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Introduction
Tuberculosis (TB) remains a formidable global public health 
challenge due to its remarkable ability to persist within the 
human body in a clinically latent state. Mycobacterium tuber-
culosis (MTb), the causative agent of TB, ranks among the 
world’s most deadly diseases. In 2022, an estimated 10.6 mil-
lion new TB cases were reported globally, and the number of 
cases of the disease has risen significantly by 4.5% compared 
with 2020, cementing TB status as a leading cause of mortality 
among infectious diseases. This toll accounted for 1.3 million 
deaths in individuals without HIV infection and an additional 
187 000 deaths among those co-infected with HIV. The linger-
ing presence of MTB often leads to latent infections that fur-
ther compound the global burden.1,2

Notwithstanding considerable advances in health care 
infrastructure, including enhanced diagnostics, treatment regi-
mens, and preventive measures, TB continues to cast a shadow 

over public health. The rise of multidrug-resistant (MDR) 
strains, combined with the absence of an effective vaccine and 
prolonged, potentially toxic treatment courses, has magnified 
the challenges in tackling this relentless ailment. Consequently, 
the development of innovative therapeutic agents has emerged 
as an urgent imperative.1-5

Central to this pursuit is the targeting of decaprenylphosphoryl-
β-D-ribose 2′-epimerase (DprE1) as a key therapeutic avenue 
against TB. Belonging to the vanillyl-alcohol oxidase family, 
DprE1 boasts a 2-domain structure encompassing a flavin ade-
nine dinucleotide (FAD)-binding domain and a substrate-
binding domain. Notably, DprE1 plays a pivotal role in the 
biosynthesis of MTb cell walls by orchestrating the essential 
epimerization process. Situated within the bacterium’s peri-
plasm and absent in human physiology, DprE1 represents a 
promising target for the development of novel antitubercular 
agents. The distinct advantage of DprE1 inhibitors lies in their 
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selectivity for MTB while exhibiting minimal adverse effects on 
human health. This feature renders DprE1 inhibitors particu-
larly promising for addressing drug-resistant infections that 
necessitate prolonged therapeutic interventions.2,6,7

The intricate enzymatic conversion of decaprenylphosphoryl-
β-D-ribose (DPR) into decaprenylphosphoryl-β-D-arabinose 
(DPA) defines the role of DPR 2′-oxidase. This intricate  
cascade involves a series of oxidation-reduction reactions, with 
the intermediate decaprenylphosphoryl-2-keto-β-D-erythro-
pentofuranose (DPX) serving as both the product of DPR oxi-
dation and the precursor to DPA. The coordinated interplay 
between DprE1 and DprE2 proteins dictates the functionality 
of this enzyme complex, where precise alignment of these poly-
peptides is imperative for effective epimerization.2,8-10

In light of these subtleties, the aim of this study to further 
in silico investigates the potential of DprE1 as a novel thera-
peutic target for the treatment of TB, thus identifying poten-
tial inhibitors with high affinity and stability superior to 
those of reference ligands by taking into account the muta-
tional profile of this enzyme and taking advantage of compu-
tational techniques, virtual screening, molecular docking, and 
molecular dynamic (MD) simulations, aiming to provide 

information that could lead to innovative drug development 
strategies, addressing the global health threat posed by drug-
resistant TB.

Material and Methods
Workflow

Figure 1 describes the workflow adopted in this study showing 
the approaches used.

Database construction

The collection of DprE1 3D structure, mutations, and the genera-
tion of mutant models.  Using the Protein Data Bank (PDB) 
database, the X-ray crystallographic three-dimensional (3D) 
structure of DprE1 was found completely crystallized with a 
resolution of 2.55 Å (PDB ID: 4P8T).11

Ten known mutations were selected from literatures. These 
mutations were found in total: C387A, C387G, C387N, 
C387S, C387T, G17C, G61A, G248A, L368P, and Y314C.12-16 
The mutant model was generated using the UCSF Chimera 
program V1.162617 (University of California, San Francisco 
Chimera program) for each of them.

Figure 1.  The workflow used in this study.
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The collection and selection of potential and reference inhibitors.  In 
total, 111 compounds were retrieved from the Binding data-
base known for their inhibitory biological activity against 
DprE1 with known IC50 values. The selection of ligands was 
based on the rules of Lipinski and Veber. Then, the toxicity was 
checked using a comparative analysis of the Mcule toxicity 
checker,18 the ProTox-II web server,19 and the STOPTOX 
web server,20,21 including each toxic compound was eliminated. 
To compare the results obtained from these selected com-
pounds, 4 reference inhibitors against DprE1 were selected 
from the literature: BTZ043, OPC_167832, TBA_7371, and 
PBTBZ169.22-25

Prediction of mutational effects on protein function, 
stability, and flexibility

This step was carried out using the web servers Meta-SNP26 
It uses a benchmarking of 4 predictors, PhD-SNP (Single 
Nucleotide Polymorphism), SIFT (Sorting Intolerant  
From Tolerant), SNAP (Screening for Non-Acceptable 
Polymorphisms), and Meta-SNP. This web server predicts 
each single point protein function, determining whether it is 
deleterious or neutral.

For the study of the effect of mutations on protein stability 
and flexibility, the web server DynaMut was employed. It 
makes predictions on potential changes in protein stability 
(DDG: Delta Delta Gibbs) and flexibility (DDS: Difference in 
Distance Distribution).27

Molecular docking

Using AutoDockTools-V.1.5.7,28 the protein structure and the 
mutant models were prepared by adding polar hydrogens, 
Kollman United Atom charges, and eliminating water mole-
cules. The file was then saved in “pdbqt” format. The ligands 
have been prepared and contain the atom types supported by 
the AutoDock tools by adding gasteiger charges, as well as 
additional records specifying rotating bonds, then saved in 
“pdbqt” format.

The docking process of the 10 mutational models and the 
wild-type (WT) protein with the 18 ligands (14 best com-
pounds after filtration + 4 references ligands) was performed 
using Autodock vina.29 A grid box with a spacing of 1 Å was 
used for each macromolecular protein, and the center coordi-
nates were fixed at X = 12.818 Å, Y = −26.038 Å, and Z = 2.694 Å, 
with a size of X = 26 Å, Y = 26 Å, Z = 26 Å.

The 3D visualization of the protein-ligand interaction 
results was done using PyMol version 2.5.2.30

Three-dimensional pharmacophoric map generation 
and training set screening process

To generate the pharmacophoric map that identifies common 
features among the 4 reference inhibitor molecules, we used 

the Molecular Operating Environment (MOE) software.31 
This approach involves a pharmacophore query methodology, 
which includes searching the 3D distances between the fea-
tures. The map was generated through energy optimization 
and flexible alignment, considering 200 possible conforma-
tions. The best model was then selected using the pharmaco-
phore query editor tool.

To create the training set, the 4 reference molecules were 
used to generate e a pharmacophore map identifying the fea-
tures responsible for inhibitory activity, and then, the test set 
was formed by selecting the top 6 molecules from the docking 
process. Subsequently, we screened these molecules against the 
pharmacophoric map to identify the best matches based on 
root-mean-square deviation (RMSD). This crucial step ena-
bled us to pinpoint the compounds that shared common fea-
tures with the map and showed promising inhibitory activity. 
Among these compounds, we selected the best one with the 
lowest RMSD value for further investigation using MDs.

Molecular dynamic simulation

To analyze the protein-ligand interaction energy for the WT 
protein and the 5 severe mutant models described as deleteri-
ous with the reference drug and the best compounds identified 
through the 3D pharmacophore screening, in total, we con-
ducted 8 MD simulations (WT—reference ligand, C387G—
reference ligand, Y314C—reference ligand, G61A—reference 
ligand, G17C—reference ligand, C387N—reference ligand, 
C387N—reference molecule, and C387N—potential mole-
cule) each spanning 100-ns intervals. GROMACS v.2020.432 
was employed for these simulations, allowing us to gain insights 
into the stability and behavior of the complexes.

This enabled us to examine the interaction energy between 
the protein and the selected compound during MD simula-
tions, providing valuable information on their binding dynam-
ics and stability.

The interactions between the protein and the solvent were 
described using the CHARMM27 force field,33 with the 
TIP3P34 water model employed for the water molecules. To 
solvate the protein, a cubic simulation box with an edge length 
of 1.0 nm was used. To achieve a neutral system, an equal 
number of positive and negative ions were added. The system 
underwent a minimization process using the steepest descent 
algorithm, followed by equilibration at 300 000 for 100 ps in 
an NVT (constant Number of particles, Volume, and 
Temperature) ensemble using V-rescale. Subsequently, pro-
duction runs were performed in an NPT (constant Number of 
particles, Pressure, and Temperature) ensemble, with a time 
step of 100 ps, and further equilibration at 1 atm pressure using 
the Parrinello-Rahman algorithm.35 During the simulation, 
the LINCS (Linear Constraint Solver) algorithm was applied 
for bond constraints, and a distance cutoff using Verlet was 
implemented.32
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Table 1.  The top inhibitors selected with the 4 reference molecules with their PubChem ID, molecular weight, IUPAC identifier, IC50, and their 
toxicity report.

Ligand 
number

PubChem ID Molecular 
weight  
(g/mol)

IUPAC IC50 (μM) Toxicity 
report 
using 
Stoptox

Toxicity 
class 
using 
ProToxII

Ligand 1 390818 377.3 3-[(4-methoxyphenyl)methylamino]-6-
(trifluoromethyl)quinoxaline-2-carboxylic 
acid

0.041 Non-toxic 4

Ligand 2 390820 365.28 3-[(4-fluorophenyl)methylamino]-6-
(trifluoromethyl)quinoxaline-2-carboxylic 
acid

0.072 Non-toxic 5

Ligand 3 67402849 492 7-chloro-2-ethyl-N-[[4-[4-(4-fluorophenyl)
piperazin-1-yl]phenyl]methyl]imidazo[1,2-a]
pyridine-3-carboxamide

0.017 Non-toxic 4

Ligand 4 86287487 415.3 6-(trifluoromethyl)-3-[[4-(trifluoromethyl)
phenyl]methylamino]quinoxaline-2-
carboxylic acid

0.12 Non-toxic 4

Ligand 5 86287489 391.3 3-[(4-ethoxyphenyl)methylamino]-6-
(trifluoromethyl)quinoxaline-2-carboxylic 
acid

0.088 Non-toxic 4

Ligand 6 86287490 395.3 3-[(3-fluoro-4-methoxyphenyl)methylamino]-
6-(trifluoromethyl)quinoxaline-2-carboxylic 
acid

0.08 Non-toxic 4

Ligand 7 86287491 381.7 3-[(4-chlorophenyl)methylamino]-6-
(trifluoromethyl)quinoxaline-2-carboxylic 
acid

0.05 Non-toxic 4

Ligand 8 86287492 372.3 3-[(4-cyanophenyl)methylamino]-6-
(trifluoromethyl)quinoxaline-2-carboxylic 
acid

0.067 Non-toxic 4

Ligand 9 155294899 436.5 2-[4-(cyclohexylmethyl)piperazin-1-yl]-4-
oxo-6-(trifluoromethyl)-1,3-benzothiazine-8-
carbonitrile

1.7 Non-toxic 4

Ligand 10 155522922 379.4 N-[3-[(4-methylpyrimidin-2-yl)carbamoyl]
thiophen-2-yl]-[1,2,4]triazolo[4,3-a]pyridine-
7-carboxamide

0.03 Non-toxic 4

Ligand 11 162651562 464.5 3-[2-[4-(cyclohexylmethyl)piperazin-1-yl]-4-
oxo-6-(trifluoromethyl)-1,3-benzothiazin-8-
yl]propanenitrile

13.2 Non-toxic 4

Ligand 12 162651615 369.5 2-[4-(cyclohexylmethyl)piperazin-1-yl]-4-
oxopyrido[3,2-e][1,3]thiazine-7-carbonitrile

7.72 Non-toxic 4

Ligand 13 162657633 482.6 3-[2-[4-(cyclohexylmethyl)piperazin-1-yl]-4-
oxo-6-(trifluoromethyl)-1,3-benzothiazin-8-
yl]propanamide

16.7 Non-toxic 4

Ligand 14 162665075 370.5 2-[4-(cyclohexylmethyl)piperazin-1-yl]-4-
oxopyrimido[5,4-e][1,3]thiazine-7-carbonitrile

20 Non-toxic 4

Ligand 15 BTZ043 
(42609849)

431.4 2-[(3S)-3-methyl-1,4-dioxa-8-azaspiro[4.5]
decan-8-yl]-8-nitro-6-(trifluoromethyl)-1,3-
benzothiazin-4-one

0.002 Toxic (+) 3

Ligand 16 OPC_167832 
(118904282)

456.8 5-[[(3R,4R)-1-(4-chloro-2,6-difluorophenyl)-
3,4-dihydroxypiperidin-4-yl]methoxy]-8-
fluoro-3,4-dihydro-1H-quinolin-2-one

0.26 Toxic (+) 2

Ligand 17 TBA_7371 
(72792692)

355.4 N-(2-hydroxyethyl)-1-[(6-methoxy-5-
methylpyrimidin-4-yl)methyl]-6-
methylpyrrolo[3,2-b]pyridine-3-carboxamide

0.01 Non-toxic 4

Ligand 15 PBTZ169 
(57331386)

456.5 2-[4-(cyclohexylmethyl)piperazin-1-yl]-8-
nitro-6-(trifluoromethyl)-1,3-benzothiazin-4-
one

0.002 Toxic (+) 3
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Table 2.  Prediction results of mutational effects on DrpE1 protein.

C387A C387G C387N C387S C387T G17C G61A G248A L368P Y314C

PhD-SNP Neutral Disease Disease Disease Disease Disease Disease Neutral Disease Disease

SIFT Neutral Disease Disease Neutral Neutral Disease Disease Neutral Neutral Disease

SNAP Neutral Disease Disease Neutral Neutral Disease Disease Neutral Neutral Disease

Meta-
SNP

Neutral Disease Disease Neutral Neutral Disease Disease Neutral Disease Disease

Results
Data set generation

Table 1 presents the 14 selected potential inhibitors with their 
IC50, toxic/non-toxic reports, alongside the 4 commonly used 
inhibitors of the protein, which serve as test references.

Prediction of the mutational effects

To evaluate the impact of mutations on protein-ligand binding, 
we collected 10 mutations from the literature. After bench-
marking and assessing compatibility between predictors, the 
following mutations were identified as deleterious: C387G, 
C387N, G17C, G61A, and Y314C, whereas the mutations 
C387A, C387S, C387T, G248A, and L368P were classified as 
neutral (Table 2).

The evaluation of stability was measured by DDG (in kcal/
mol), with positive values indicating stabilizing effects 
(DDG > 0) and negative values suggesting destabilizing effects 
(DDG < 0). The impact of the mutations on flexibility was 
assessed using DDS (in kcal/mol.K), where positive values 
indicate an increase in flexibility, and negative values indicate a 
decrease in stability (Figure 2).

Docking and scoring

To identify small molecules with high affinity for both the WT 
DprE1 protein and the 10 mutated models, 111 compounds 
were extracted from the Binding DataBase. Among them, 87 
compounds obeyed Lipinski and Veber rules and only 14 com-
pounds were found to be non-toxic molecules. These 14 mol-
ecules, along with reference compounds, were subjected to 
molecular docking process with both the WT and the 10 
mutated models of the protein.

The results (Table 3) indicate that the compounds with 
PubChem ID: 390820, 86287492, 155294899, 155522922, 
162651615, and 162665075 exhibited significantly better 
affinity compared with the reference compounds.

Three-dimensional pharmacophore map generation

A pharmacophoric map was generated to identify common 
features involved in the inhibitory activity shared among the 4 
known reference molecules, as depicted in Figure 3. The map 
revealed 3 features shared among the 4 aligned molecules: F1: 
hydrophobic, F2: hydrophobic/donor, and F3: metal ligator/
hydrophobic/acceptor (Figure 3A and B), with distances of 

Figure 2.  Prediction results of mutational effects on DprE1 stability and flexibility.
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5.97 Å between F1 and F2, 3.71 Å between F1 and F3, and 
8.40 Å between F3 and F2 (Figure 3C).

To select the most promising molecule of the 6 compounds 
identified after the molecular docking process, for further 
investigation using MD simulation, these 6 molecules were 
screened against the pharmacophoric map, and the results 
showed that ligand 2 (ID: 390820) had an RMSD close to 0 
(RMSD = 0.06) compared with the other molecules. This 
ligand was deemed as the most suitable candidate, as it con-
tained all the essential features identified in the map and exhib-
ited significant affinity with the mutant models (Figure 3D).

Figure 4 shows the 3D interaction of this ligand (ID: 
390820) with the DprE1 protein.

MD simulations results

To comprehensively investigate the binding affinity of ligands, 
for both reference ligand and potential ligand, in complex with 
the WT and the deleterious mutant models of the protein, a 
total of 8 MD simulations were conducted, each spanning 100 ns.

To assess the impact of the 5 identified deleterious muta-
tions, 6 simulations were performed using the WT and the 5 
mutant models, each complexed with the reference ligand: 
WT—reference ligand, C387G—reference ligand, C387N—
reference ligand, G17C—reference ligand, G61A—reference 

ligand, and Y314C—reference ligand (Figure 5). Tables 4 and 
5 present the mean and standard deviation for each complex. 
The result revealed that the mutation C387N exerts a remark-
able influence on the protein-ligand complex (C387N—refer-
ence ligand) compared with the WT and the other mutant 
models, this was evident in the analyses of key structural 
parameters, such as RMSD with a high value (0.29 ± 0.07) 
compared with the other complexes (Figure 5A), while by 
measuring the fluctuations of the residues, root-mean-square 
fluctuation (RMSF) shows a higher value of 0.16 ± 0.08 com-
pared with other complexes (Figure 5B). The radius of gyration 
(Rg) indicates more flexible shape for the C378N—reference 
ligand with a value of 2.40 ± 0.014 compared with other com-
plexes which show that the shape remains more or less compact 
even with the existence of the mutation (Figure 5C), and finally, 
the solvent-accessible surface area (SASA) (Figure 5D) that 
revealed a greater exposed surface area for the complex 
C378N—reference ligand (245.15 ± 1.71). To summarize this 
part of 6 simulations, all parameters RMSD, RMSF, Rg, and 
SASA showed significantly higher values for the reference 
C387N—ligand complex compared with the reference WT—
ligand and the other mutant model complexes (reference 
C378G—ligand, reference G17C—ligand, reference G61A—
ligand, and reference Y314C—ligand). These increased values 
indicate greater structural fluctuations and flexibility in the 

Table 3.  Docking results of DprE1 wild-type protein and mutant-type models.

Ligand number PubChem ID 4P8T C387G C387N G17C G61A Y314C

Ligand 1 390818 −9.1 −9.3 −9.5 −9.2 −9.2 −9

Ligand 2 390820 −10.6 −9.6 −10.4 −10.3 −10.4 −10.2

Ligand 3 67402849 −9.6 −9.6 −10 −10 −9.9 −9.5

Ligand 4 86287487 −8.8 −9.1 −9.3 −8.9 −8.8 −8.8

Ligand 5 86287489 −9.2 −9.6 −9.9 −9.3 −9.2 −9

Ligand 6 86287490 −9.3 −9.3 −9.5 −9.3 −9.3 −8.9

Ligand 7 86287491 −9.7 −9.7 −9.8 −9.7 −9.4 −9.4

Ligand 8 86287492 −10.5 −10.4 −10.5 −10.6 −10.5 −10.2

Ligand 9 155294899 −10.6 −10.6 −10.6 −10.6 −10.6 −10.3

Ligand 10 155522922 −10.2 −10 −10.2 −10.2 −10.3 −9.9

Ligand 11 162651562 −9.6 −9.5 −9.6 −9.6 −9.6 −9.3

Ligand 12 162651615 −10.6 −10.6 −10.6 −10.6 −10.6 −10.3

Ligand 13 162657633 −9.5 −9.5 −9.4 −9.5 −9.5 −9.4

Ligand 14 162665075 −10.5 −10.4 −10.5 −10.6 −10.6 −10.2

Ligand 15 BTZ043 (42609849) −10.2 −10 −10.2 −10.2 −10.3 −10

Ligand 16 OPC_167832 (118904282) −10.1 −10.2 −10.1 −10.1 −10.8 −10.4

Ligand 17 TBA_7371 (72792692) −10.1 −10.2 −10.1 −10.2 −10.8 −9.9

Ligand 15 PBTZ169 (57331386) −8.2 −8.5 −8.1 −8.2 −8.2 −8.3
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reference C387N—ligand complex, potentially affecting ligand 
binding and stability in the binding site.

To evaluate the efficacy of the potential ligand, 2 additional 
simulations were performed: one between the WT—potential 
ligand, and another between the C387N—potential ligand 
(Figure 6). The results clearly demonstrated that the potential 
ligand positively impacted the complex’s stability on both the 

WT and mutant complexes, as evidenced by reduced RMSD val-
ues from 0.29 ± 0.07 to 0.21 ± 0.01 showing strong interactions 
with the mutant type, as revealed by the prominent hydrogen 
bonding and RMSD analysis (Figure 6A). Moreover, the RMSF 
analysis indicated that the potential ligand influenced the flexibil-
ity of specific residues in both the WT and mutant complexes 
(Figure 6B). Furthermore, the Rg analysis revealed that the 

Figure 3.  Pharmacophoric map generation: (A and B) The map generated with and without aligned ligand; (C) the distance between each feature in the 

map; and (D) the best ligand found with the pharmacophore query search with RMSD close to zero.

Figure 4.  Three-dimensional visualization of the interaction between the potential ligand (ID: 390820) and the DprE1 protein, with the residues in green 

and the ligand in light blue.
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Figure 5.  Protein-ligand molecular dynamic analysis for the DprE1 protein, the WT version with reference ligand complex and the 5 mutant deleterious 

models with reference ligand complexes: WT—reference ligand (light blue), C387G—reference ligand (orange), C387N—reference ligand (green), 

G17C—reference ligand (dark blue), G61A—reference ligand (yellow), and Y314C—reference ligand (red): (A) RMSD analysis calculated for 100 ns; (B) 

RMSF of each complex as a function of residue number; (C) radius of gyration of protein-ligand complexes calculated during simulations expressed in 

pico-second; and (D) the SASA analysis calculated for the complexes for 100 000 ps.
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potential ligand altered the compactness of both complexes with 
a value of 2.01 ± 0.0 for the WT—potential molecule and 
2.10 ± 0.01 for the mutant type. In addition, the Rg for C387N—
potential ligand is more reduced than that for C387N—reference 
ligand, making the complex more compact with the existence of 
the potential ligand (Figure 6C). Moreover, the SASA analysis 
provided valuable insights into the solvent accessibility in both 
C387N—potential ligand and WT—potential ligand complexes, 
with a value of 239.71 ± 1.70 and 238.26 ± 1.93, respectively 
(Figure 6D). Finally, The H-bond analysis uncovered crucial 
information regarding the stability of the ligand-protein com-
plexes. The presence of the potential ligand resulted in an 
increased number of hydrogen bonds in both the WT 
(0.73 ± 1.01) and mutant-type complexes (0.70 ± 1.01), suggest-
ing stronger and more favorable interactions compared with the 
WT—reference ligand (0.47 ± 0.66) (Figure 6E).

As an overall summary of the results, the simulation results 
unveiled a marked effect of the C387N mutation on various 
key parameters. The RMSD, a measure of structural stability, 
demonstrated significant perturbations in the presence of the 
C387N mutation. Likewise, the RMSF, indicated the flexibil-
ity of specific residues such as Ala6, Leu 56, Gln220, Ile284, 
Leu317, and Asn373 with a value of 0.77, 0.22, 0.30, 0.94, 0.40, 
and 0.16 nm, respectively, exhibited notable variations com-
pared with the WT complex. The Rg, which reflects the com-
pactness of the protein structure, and the SASA, a measure of 

surface exposure, were also markedly altered due to the C387N 
mutation.

Discussion
Tuberculosis infection presents a considerable global health 
care challenge. Hence, it is crucial to create novel, potent thera-
peutic schemes against MTb, which must fight against the 
emergence of drug-resistant TB. decaprenylphosphoryl-β-D-
ribose 2′-epimerase stands out as a promising drug target due 
to its location in the peri-plasmic region, wide-ranging interac-
tions, and thorough biochemical and genetic understanding. 
This uniqueness makes it well-suited for developing small-
molecule treatments. Presently, 4 DprE1 inhibitors are already 
in clinical trials, and the field is wide open with significant 
potential to develop new DprE1 inhibitors with higher speci-
ficity and improved pharmacokinetics This study aims to con-
tribute to scaffold refinement and structure-based drug design, 
ultimately advancing novel anti-TB agents.

This study focused on the search for potential inhibitors for 
DprE1 as a new therapeutic target for the treatment of TB. 
Using virtual screening, a database of 111 ligands known for 
their inhibitory biological activity against DprE1 with known 
IC50 values was scrutinized. Among them, 88 obeyed to 
Lipinski and Veber rules, and only 14 passed toxicity tests. 
Subsequently, molecular docking via Autodock Vina was 
employed to identify compounds with favorable affinity for 

Table 4.  The mean and standard deviation of the calculated parameters RMSD, RMSF, Rg, and SASA of the WT—reference ligand, C387G—reference 
ligand, Y314C—reference ligand, G61A—reference ligand, G17C—reference ligand, and C387N—reference ligand.

WT—
reference 
ligand

C387G—
reference 
ligand

Y314C—
reference 
ligand

G61A—
reference 
ligand

G17C—
reference 
ligand

C387N—
reference 
ligand

RMSD (nm) 0.24 ± 0.03 0.23 ± 0.02 0.21 ± 0.03 0.24 ± 0.03 0.22 ± 0.02 0.29 ± 0.07

RMSF (nm) 0.09 ± 0.06 0.10 ± 0.08 0.10 ± 0.08 0.12 ± 0.09 0.09 ± 0.08 0.16 ± 0.08

Rg (nm) 2.22 ± 0.01 2.24 ± 0.01 2.21 ± 0.01 2.24 ± 0.009 2.22 ± 0.01 2.40 ± 0.014

SASA (nm2) 239.35 ± 0.1.76 241.64 ± 1.64 240.14 ± 1.73 239.65 ± 1.71 238.81 ± 1.88 245.15 ± 1.71

Table 5.  The mean and standard deviation of the calculated parameters RMSD, RMSF, Rg, SASA, and H-bond of WT—potential molecule, WT—
reference molecule, C387N—potential molecule, and C387N—reference molecule complexes.

WT—reference 
molecule

WT—potential 
molecule

C387N—reference 
molecule

C387N—potential 
molecule

RMSD (nm) 0.24 ± 0.03 0.20 ± 0.02 0.29 ± 0.07 0.21 ± 0.01

RMSF (nm) 0.09 ± 0.06 0.08 ± 0.05 0.16 ± 0.08 0.10 ± 0.05

Rg (nm) 2.22 ± 0.01 2.01 ± 0.01 2.40 ± 0.014 2.10 ± 0.01

SASA (nm2) 239.35 ± 0.1.76 238.26 ± 1.93 245.15 ± 1.71 239.71 ± 1.70

H-bond 0.47 ± 0.66 0.73 ± 1.01 0.52 ± 1.86 0.70 ± 1.01
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Figure 6.  Molecular dynamic analysis of the best ligand found in affinity ratio and screening of the pharmacophore model, complexed with the WT 

version of the protein and the most severe mutation found C387N: (A) RMSD analysis calculated for 100 ns in nm of the 4 complexes: WT—reference 

molecule (light blue), WT—potential molecule (pink), C387N—reference molecule (green), and C387N—potential molecule (purple); (B) RMSF of each 

complex as a function of the number of residues; (C) the radius of gyration in nm of protein-ligand complexes calculated during simulations expressed in 

pico-seconds; (D) SASA analysis calculated for the complexes for 100 000 ps; and (E) number of hydrogen bonds calculated for each complex.



EL Haddoumi et al	 11

DprE1. Six compounds with good affinity for DprE1 protein, 
ranging from −10.6 to −10.2 kcal/mol, were selected: ligand 2 
(ID: 390820), ligand 9 (ID: 155294899), and ligand 12 (ID: 
162651615) with a docking score of −10.6 kcal/mol) with 
DprE1 protein, ligand 9 (ID: 155294899) and ligand 14 (ID: 
162665075) with a score of −10.5 kcal/mol, and ligand 10 (ID: 
155522922) with a score of −10.2 kcal/mol. These ligands 
exhibited superior affinities in comparison with reference 
inhibitors currently in clinical trials, namely BTZ-043, PBTZ-
169, TBA-737120, and OPC167832. Interestingly, BTZ043 
(ID: 42609849), a non-covalent DprE1 inhibitor in phase II 
clinical trials for pulmonary TB treatment,36 displayed the 
most favorable affinity (approximately −10.2 kcal/mol) among 
the reference compounds (OPC_167832, PBTZ169, and 
TBA-737120). Thus, BTZ043 serves as the reference inhibitor 
for comparison.

To discern the most promising candidate ligand among the 
6 identified compounds, characterized by their enhanced affin-
ity, a ligand-based pharmacophore approach was employed by 
generating a pharmacophoric map based on the 4 reference 
ligands; the map shows 3 features shared which are as follows: 
F1: hydrophobic, F2: hydrophobic/donor, and F3: metal liga-
tor/hydrophobic/acceptor, the hydrophobic and the donor/
acceptor region play a crucial role in the binding.37 To con-
struct the training set, the 6 top-scoring compounds were used, 
and the analysis demonstrates that ligand 2 (ID: 390820) 
exhibited a remarkable RMSD score approaching zero.

This research explores novel inhibitors of the DprE1 protein 
to overcome the problem of resistance arising from mutations 
within this bacterium. To achieve this goal, computer prediction 
methods were employed to scrutinize the impact of 10 muta-
tions, sourced from existing literature on the properties of the 
target protein. These mutations, namely C387G, C387N, G17C, 
G61A, Y314C, C387A, C387S, C387T, G248A, and L368P, 
were carefully examined to identify the deleterious ones. The 
outcomes demonstrate that when integrated into different 
domains, each mutation has distinct effects on stability, flexibil-
ity, and function. Through a consensus of predictor results, a 
comprehensive analysis unveiled that 5 mutations are deleteri-
ous. Interestingly, 7 mutations induce destabilization. In addi-
tion, 3 mutations reduce flexibility, while 7 increase it. 
Consequently, these mutations impact protein folding and inter-
actions, be it with other proteins or ligands. This correlation is 
corroborated by multiple studies.38-40 Intriguingly, several inves-
tigations have highlighted that diseases, including those linked 
to drug resistance, often involve mutations found in accessible 
regions. This suggests that analyzing such mutations could offer 
insights into the underlying disease mechanisms.41-43

To further investigate and provide valuable insights into 
how these deleterious mutations disrupt the intricate interac-
tions between the protein and the reference ligand, 6 MD 
simulations were conducted. These simulations aimed to pro-
vide a comprehensive understanding of how these mutations, 
C387G, C387N, G17C, G61A, and Y314C, influence the 

protein-ligand complex. Notably, among these mutations, 
C387N exhibited the most profound impact on the complex.

To assess the effectiveness of the ligand 2 (ID: 390820) on 
the most severe mutation, C387N, 2 additional MD simula-
tions of 100 ns were conducted: one with C387N (referred to as 
C387N—potential molecule) and the other with the WT 
counterpart (referred to as WT—potential molecule). The 
results prominently indicated that the potential ligand exerted 
a positive influence on the protein-ligand complex. Notably, it 
led to a reduction in RMSD, indicative of improved stability, 
revealing that the potential ligand induced significant confor-
mational changes in both complexes, leading to increased 
structural deviations compared with the reference ligand. These 
observations were further corroborated by comprehensive anal-
yses of other parameters, such as RMSF, Rg, SASA, and hydro-
gen bond interactions, as illustrated in the graphs in Figure 6. 
The RMSF results clearly show that the binding of the poten-
tial ligand to the mutated protein reduces the fluctuations in 
the residues from Ala6 (0.77 nm), Leu 56 (0.22 nm), Gln220 
(0.30 nm), Ile284 (0.94 nm), Leu317 (0.40 nm), and Asn373 
(0.16 nm) to Ala6 (0.32 nm), Leu 56 (0.19 nm), Gln220 
(0.09 nm), Ile284 (0.39 nm), Leu317 (0.23 nm), and Asn373 
(0.08 nm). The results obtained from the MD simulations fur-
ther highlight this enhanced interaction. Notably, the Rg curve 
displayed a significantly smaller fluctuation for the potential 
ligand when compared to the reference ligand. This observa-
tion underscores that the potential ligand forms a more stable 
and tightly bound complex with both the WT and mutated 
protein counterparts.

Furthermore, the results revealed a noteworthy increase in 
hydrogen bond interactions for the potential ligand in compari-
son with the reference ligand. Throughout the 100 ns MD sim-
ulations, the potential ligand consistently formed a maximum of 
8 stable hydrogen bonds with the protein at various time inter-
vals. This stands in contrast to the reference ligand, which 
reached a maximum of 6 hydrogen bonds. The sustained and 
elevated hydrogen bonding interactions observed with the 
potential ligand underscore its strong and consistent binding to 
the protein, suggesting a more robust and enduring association.

In addition, the analysis of SASA exhibited significant 
differences between the C387N—potential ligand and 
C387N—reference ligand simulations. The SASA curve for 
the C387N—potential ligand demonstrated a noticeable 
reduction compared with that of the C387N—reference 
ligand. This reduction indicates a more compact and stable 
conformation adopted by the protein-ligand complex when 
interacting with the potential ligand. The diminished SASA 
values imply a tighter association and less exposure to the 
solvent environment, highlighting the potential ligand’s abil-
ity to induce a favorable binding pocket conformation. This 
distinct behavior further supports the enhanced binding 
characteristics of the potential ligand, emphasizing its poten-
tial as a valuable therapeutic agent against the challenging 
C387N mutation.



12	 Bioinformatics and Biology Insights ﻿

Another element contributing to the lower performance of 
the reference ligand stems from its formation of a limited 
number of hydrogen bonds with both the WT and C378N 
proteins with higher SASA values suggest that the reference 
ligand is less deeply embedded within the complex and exhibits 
reduced protection from the solvent environment, ultimately 
resulting in increased instability of the complex.44

In summary, these comprehensive analyses collectively 
highlight the profound impact exerted by the potential ligand 
on both the WT and mutant complexes, as indicated by 
detailed analyses of RMSD, RMSF, RG, SASA, and H-bond. 
The observed modifications in these pivotal structural param-
eters not only signify the potential ligand’s ability to induce 
conformational adjustments and improve flexibility within the 
binding site but also underline its capability to reinforce inter-
actions. These outcomes highlight the potential ligand’s 
capacity to establish more favorable and enduring interactions 
within the protein’s binding pocket, thus holding promise for 
its application as a targeted therapeutic agent. Furthermore, 
it’s crucial to assess how well the potential ligand, especially in 
light of the severe C387N mutation, can enhance the stability 
and overall dynamics of the resulting protein-ligand complex. 
This strategic integration of ligand-based pharmacophore 
methods with dynamic simulations enriches our understand-
ing of prospective therapeutic candidates and their interac-
tions with the intricate protein landscape, ultimately paving a 
path toward drug development strategies.

The accumulated data strongly indicate that this potential 
ligand not only exhibits exceptional binding capabilities com-
pared to the reference ligand but also displays a superior profi-
ciency in stabilizing the mutant complex. The ligand 
(3-[(4-fluorophenyl)methylamino]-6-(trifluoromethyl)qui-
noxaline-2-carboxylic acid) emerges as a promising therapeutic 
intervention, possesses several characteristics that could con-
tribute to its efficacy and affinity for a target protein with a 
IC50 of 0.072 µM.

Specific functional groups such as the presence of a 
fluorobenzylamine group and a trifluoromethyl group in the 
ligand’s structure may confer particular chemical properties, 
such as hydrophobic interactions or hydrogen bonding, which 
enhance its interaction with the target protein. The quinoxa-
line moiety may enable favorable interactions with the binding 
sites of the protein. The carboxylic group may allow the ligand 
to establish ionic interactions or hydrogen bonds with specific 
residues of the target protein. In addition, it is noteworthy that 
this quinoxaline core was the subject of a published study con-
firming our results.12 These results lay the groundwork for 
extensive exploration and advancement of this ligand as a via-
ble therapeutic contender.

Conclusions
In light of the escalating challenges posed by drug-resistant 
TB, this study’s multifaceted approach holds significant prom-
ise for the development of targeted therapeutic interventions. 

By focusing on DprE1 as a crucial target in MTb, the research 
has unveiled potential inhibitors with remarkable binding 
affinity and stability, particularly against the severe C387N 
mutation. The integration of computational techniques, 
encompassing virtual screening, molecular docking, and MD 
simulations, offers a strategic framework for designing 
advanced interventions against drug-resistant TB.
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