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Abstract
Introduction  The volume of adverse events (AEs) collected, analysed, and reported has been increasing at a rapid rate for 
over the past 10 years, largely due to the growth of solicited programmes. The proportion of various forms of solicited case 
data has evolved over time, with the main relative volume increase coming from Patient Support Programmes. In this study, 
we sought to examine the impact of the pooling of AE report data from solicited sources with data from spontaneous sources 
to safety signal detection using disproportionality analysis methods.
Methods  Two conditions were explored in which disproportionality scores from hypothetical drugs were evaluated in a 
simulated safety database. The first condition held occurrence of events constant and varied solicited case volume, while the 
second condition varied both proportion of occurrence of events and solicited case volume.
Results  In the first setting, where all AE terms have the same probability to occur with any drug, increasing volumes of 
solicited cases while keeping occurrence of events constant leads to reduced variability in disproportionality scores, con-
sequently reducing or eliminating identified signals of disproportionate reporting. In the second setting, varying both case 
volume and reporting rates can mask true safety signals and falsely identify signals where there are none.
Conclusions  This analysis of simulated data suggests that pooling AE data from solicited sources with spontaneous case data 
may impact the results of disproportionality analyses, masking true safety signals and identifying false positives. Therefore, 
increased volumes of safety data do not necessarily correlate with improved safety signal detection.
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1  Introduction

Postmarketing signal detection on aggregate safety data 
often employs disproportionality analyses in order to 

identify quantitatively interesting data points worthy of fur-
ther investigation. Disproportionality methods are a series 
of analytical approaches where the proportion of occurrence 
of an event for a given drug is compared with the propor-
tion of occurrence of that event in the broader database [1]. 
In the case of postmarket safety surveillance, databases are 
comprised of spontaneous safety cases reported by patients 
or healthcare providers (HCPs) to the marketing authori-
sation holders (MAHs) or health authorities. However, the 
relative proportion of these spontaneous reports compared 
with ’solicited’ reports is decreasing [2]. As defined by 
the International Council for Harmonisation of Technical 
Requirements for Pharmaceuticals for Human Use (ICH) in 
ICH-E2D, solicited reports of suspected adverse reactions 
are those derived from organised data collection systems, 
which include clinical trials, registries, postapproval named 
patient use programmes, other patient support and disease 
management programmes, surveys of patients or HCPs, or 
information gathered regarding efficacy or patient compli-
ance [3]. One of the most widespread sources of solicited 
reports in the postmarketing setting is from so-called Patient 
Support Programmes (PSPs), a generic name given to a 
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variety of programmes designed to support patient medica-
tion care, but rarely, if ever, are designed to collect safety 
information. In general, PSPs are structured services, solu-
tions or initiatives for patients and/or caregivers to assist 
patients in managing their disease, medication or behaviours 
through either gaining access to medication, administration 
of medication, monitoring or following up on treatment, or 
providing information related to the medication or disease 
(e.g. homecare services, disease awareness/management 
programmes, compliance adherence programmes, financial 
reimbursement schemes, coaching services). Some PSPs 
include services with the aim of patient assistance in the 
form of compensation/reimbursement/access programmes 
that are solely charitable in design, without intent to collect 
information relating to the use of the medicinal product. The 
volume of adverse event (AE) reports collected by MAHs 
and reported to health authorities have been increasing by 
10–20% each year, corresponding to over a 400% increase 
in a decade [4]. PSPs, among other safety data sources, such 
as market research programmes (MRPs) and social media, 
make up a large proportion of this volume increase and thus 
it is important to consider how these data are best used [2]. 
This report considers whether it is appropriate to collect and 
analyse safety data reports with a single approach or whether 
one should consider a more tailored analysis.

The objective of safety signal detection in pharmacovigi-
lance using disproportionality analysis is to identify a target, 
referred to as a signal, from a larger group of data points 
referred to as noise, non-signal, or background. A desir-
able signal detection system is one that correctly identifies 
targets while minimising erroneous identification of targets 
(false positives) and failing to detect targets (false negatives) 

[5]. Klein et al. assessed the impact of reports generated by 
PSPs, which he referred to as ‘precautionary reports’. Results 
indicated that spurious signals, i.e. false positives, resulted 
from inclusion of these precautionary reports within sig-
nal detection analyses. The authors also identified instances 
where false results disappeared when the solicited data were 
removed from the AE database. The team’s assessment of 
false negative or masked results occurred when solicited 
data increased the background reporting rate for the drug 
of interest and thereby increased the threshold for signals 
of disproportionate reporting (SDRs) to be detected. Klein 
et al. referred to these two types of error in pooling solicited 
and spontaneous data as precautionary reporting bias [6].

In this study, authors from TransCelerate Biopharma1 
explore the impact of pooling different types of simulated 
solicited and spontaneous data on disproportionality scores. 
We examine the impact of the inclusion of solicited source 
data under two conditions—a simplified condition and a 
complex condition. We start with the simplified situation to 
examine the impact of increased solicited case volume on 
disproportionality analyses. In this analysis, the proportion 
of events occurring with hypothetical drugs in a simulated 
database is held constant. We then move to a more complex 
condition, varying both the quantities of events and the pro-
portions of occurrence of events with hypothetical drugs. 
This example replicates a situation in which solicited case 
data increases both volumes of data and alters the propor-
tion of certain types of reports. To determine if the results 
depend on a specific disproportionality score, several sta-
tistics, including reported odds ratio (ROR), proportional 
reporting ratio (PRR), empirical Bayes geometric means 
(EBGM), and EB05, will be included across the two analy-
ses [7, 8].

The two conditions include both types of data—spontane-
ous and solicited. For this analysis, we assume there is only 
one source of solicited data (e.g. PSPs, MRPs, social media). 
For the purpose of the simulations, PSPs served as an illus-
trative example as PSP activity is the largest component of 
the increasing numbers of solicited case data. Ultimately, the 
data used for analyses are simulated and are representative of 
PSP data only in the sense of volume of data. Other sources 
of data, such as MRPs, social media, and various subsets of 
PSP data may result not only in volume increases in data but 
also stimulated reporting of specific events. Therefore, the 
reality of safety surveillance is much more complicated, with 

1  TransCelerate Biopharma Inc. is a non-profit organisation that 
works across the biopharmaceutical research and development com-
munity to improve the health of people around the world. TransCel-
erate’s mission is to collaborate across the global biopharmaceutical 
research and development community to identify, prioritise, design 
and facilitate implementation of solutions designed to drive the effi-
cient, effective and high-quality delivery of new medicines.

Key Points 

The databases used by industry and regulators for 
pharmaceutical safety surveillance are growing in size 
and complexity due to the inclusion of data from vari-
ous sources, such as social media and patient support 
programmes.

Regulation compels collecting, analysing, and reporting 
these data points.

This study uses simulated data sets to examine the poten-
tial impact of inclusion of these data sources in typical 
analysis for signal detection.

Results suggest a thoughtful, individualised approach 
recognising the different data sources and analysis rather 
than assuming a one-size-fits-all approach may result in 
better quality signal detection.
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numerous programmes contributing data of various quanti-
ties and qualities. The present study simplifies the situation 
in order to illustrate complications that can result from a 
failure to consider the data source.

2 � Methods and Results

2.1 � Simplified Condition

The simplified condition represents a situation in which 
solicited programmes result in increased volume of data but 
do not alter the proportion of events occurring with each 
drug. That is, the solicited programme results in ‘more of 
the same’ data. This is consistent with the findings of Trans 
Celerate analyses for many [2]. Here, PSPs are used as an 
illustrative example of such a solicited programme. We refer 
to this as ‘simplified’ as strong assumptions are made about 
the reporting patterns within the spontaneous and solicited 
conditions. This simulation assumes a spontaneous report-
ing dataset of 20 drugs that are equally likely to have reports 
of any one of 1000 types of AEs or Medical Dictionary for 
Regulatory Activities (MedDRA) Preferred Terms (PTs). 
This generates 20,000 possible drug–event pairs (DEPs). 
Each simulation will allow for random variation, such that 
there will not be an equal number of each DEP, simply that 
the probability of occurrence is equal during the simulation. 
Additionally, since the probability of occurrence of an event 
with any drug is random, any apparent association between 
‘drug’ and ‘event’ in the data is purely coincidental.

Throughout these simulations for the spontaneous report-
ing, the probability of each PT for each drug remained the 
same, i.e. all equally likely, as did the total number of DEPs, 
i.e. 100,000 for each simulated dataset. For the solicited 
reporting simulation, the probability of each DEP remained 
the same, but the volume of data for one drug, identified as 
the PSP drug, was increased by 2, 5, 10 and 20 times relative 

to the number of events simulated for the other (non-PSP) 
drugs. That is, if there were approximately 1000 non-PSP 
DEPs, there would be approximately 2000, 5000, 10,000, 
and 20,000 PSP DEP. The multiples were selected based 
on survey of a subset of MAHs within the TransCelerate 
membership in order to be representative of actual case-
volume multiples.

Using these assumptions of equal probability of occur-
rence of PTs and multipliers, for each of these total volumes 
of data, 10,000 simulated datasets of each with 100,000 
DEPs were then generated. For each DEP, disproportionality 
scores were computed. The results are presented in Figs. 1, 
2 and 3 as sets of pairs of plots, with the first of each pair 
showing the impact on the PSP drug, i.e. the drug that has 
data from both solicited and spontaneous sources (labelled 
‘PSP drug’ in the plots), and the second plot showing the 
impact on any of the other drugs (labelled ‘non-PSP’ in the 
plots). The horizontal axis of each plot shows the impact 
of changing the volume of solicited data. The squares on 
the plots indicate the mean of the 10,000 simulations, and 
the bar shows the range of results from the minimum to the 
maximum computed disproportionality score.

Due to the large number of simulations, the mean PRRs 
were approximately 1.0, as might be expected. What might 
not be expected is how the range of PRRs varies. For the 
PSP drug, the range narrowed dramatically as the volume of 
data for the PSP drug increased from 1 to 20 times. A simi-
lar but much less dramatic trend is seen for the other drugs 
(non-PSP data). To lend interpretation to the result, none of 
the simulated PRR values exceeded 2, which is often used 
as an indicator of an SDR. Were this real data for a company 
conducting surveillance, this could mean that fewer SDRs 
would be selected for further medical assessment simply 
through PSP activity inflating the volume of reporting. As 
these simulations were conducted without imputed adverse 
drug reactions (ADRs), this reduction of variability would 
be viewed positively, i.e. reducing false positives. However, 

Fig. 1   Distribution of PRRs for different volumes of PSP and non-PSP data. PRRs proportional reporting ratios, PSP Patient Support Pro-
gramme
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in a signal detection setting where data mining is completed 
to identify DEPs worth further evaluation, suppression of 
SDRs removes a necessary trigger to identify safety sig-
nals. In practice, if disproportionalities were suppressed to 
a value near 1.0, we would probably have to lower the deci-
sion threshold well below 2.0 so SDRs would be generated 
for assessment.

Similarly, the ranges (minimum to maximum) of EBGM 
in Fig. 2 follow the same trend as the PRR analysis of PSP 
data in Fig. 1.

The range of EB05 (the lower limit of the 90% confidence 
interval of EBGM) values in Fig. 3 also have a similar nar-
rowing trend as the PRR and EBGM values. What is unique 
is the mean value of EB05 moves towards 1.0, which is the 
mean value of its respective EBGM. This is not unexpected 
as the EB05 measure is itself a measure of variability of a 
posterior distribution. To lend interpretation to the plot, very 
few EB05 values exceed 1 (a threshold employed by some 
companies).

2.2 � Complex Condition

A motivating example for this simulation is shown in 
Table 1. We refer to the drug being assessed as drug X, and 
the AE of interest as AE Y. We arbitrarily set the proportion 
of spontaneous reports for drug X to be 16%, and 0.5% for 
AE Y. We assumed a different proportion of reports relat-
ing to drug X in the solicited data source. This could be 
due to social media campaigns for different drugs or a dif-
ferent demographic of the population using social media, 
and, more specifically, being prepared to respond to a social 
media campaign [9]. Here, one might imagine an active PSP 
campaign for drug X resulting in a higher proportion of 
solicited reports relating to drug X. In addition, for each PT 
we allowed for different reporting rates in the spontaneous 
and solicited data. This could be due to the lack of establish-
ment of a causal relationship in solicited reports, an embar-
rassment of reporting certain events, possible exaggeration 
of events or indeed a difference in recall, depending on how 
the healthcare professional (HCP) questions the patient [6, 

Fig. 2   Distributions of EBGM values for different volumes of PSP and non-PSP data. EBGM empirical Bayes geometric means, PSP Patient 
Support Programme

Fig. 3   Distributions of EB05 values for different volumes of PSP and non-PSP data. PSP Patient Support Programme
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9]. This would lead to different reported odds for the AE of 
interest in spontaneous and solicited reporting.

The example has been constructed so that for each of the 
spontaneous and solicited simulated data sources separately, 
both the ROR and the PRR are exactly 1. However, when 
these two information sources are combined, we see an ROR 
of 1.3. Note that this effect has been introduced solely by the 
pooling, not due to random variation. This phenomenon of 
seeing an effect in the pooled data that was not present or 

was in the opposite direction in the separate data sources is 
called Simpsons paradox [10, 11].

We now generalise the previous example to explore a 
range of scenarios that are summarised in Table 2, and pre-
sent the results using heat maps. The overall number of AE 
reports for spontaneous and solicited reporting remain the 
same as in the motivating example, as do the total number 
of spontaneous reports for hypothetical drug X. In addition, 
the reporting odds for AE Y for ‘other drugs’ are fixed at 
0.5% for spontaneous reports and 1% for solicited reports. 
These values have been fixed solely in order to limit the 
amount of output.

In each heat map, the number of solicited reports for drug 
X varies from 4 to 64% of the total solicited reports, and this 
is represented by the ratio of solicited to spontaneous report-
ing rates for drug X ranging from 0.25 to 4 on the horizontal 
axis. Also in each heat map, the reporting odds for AE Y in 
the solicited reports vary from 0.25 × to 8 × that for the spon-
taneous reports on the vertical axis. Therefore, for example, 
when the reporting odds for AE Y in the spontaneous reports 
is 1%, the equivalent reporting odds for the solicited reports 
ranges from 0.25 to 4%. This quantity is referred to as the 
ratio of solicited to spontaneous reporting rates.

The heat map in Fig. 4 corresponds to the situation 
where drug X has no effect on AE Y, i.e. for solicited 
and spontaneous reports separately, the reporting odds 
for drug X is the same as for other drugs. Each point on 
the grid corresponds to a pair of 2 × 2 tables, similar to 
the motivating example. For each of these pairs of tables, 
when the spontaneous reports are treated separately to 
solicited reports, each ROR = 1. We can see that there is 
a region in the heat map where an expected odds ratio is 
more than 1.5, which will have a markedly increased risk 
of false positive SDRs. Note that this effect is entirely due 

Table 1   Example of the effect of pooling data from spontaneous and 
solicited sources

AE adverse event

AE Y Others Total

Spontaneous reporting
 Drug X 100 19,900 20,000
 Others 525 104,475 105,000
 Total 625 124,375 125,000

Reported odds ratio = 0.00503/0.00503 = 1.0
Proportional reporting ratio = 0.00500/0.00500 = 1.0
Reports from solicited sources
 Drug X 200 19,800 20,000
 Others 150 14,850 15,000
 Total 350 34,650 35,000

Reported odds ratio = 0.0101/0.00101 = 1.0
Proportional reporting ratio = 0.0100/0.0100 = 1.0
Pooled data
 Drug X 300 39,700 40,000
 Others 675 119,325 120,000
 Total 975 159,025 160,000

Reported odds ratio = 0.00756/0.00566 = 1.3
Proportional reporting ratio = 0.00750/0.00563 = 1.3

Table 2   Scenarios used to construct heat maps

AE adverse event

Number of spontaneous reports Number of solicited reports

Number of reports
 Drug X 20,000 (16%) Varies from 1400 (4%) to 22,400 

(64%) of the total solicited 
reports

 Total 125,000 35,000

Spontaneous reporting odds for AE Y Solicited reporting odds for AE Y

Reporting odds for ‘other drugs’
 Other drugs 0.005 Varies from 0.25 to 8 × spontaneous reporting 

odds for AE Y

Spontaneous reporting odds for AE Y Solicited reporting odds for AE Y

Reporting odds for drug X
 Heat map 1 As for other drugs
 Heat map 2 3 × the odds for other drugs
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to pooling and is not driven by random variation (which 
is not included in this analysis).

The heat map in Fig. 5 corresponds to the situation where 
drug X causally increases the incidence of AE Y, i.e. ADRs 
are expected. Here, we set the ROR to be 3 in both the 

spontaneous and solicited sources. Again, the impact of drug 
X on AE Y is entirely consistent between spontaneous and 
solicited sources. In the heat map, we see the effect of pool-
ing the reports. Of note are the blue areas where the pooled 
RORs are noticeably lower than 3. Since, in this scenario, 

Fig. 4   Heat map of expected 
RORs (true ROR = 1). ROR 
reported odds ratio

Fig. 5   Heat map of expected 
RORs (true ROR = 3). ROR 
reported odds ratio
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drug X has a causal effect on the AE rates, there is particular 
concern that pooling data may mask a true signal, especially 
when random variation is also included.

3 � Discussion

We have explored both simple and more complex conditions 
in order to investigate the impact of altering volumes and 
proportions of AE reports in simulated conditions. In the 
simple condition, we first considered scenarios where the 
PTs were randomly assigned to drug without any prespeci-
fied relationship between occurrences of drug and occur-
rences of PTs. We demonstrated via simulation that the 
effect of including data from solicited sources is to reduce 
the range of the disproportionality statistics, particularly for 
the drug that has the increased volume of data. It remains to 
be seen whether this scenario, in which there are no drug-
related effects, can be extrapolated to a pharmacovigilance 
surveillance system, where eliminating or reducing the num-
ber of identified SDRs could result in suppressed triggers for 
medical review, i.e. missed safety signals.

We then considered a setting where for each PT we allowed 
for different reporting rates in the spontaneous and solicited 
data. This analysis showed that the act of pooling the data 
could mask true safety signals (increased false negative results) 
and could also identify SDRs where there are no safety signals 
(increased false positive results). Thus, this work supports the 
contention of Klein et al. that PSP data might be detrimental 
to safety signal detection: when both volumes and proportions 
of AEs vary between spontaneous and solicited sources, the 
combination of both sources can result in Simpson’s paradox 
and obfuscate data mining results [12].

Signal detection by MAHs and health authorities through 
the use of disproportionality analysis is a staple of the phar-
macovigilance ecosystem. Disproportionalities are a set 
of analytical tools utilised for screening large amounts of 
spontaneous report data. Of course, these techniques are 
not the only tools for signal identification. Together with 
other surveillance activities, such as literature surveillance, 
individual case safety review, other periodic, aggregate data 
reviews, and medical and scientific expertise are leveraged 
to identify true safety signals from among the high volumes 
of incoming safety data.

The challenge facing the screening of large amounts of AE 
data is the ever-increasing volume of AE reports. AE reports 
from solicited cases have been steadily increasing in volume, 
which is having an unknown impact on current approaches 
to safety data mining. One assumption driving the regula-
tory requirements for safety reporting has been that increasing 
amounts of data could only serve to improve surveillance, and 
therefore serve the public welfare. To the contrary, through 
a series of simulations and in conjunction with additional 

analyses conducted by the TransCelerate team, the results of 
the combined simulations suggest that a thoughtful approach 
to the role and application of disproportionality analyses is 
needed. Rather than application of these techniques exclu-
sively, it is important to consider the role disproportionality 
analysis plays, the corresponding strengths and weaknesses 
of these approaches, and the interaction of these results along 
with the other surveillance activities conducted within the 
pharmacovigilance ecosystem [2].

A simple solution to the problem of falsely flagging and 
masking safety signals from combining solicited and spon-
taneous data is to state that the two data sources should be 
analysed separately. In fact, authors have suggested that 
subsetting data prior to computing disproportionalities is 
beneficial [13]. However, this is a solution much easier 
stated than implemented as most regulators do not routinely 
enable sponsors to submit data with data fields that would 
accurately identify various solicited sources of data and 
differentiate that data from other sources. Pharmaceutical 
manufacturers have only recently started to routinely iden-
tify the various sources of solicited data within their own 
corporate safety databases.

Even in  situations where solicited and spontaneous 
sources were separately analysed, there is limited evidence 
for the contribution of solicited sources to the characterisa-
tion of a product’s safety profile. Jokinen et al. evaluated 
the identification of safety label updates, proportions of 
MedDRA PTs, system organ classes (SOCs), and high-
level group terms (HLGTs) reported, as well as vigiGrade 
(case completeness) scores for PSPs, patient assistance pro-
grammes (PAPs), MRPs, and social media [2]. That study 
found that PAPs, MRPs, and social media provided no new 
information over and above traditional data sources and 
methods. Case completeness results suggested that many 
individual case reports from certain sources (e.g. market 
research and social media) are missing key data to per-
mit evaluation of the cases. Nonetheless, these incomplete 
cases are routinely included in disproportionality analyses, 
which, as demonstrated in this study, could create mislead-
ing results. The impact of misleading results in data mining, 
combined with cases lacking critical information, results in 
resources being dedicated to efforts unlikely to generate val-
uable safety insights and potentially distracts from surveil-
lance activities that may actually be valuable. Ultimately, a 
robust safety surveillance system should consider the limita-
tions of any data sources and analyses applied to those data.

4 � Conclusion

Taken together, the results of our analyses suggest that pool-
ing data sources can have unintended consequences on the 
ability to identify SDRs. Certainly, conclusions from the 
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current set of analyses should be tempered by limitations of 
the methods and analyses. First, both the simple and com-
plex conditions depicted in the analyses fail to address the 
full complexity of the data that become part of corporate and 
regulatory databases used for safety surveillance. These are 
merely stripped-down attempts to understand the potential 
outcomes that may result from the increase in volume of data 
resulting from the proliferation of PSPs. Second, there are 
a number of open questions regarding the impact of signals 
within these simulated distributions. No attempt was made 
to mimic actual distributions of spontaneous report data 
with a variety of imputed signals within the present study. 
Inclusion of this variability would have an unknown impact 
on results. Future work should further investigate whether 
imputed signals in the distribution of data alter the results of 
these analyses or leverage an actual database with identified 
safety signals as the basis for examination of the impact of 
inclusion and exclusion of various sources of data on the 
ability to detect signals. Finally, and most importantly, the 
true impact of these results needs to be considered within 
the entirety of a safety surveillance system. Signal detection 
applied to large safety databases is but a single screening 
tool employed within an overall pharmacovigilance effort.

This analysis points to a more overarching problem with 
how safety data are viewed. Generally, all data are entered 
into the same safety database and are reported to regulators 
according to prescribed regulations, regardless of whether 
the case safety reports are from market research efforts, 
PSPs, social media, or clinical trials. This problem is likely 
to be compounded in the future as additional sources of data, 
e.g. mobile devices, electronic health records, or insurance 
claims, become part of the wealth of safety information that 
may be leveraged to ensure public health. Consideration 
should be given to the source of information, the relative 
value of that information, and where information should be 
leveraged within the pharmacovigilance ecosystem. Contin-
ued research is needed to further elucidate the appropriate 
uses, and appropriate analyses, of various forms of safety 
data.
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