tures used in the KNN algorithm is centered on Euclidian distance mea-
surement. The equation of the majority rule algorithm is given below:

argmax
MR= (€))

L(aj,bi)eDy

1(L=b)

Here, M.R represents the majority voting rule, L refers to the label of the
classes. B; refers to the ith nearest neighbor of class labels. I represents the
indication function uses binary values for representing true or false. The
advantages of using the KNN classifier are that this is simple and effective
compared to CNN and requires no training time.

The high-level features are taken out from the 4th convolutional layer
those are used as input in KNN (K Nearest Neighbor) classifier. This
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Table 5
Training hyper parameters.
Hyper Parameters Specifications
Optimizer ADAM
Validation Frequency 10
Initial Learning Rate 0.001
Batch size 163
Epochs 10
Learn rate drop factor 0.2
Iteration per epoch 25

95
94
93
92
91
90
89
88

CNN Accuracy %

HFold-1 mFold-2 mFold-3 Fold-4 mFold-5 ™ Average

Fig. 9. Training and validation accuracy of CNN model for five folds
F-validation.

classifier algorithm stores only the valuable features for classifying CT
scans images of COVID-19 and non-COVID-19 patients based on the
features closer to or known as neighboring features. The KNN classifier
algorithm then takes features from testing images for prediction or
classification. Here the total training and testing CT scans are 3268 and
817, respectively. The scattering plot of KNN for testing and training
features for samples are given in Fig. 8.

Here we obtain 5 scattering plots as the augmented dataset is split
into 5- folds. In each fold, the training images and testing images are
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Table 6
Accuracy for both CNN and CNN-KNN.
Fold Number CNN Accuracy % CNN-KNN Accuracy %
Fold-1 92.2 97.9
Fold-2 95.2 98.3
Fold-3 95.3 99.0
Fold-4 90.7 98.2
Fold-5 92.2 97.9
Average 93.12 98.26

dissimilar. So, due to different training and testing samples, we obtain 5
sets of training and testing features. A scattering plot is used for visual-
izing the relationship between the training and testing features. In Fig. 8,
the training features for covid and non-covid are marked as red dots and
green dots, respectively. The testing features or point is represented by
query point (see Table 4).

5. Result analysis
5.1. Training hyperparameters

To train the CNN model, ‘adam’ optimizer is used where the learning
rate is 0.001. Adam optimizer is selected over ‘sgdm’ optimizer and this
optimizer is performing better on the augmented dataset. As in ‘adam’, it
merges two different optimizers (i.e rmsprop and adagrad) [38]. This
optimizer is performing better on the augmented dataset. There is a list of
hyperparameters in Table 5.

For fitting the training images(data) with the CNN model, 163 batch
size is taken. The validation frequency for training the CNN model is 10.
The proposed model is run with 10 epochs where iteration per epoch is
25. After every 5 epochs the learning rate is decreased by using a learning
rate drop factor of 0.2. Fig. 9 Shows the training progress for 5-fold cross-
validation (see Fig. 10).

The epoch for training the CNN model is taken 10 because the error
rate did not change after 10 epochs and training graph has got saturated.
In Fig. 9, after 10 epochs, the CNN model has acquired the highest ac-
curacy for five folds and validation accuracy acquired from each 5-fold
cross-validation are 92.2%, 95.2%, 95.3%, 90.7%, 92.2%. The average
validation accuracy is 93.12% which is shown in Table 6 (see Fig 11).

PARAMETERS USED FOR PERFORMANCE EVALUATION
OF CNN MODEL
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Fig. 10. Parameters used for Performance Evaluation of CNN Model.
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PARAMETERS USED FOR PERFORMANCE EVALUATION OF CNN-KNN
METHOD
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Table 7 Table 11
Confusion matrix of CNN-KNN for fold-1. Confusion matrix of CNN-KNN for fold-5.
CONFUSION MATRIX PREDICTED CONFUSION MATRIX PREDICTED
COVID NON-COVID COVID NON-COVID
ACTUAL COVID 408 13 ACTUAL COVID 409 15
NON-COVID 4 392 NON-COVID 2 391
Table 8 Table 12
Confusion matrix of CNN-KNN for fold-2. Comparison of the proposed hybrid CNN-KNN with existing methods with same
CONFUSION MATRIX PREDICTED dataset.
COVID NON-COVID Study Method Accuracy%
ACTUAL COVID 410 13 Cai [13] ResNet-34 94.3
NON-COVID 1 392 Soares [14] XDNN 88.6
Panwar [16] VGG19 95
Wang [39] Redesigned COVID-NET 90.83 + 0.93
Jaiswal [40] Transfer Learning + CNN 97
Table 9 Chaudhary and Pachori [41] FBSED + CNN 97.6
Confusion matrix of CNN—KNN for fold-3. Konar [42] Semi Supervised SL Network 89-94.4
Proposed CNN-KNN 98.26%
CONFUSION MATRIX PREDICTED
COVID NON-COVID
ACTUAL COVID 410 7 Table 13
NON-COVID 1 399 Comparison of the proposed hybrid CNN-KNN with existing methods with
different dataset.
Author Chest Data Method 2 Class Accuracy
Table 10 Type
Confusion matrix of CNN-KNN for fold-4. Ying [20] CT DRE-Net 86.0%
CONFUSION MATRIX PREDICTED Zheng [18] cr UNet+3D CNN 90.8%
Wang [43] CT M-Inception 82.9%
COVID NON-COVID Sen [44] CT Bi-stage feature + 90.0%
ACTUAL COVID 407 11 h CNN f i o
NON-COVID 4 395 Zhu [45] CT Transfer Learning 95.8%
Proposed CT CNN + KNN 98.26%
Method

5.2. Improved performance with KNN

The CNN uses the softmax activation function for the classification
and this only works with training data, so the result got biased towards
training so using KNN after CNN can lessen biasing that means KNN
regularizes CNN result using extracted features.

6. Performance evaluation

After distinguishing the actual and predicted classes from confusion

matrices following equations are used to mathematically estimate the
performance of the proposed CNN and CNN-KNN hybrid model in
Table .12 and Table .13. These confusion matrices are obtained from the
KNN classifier shown in Table 7-Table 11.

The true positive rate of Covid-19 images for all the 5-folds is 408,
410, 410,407 and 409, respectively, where the actual number of testing
Covid-19 CT scans was 411. Similarly, the true positive rate of normal CT
scans for all folds is 392, 393, 395,399 and 391, respectively, where the
actual number of testing normal CT scans was 406. This shows that the
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true positive rate is higher and thus, the performance evaluation pa-
rameters precision and recall will be higher and the accuracy of the
proposed model.

Here, ‘true positive’ defines the state when a COVID-19 patient is
correctly detected as a COVID-19 patient. The term ‘false positive’ de-
notes the wrong identification of a COVID-19 patient, which means when
a non-COVID-19 person is recognized as a patient of COVID-19. When a
covid negative person is correctly identified, it is said to be true negative.
The phrase ‘false negative’ defines the case when a COVID-19 patient is
analyzed as a negative patient.

The average precision, recall and F1 score for covid positive patients
are 92.04%, 94.2% and 93.07%, respectively. For the covid negative
patient, the average precision, recall and F1 score are 94.24%, 92.18%
and 92.96%, respectively.

The average precision, recall and F1 score for covid positive patients
are 99.42%,97.2% and 98.19%, respectively.

For the covid negative patient, the average precision, recall and F1
score are 97.1%,99.4% and 98.23%, respectively.

7. Comparison

Several papers [13,14,16,39-42] experimented on the same dataset
to detect COVID-19 patients. To compare the result obtained from the
proposed hybrid method with previous studies, those who applied the
deep learning method on CT scan images are listed in Table .12.

Different deep learning techniques are used in Refs. [13,14,16,39,40]
for COVID-19 classifications. Transfer learning is applied on [13,14,16,
38] and feature extraction is manipulated by pre-trained GoogleNet in
Ref. [14]. Transfer learning means taking a deep learning model which
was trained on an enormous dataset with higher accuracy and an
approach of reusing model weights of that benchmark dataset mainly,
ImageNet. The architectures of pre-trained models for transfer learning
are complex and have a higher number of parameters. The proposed
method is simple in contrast with a pre-trained network. Also, the algo-
rithm can implement over conventional PC. The benefit of designing a
smaller network is related to the potentiality of implementing an algo-
rithm on mobile devices, which is critical in developing countries for
diagnostics. Comparisons with existing methods that used deep learning
with CT scan images are listed in Table 13.

From the above comparison, it is seen that the proposed CNN-KNN-
based approach shows better accuracy. The significance of the above
comparison is that, without using the same dataset, the hybrid models
have less accuracy than the proposed one on a large scale. In Ref. [43],
the proposed model is a hybrid with a pretrained model. In Ref. [18], the
CNN model used, was a three-dimensional model and [44] used transfer
learning. In this proposed work, a conventional CNN model is combined
with K-Nearest Neighbor classifier skipping the fully connected layers of
the CNN model.

This proposed method is unique because the feature extraction is
done automatically from the 4th convolutional layer of the proposed
CNN architecture and directly input to the KNN classifier, which is faster
and simple compared to using the direct classifier. The hybrid architec-
ture of CNN and KNN classifier makes the proposed method works better
because by avoiding the softmax classification of CNN, features go to the
KNN classifier. Compared to the softmax classifier, the KNN classifier gets
stronger gradually because of the backpropagation of the cross-entropy
loss of the classification of training images. Also, the KNN classifier re-
duces intra-class distance and pulls the training and validation data
closer and bounded the classification error.

8. Conclusion

The proposed hybrid model is designed to classify whether a patient is
COVID positive or COVID negative. In this case, instead of using a pre-
trained CNN architecture, a self-designed CNN architecture combined
with KNN is implemented to accurately classify COVID positive and
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negative patients. K-fold is applied to generalize the CT scan dataset. The
application of the two different algorithms makes this method robust.
Here, high-level features of CNN are classified through the KNN algo-
rithm. Instead of using a fully connected layer for classification KNN is
preferred to classify the 4th convolutional layer's 10,752 high level fea-
tures of each image. There are some limitations of the proposed work
like, the average accuracy of the CNN model is 93.12% which can be
improved in future by building more complex architecture. If the CNN
model can give better performance than this proposed one then the
extracted features will be much more accurate and classifiers will also
achieve higher evaluation matrices. However, the average accuracy
gained from the KNN classifier is 98.26%. As a result, the proposed
method may be regarded an efficient method for detecting COVID-19
patients using a CT scan.
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