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Abstract

A phylogeny is a tree-based model of common ancestry that is an indispensable tool for studying biological variation.
Phylogenies play a special role in the study of rapidly evolving populations such as viruses, where the proliferation of
lineages is constantly being shaped by the mode of virus transmission, by adaptation to immune systems, and by patterns
of human migration and contact. These processes may leave an imprint on the shapes of virus phylogenies that can be
extracted for comparative study; however, tree shapes are intrinsically difficult to quantify. Here we present a
comprehensive study of phylogenies reconstructed from 38 different RNA viruses from 12 taxonomic families that are
associated with human pathologies. To accomplish this, we have developed a new procedure for studying phylogenetic
tree shapes based on the ‘kernel trick’, a technique that maps complex objects into a statistically convenient space. We
show that our kernel method outperforms nine different tree balance statistics at correctly classifying phylogenies that were
simulated under different evolutionary scenarios. Using the kernel method, we observe patterns in the distribution of RNA
virus phylogenies in this space that reflect modes of transmission and pathogenesis. For example, viruses that can establish
persistent chronic infections (such as HIV and hepatitis C virus) form a distinct cluster. Although the visibly ‘star-like’ shape
characteristic of trees from these viruses has been well-documented, we show that established methods for quantifying tree
shape fail to distinguish these trees from those of other viruses. The kernel approach presented here potentially represents
an important new tool for characterizing the evolution and epidemiology of RNA viruses.
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Introduction

Trees have long been used as a metaphor for making sense of a

diverse living world. The modern phylogenetic tree is a model of

the evolutionary relatedness of populations or individuals, which is

increasingly based on the similarity of their genetic makeup.

Phylogenies have become an indispensable tool for the study of

biological variation by providing a framework for modelling

evolutionary processes along lineages of descent from common

ancestors. In particular, phylogenies are used extensively in the

study of viruses. Viruses, especially those with RNA genomes,

exhibit some of the fastest rates of molecular evolution in the

natural world, driven by high rates of mutation [1], large

population sizes and short generation times. Many viral lineages

can proliferate on time scales measured in days, as opposed to the

millions of years it would require for many branches on the

macroscopic ‘Tree of Life’ to grow to the same extent. The

substantial variation in the shapes of RNA virus phylogenies

(Figureô 1) may be determined by epidemiological processes that

operate at the scale of the host population. These processes may in

turn be shaped by the ongoing evolution of the virus. The study of

this multi-level interaction is known as ‘phylodynamics’ [2].

Identifying the reproducible shape characteristics among virus

phylogenies and the epidemiological and evolutionary determi-

nants of these shapes are key research questions of phylodynamics

[3]. For instance, the stark contrast between phylogenies generated

respectively from influenza A virus (IAV) and human immuno-

deficiency virus (HIV) type 1 sequences is a prototypical example

of how virus phylogenies can be shaped by phylodynamic

processes [4,5]. A phylogeny reconstructed from sequences of

IAV hemagglutinin, a receptor-binding glycoprotein which is a

primary target of the host immune system, has a distinctively

pectinate (‘comb-like’) shape (Figureô 1) that is hypothesized to be

driven by the short infectious period and antigenic drift of IAV, in

which very few lineages persist between successive epidemics [6].

In contrast, the life-long nature of HIV infection and ongoing

transmission among hosts has enabled rapidly diverging lineages to

proliferate and persist over time, leading to ‘star-like’ phylogenies
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with short branches near the root and long branches at the tips

(Figureô 1).

Until recently, our understanding of phylodynamics through the

comparative study of virus phylogenies has been generally limited

to conspicuous differences in tree shape, such as that between HIV

and IAV phylogenies, because tree shapes are inherently difficult

to quantify. A phylogenetic tree is an acyclic graph in which the

nodes represent either observed entities (leaf nodes) or their

common ancestors (internal nodes) which must be reconstructed

from the variation observed at the leaf nodes. These nodes are

linked by branches whose lengths represent either the passage of

time or the amount of evolutionary change that has occurred

between nodes. As a result, the shape of a phylogenetic tree is a

complex object that incorporates both the lengths and distribution

of branches among nodes. There is an abundance of descriptive

statistics of tree shape that focus on the concept of ‘tree balance’,

which refers to the skewed distribution of internal nodes in a tree

due to variation in rates of branching [7]. For example, the Sackin

index [8] counts the number of internal nodes along the path from

each leaf node to the root of the tree. When branching events

occur preferentially along specific lineages, the corresponding

phylogeny should tend to have a higher Sackin index. However,

tree balance statistics are notoriously sensitive to sample size [9]

and capture only one abstraction of tree shape; for example,

differences in branch lengths are generally not taken into

consideration.

Here, we present a new approach to the study of phylodynamics

using a versatile method from machine learning [10]. We begin

with a function w that maps an object x[X into a representation

space F that is more amenable to analysis than X . A well-

conceived w can be extremely useful for dealing with structured

data such as trees, which otherwise have no direct numerical

representation. For example, Sackin’s index is a function that

maps from the space of all possible tree shapes to the set of all

positive integers. While integer representations of tree shape are

far more convenient for analysis, this choice for w is not adequate

for our purposes because it captures only a small fraction of the

variation among tree shapes. When dealing with complex data, it

is more appropriate to use a function that maps objects into a

representation space with many dimensions. For example, one

could devise a function to be applied to blocks of text that counted

the occurrence of substrings of any length. Every possible substring

adds a new dimension to the feature space, as F is referred to in

the field of pattern recognition. As the data become larger and

more complex, the number of possible features (and thereby the

dimensionality of F ) may become enormous. Thus, while F can

provide a detailed representation of complex objects, it also

becomes infeasible to operate within. Because we are interested

specifically in finding linear relations between objects that have

been mapped to F , we bypass the difficult task of explicitly

mapping each object to F by defining a function that efficiently

evaluates the inner product between two representations of objects

in F : k(x,x’)~Sw(x),w(x’)T where x,x’[X . This procedure is

known as the kernel trick and k(x,x’) is referred to as the kernel

function [11]. As kernel functions are generally designed to take

larger values when x and x’ have a greater number of features in

common, they can each be interpreted as a non-linear measure of

similarity.

To provide an intuition to this use of the kernel trick, imagine a

person who has encountered three texts written in English –

specifically, the texts contained in Agapow and Purvis [12],

Huelsenbeck et al. [13], and Robinson and Foulds [14]. Moreover,

suppose this person has absolutely no knowledge of the English

language, let alone phylogenetics. Realizing that there are discrete

shapes (words) and that many of them appear repeatedly, he or she

carries out the lengthy task of cataloguing the number of times that

each shape appears in each text. (For the sake of example, we

ignore such complications as punctuation and typography.) While

there are many shapes that are unique to a given text, there is a

much smaller subset of shapes that appear in two or more texts.

Therefore, in order to compare two of these lists, it is convenient to

multiply the counts of shapes that appear in both lists (knowing

that unique shapes would multiply to zero) and sum these products

to generate a similarity score. Multiplying the counts has the useful

effect of emphasizing shapes that appear in both texts at roughly

equal frequencies. For example, ‘tree’ appears 37 times in both

[12] and [14], which contributes a score of 1369. In contrast, if all

but one of the 74 occurrences of ‘tree’ appeared in one of the two

texts, then the score would have increased by only 73. This

exercise yields three numbers corresponding to the pairwise

comparisons: 264630 [12,13], 141470 [12,14], and 277008

[13,14]. However, [13] is a much lengthier text that the other

two, which has inflated the scores for pairwise comparisons that

included this text. It is necessary to normalize each score for the

size of the corresponding texts [15]; upon doing so, our imagined

person is able to conclude that [12] and [14] are the most similar

(0.84) without knowing that these papers are, in fact, both on the

subject of phylogenetic tree shape, whereas [13] (with normalized

scores of 0.82 and 0.78, respectively) concerns the problem of

inferring the root of a phylogeny.

To construct a kernel function on phylogenetic tree shapes, we

adapted a natural language processing kernel function [16] that

was originally designed to classify text on the basis of its syntactic

structure (a generative tree in which words descend from linguistic

precursors [15]). Our modified kernel function kp(Ti,Tj) extracts

all the subset trees that are the common features of two

phylogenetic trees Ti and Tj (Figureô 2). A subset tree is a

contiguous collection of descendants of a specific node, but unlike

a subtree, it does not necessarily include all of the descendants.

Thus, our approach is similar to the Robinson-Foulds metric [14]

Figure 1. Diversity in phylogenetic tree shapes for animal RNA
viruses. These phylogenies were generated from samples of genetic
sequences from HIV-1 subtype B (HIV1-B), dengue virus serotype 1II
(DEN-1II), influenza A virus serotype H3N2 (IAV-H3), and coxsackievirus
A24 variant (CA24v).
doi:10.1371/journal.pone.0078122.g001
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which compares alternative trees for a given set of taxa by

counting the number of subtrees in common. Unlike the

Robinson-Foulds metric, however, our kernel function not only

allows us to compare trees relating different numbers and kinds of

taxa, but it also accounts for differences in the branch lengths

between matching subset trees. We assess the performance of our

kernel function against nine measures of tree shape at classifying

simulated phylogenies with varying rates of speciation, and then

apply our function to a large collection of human and zoonotic

RNA virus phylogenies.

Methods

Data Collection
A working list of RNA viruses associated with human

pathologies was obtained from the ViralZone web resource

(http://viralzone.expasy.org/all_by_species/678.html) [17]. For

each virus, we attempted to gather as many sequences as available

covering a region of the genome with extensive genetic variation,

based on prior knowledge or phylogenetic studies in the literature.

When available, we used curated virus-specific sequence databas-

es. HIV-1 nef gene sequences were obtained from the Los Alamos

National Laboratory (LANL) HIV Sequence database (http://

www.hiv.lanl.gov/) using subtype-specific search queries excluding

sequences annotated as recombinants, and restricting the result to

one sequence per patient. Further screening for HIV-1 recombi-

nant sequences was carried out using SCUEAL (Subtype

Classification Using Evolutionary ALgorithms) [18]. Hepatitis C

virus E1 sequences were obtained from the LANL HCV sequence

database (http://hcv.lanl.gov) [19] using genotype-specific search

queries excluding recombinants. Search results were reduced to

one sequence per patient based on patient clone annotation in the

sequence headers using a custom Python script, as this

functionality was not available for the LANL HCV sequence

database. Influenza A virus hemagglutinin (HA) sequences were

obtained from the National Institute of Allergy and Infectious

Diseases (NIAID) Influenza Research Database (http://www.

fludb.org), using subtype-specific search queries excluding isolates

from non-human hosts and laboratory strains.

Gene sequences from all other viruses were obtained from the

GenBank sequence database by primary organism taxonomy

identifier (‘txid’). Queries yielding fewer than 100 records

irrespective of gene were omitted at this stage. In all cases,

sequence data were downloaded as FASTA formatted files; these

published data were already anonymized and did not include any

information about patients’ medical records. Sequences annotated

as multiple clonal isolates from the same patient, sequences from

patents or laboratory strains were excluded from these data. For all

viruses other than HCV, HIV and IAV, we retrieved collection

dates and host organism data, when available, for each sequence

by its Genbank accession number using an automated query

algorithm implemented in Python. By convention, Genbank

records are annotated with this information in a ‘source’ field;

however, this field is not always included in data submissions. For

HCV, HIV and IAV sequences, which were already screened for

human hosts, collection dates were parsed from sequence headers

that were generated by the respective database engines.

Sequence Alignment
For each FASTA file, one sequence was selected as a reference

for initial pairwise alignment of all other sequences using an

implementation of the modified Gotoh algorithm in HyPhy

[20,21]. Sequences were trimmed to the aligned portion and

converted to a multiple sequence alignment using MUSCLE [22]

version 3.8 under default settings. All alignments were visually

inspected and adjusted using Se-Al (Andrew Rambaut, http://

tree.bio.ed.ac.uk/software/seal). Columns in the alignment com-

prising over 50% gaps were excluded. A table of all viruses,

subtypes and genomic regions used for phylogenetic reconstruc-

tion is provided as Supporting Information (Table S1).

Initial phylogenies were generated using FastTree (version 2.1.4)

[23] under the general time-reversible model of nucleotide

substitution. These phylogenies were used to identify clusters of

sequences that could represent multiple isolates from the same

individual, which we determined by evaluating the publications

linked with sequences within putative clusters. Furthermore, the

initial phylogenies were used to partition or filter alignments by

genotype or subtype, because the Genbank sequence records were

not consistently annotated with this information. The data sets that

were partitioned or filtered using the initial phylogenies were:

astrovirus, dengue virus type 1, hepatitis delta virus, hepatitis E

Figure 2. Kernel-assisted comparison of two tree shapes. For
trees comprising N1 and N2 nodes, respectively, there are N1|N2 pairs
of nodes to evaluate. (A) Starting from a given pair of nodes (indicated
in figure by circles with double-outlines), the algorithm finds the largest
common subset tree rooted at these nodes. First, we find that for both
nodes, neither of the branches terminate at a ‘leaf node’ (marked with
‘|‘). This match contributes a relatively small amount to our kernel
score, not only because the matching subset trees (highlighted in thick
blue lines) comprise only one node each, but also because their
discordant branch lengths lead to a substantial penalty. (B) Next, we
descend down the left branch in both trees. The current nodes (open
circles) in both trees spawn one leaf node and one internal node;
therefore, the subset trees continue to match. In addition, their branch
lengths are similar, so their contribution to the cumulative kernel score
is given greater weight. (C) Finally, we descend down the right branch
in both trees and find that the subset trees no longer match beyond
this point. We also proceed down the right branch of the reference
nodes and find no match, so our traversal of the two trees from these
nodes is complete and we restart our search at the next pair of nodes.
doi:10.1371/journal.pone.0078122.g002
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virus, influenza A virus H1, Japanese encephalitis virus, Norwalk

virus genotype II, poliovirus (wild and vaccine variants), rabies

virus, rotavirus A, rubella virus, sapovirus, tick-borne encephalitis

virus, and West Nile virus.

Phylogenetic Reconstruction
Although it is possible to apply our kernel method (described

below) to an unrooted tree by counting subtrees from the deepest

node outwards, phylodynamic studies of tree shapes have

conventionally been carried out on rooted trees which can be

more informative about evolutionary processes. The root of a

phylogeny is a hypothesis on the location of most recent common

ancestor (the earliest point in time) on the tree. We used an

outgroup criterion [13] to infer rooted phylogenies from the

alignments. This method relies on selecting an outgroup sequence

that is sufficiently closely related to the true ancestor. For each

alignment, we selected an outgroup sequence based on previous

phylogenetic studies on the respective viruses in the literature,

either a representative sequence from a closely-related virus

genotype or subtype (e.g., HIV-1 subtype D), or the earliest/

prototype virus isolate (e.g., West Nile virus isolate B956 [24]). A

list of outgroup sequence accession numbers and literature

citations is provided in Table S1. We assessed the suitability of

the respective outgroup sequences by generating preliminary

rooted trees using FastTree2. While results based on tree balance

statistics were sensitive to outgroup rooting, our results based on

the kernel analysis were robust to choice of outgroup (data not

shown).

For alignments with 200 or more sequences, we generated 100

replicate subsets of 100 sequences sampled at random without

replacement from each data set for phylogenetic reconstructions.

This resampling controlled for the effect of excessive variation in

tree size (number of sequences) on comparisons of tree shape.

Otherwise, a single phylogeny was generated for each alignment

with fewer than 200 sequences (Crimean-Congo hemorrhagic

fever virus; Chikungunya virus; encephalomyocarditis virus; HIV-

1 subtype A; Hantaan virus; human rotavirus C; influenza A virus

H2; influenza C virus; Murray valley encephalitis virus; mumps

virus; Oropouche virus; human parainfluenza virus; Rift valley

fever virus; rhinovirus A; rotavirus A genotypes 3, 4, and 12;

rubella virus clade 2; sapovirus; tick-borne encephalitis virus,

European and Far-Eastern strains; yellow fever virus). For data sets

in which 200 or more sequences were annotated with collection

dates, we generated 10 additional samples of 100 sequences drawn

uniformly at random with respect to the year of collection.

Phylogenies reconstructed from these latter samples provided a

means to assess the sensitivity of our analyses to biased sample

collection with respect to time.

Phylogenetic reconstruction for every sample was carried out

using a multithreaded implementation of RAxML (version 7.3.0)

[25] under a general time-reversible model of nucleotide

substitution with 25 rate categories across sites, followed by

optimization under a discretized gamma distribution of rate

categories (GTRCAT). All phylogenies contained a number of

‘soft’ polytomies, in which the phylogenetic reconstruction was

unable to assign a non-zero branch length at an internal node due

to inadequate genetic divergence. Because RAxML is limited to

strictly bifurcating representations of phylogenetic trees (with the

exception of the deepest node from which all branches are

interpreted as descendants), soft polytomies were automatically

resolved by the software into an arbitrary binary tree with branch

lengths set to a small non-zero value. By randomizing the

resolution of soft polytomies into binary trees, we found that our

results were robust to this source of uncertainty in phylogenetic

reconstruction (data not shown).

For every phylogeny, we calculated two popular summary

statistics of tree balance, Sackin’s index and Colless’ index

following the formulae in [26]. Next, we generated a kernel

matrix for all phylogenies using an implementation of our

phylogenetic tree shape kernel as described in the following

section.

Kernel Analysis
To apply the kernel function to these data, we needed to iterate

through all internal nodes in two phylogenies and count all subset

trees with the same topology (branching order) in both phylogenies

(Figureô 2). This is akin to quantifying the similarity of two

manuscripts by counting the number of times that various words

appeared in both texts, as illustrated by our example in the

Introduction. Unlike a text, however, the shape of a tree is an

ambiguous characteristic of a phylogeny. Rotating the branches

around a node can produce a tree that has a different shape,

despite remaining evolutionarily equivalent to the original. The

number of different shapes for a tree of n tips (where we distinguish

left from right and, for the moment, ignore branch lengths) is given

by the Catalan numbers C(n)~(2n)!=(n!(nz1)!). For example, a

tree of 100 tips has nearly 8|1056 shapes. This presents a

problem: how do we know which resolutions of shapes are being

compared between two trees? We resolved this issue by

‘ladderizing’ the trees: rotating branches around every node so

that branches leading to the larger number of descendants (tips)

were always on the same side. This procedure, conventionally used

to produce a more aesthetically pleasing visualization of a

phylogeny, greatly increases the chance of finding matching

subset trees between two phylogenies. Furthermore, we rotated

branches around all ‘cherries’ (nodes that are the direct ancestor of

two tips) such that the longer branch was always on the same side.

Based on simulations (see below), we determined that this

combination of ladderization and rotating cherries significantly

improved our ability to correctly classify simulated trees (Table

S2), indicating that these steps resolved different trees into shapes

which could be compared in a consistent and meaningful way.

Following Moschitti’s notation [16], we defined a phylogenetic

tree shape kernel by:

kp(T1,T2)~
P

n1[N(T1)

P
n2[N(T2)

D(n1,n2) ð1Þ

where N(Ti) is the set of all nodes from the ith tree Ti, and D is

defined as follows:

N If n1 and n2 are leaf nodes, D(n1,n2)~l, where 0vlv1 is a

constant decay factor.

N If the numbers of children descending from n1 and n2 are the

same (always two for bifurcating trees) and, of these, the

numbers of leaf nodes are also the same, then:

D(n1,n2)~lkG(n1,n2) P
nc(n1)

j~1
1zD(cj

n1
,cj

n2
)

� �

where nc(ni) is the number of children descending from node ni,

cj
ni

is the j-th child of node ni, and kG is a Gaussian radial basis

function on the vectors of branch lengths descending from nodes

n1 and n2, denoted as l1 and l2 respectively:

Shapes of Human and Zoonotic RNA Virus Phylogenies
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kG(n1,n2)~ exp {
1

2s
El1{l2E2

� �

where s is the variance parameter that determines how strongly

subset trees are penalized for discordant branch lengths.

N Otherwise, D(n1,n2)~0.

Note that matching subset trees were weighted in proportion to

their size (number of nodes). Because a tree will match its own

shape exactly, k(Ti,Ti) can take overwhelmingly large values. This

‘large diagonal’ effect [27] can severely curtail the effectiveness of

subsequent analyses of the kernel matrix (K ), which is a symmetric

matrix that is obtained by applying the kernel function to all pairs

of N trees, fkp(Ti,Tj) : i, j[1 . . . Ng. Therefore, the constant

decay factor l served to penalize larger subset trees because it

declined exponentially with tree size [15]. The Gaussian radial

basis function kG further penalized subset trees by the discordance

in branch lengths for pairs of branches originating from the

matching nodes (Figureô 2). Although this incorporation of branch

lengths is a significant departure from the original tree kernel for

natural language processing, we prove that kp is a valid positive

semi-definite kernel function (Text S1).

Phylogenies were imported from the Newick tree strings

produced by RAxML into Python using the Phylo module from

the Biopython package [28,29]. Branch lengths in each phylogeny

were normalized by the mean branch length to facilitate

comparisons between viruses with different overall rates of

evolution. A kernel matrix was computed from this collection of

phylogenies using a custom Python module, which we have made

publicly available on our webserver (http://bioinfo.cfenet.ubc.ca/

pub/phylokernel). Although the kernel function can be computed

quickly [16], we needed to compute the kernel matrix for 4153

phylogenies (39|100 replicates + 23|10 samples by collection

year + 23) with over 8 million pairwise comparisons. To speed up

this calculation, we performed parallel computation on a Linux

cluster with a message-passing interface (MPI) environment [30].

The matrix was confirmed to be positive semi-definite by Cholesky

decomposition. Following Collins and Duffy [15], all entries in the

matrix were normalized by the formula

k’p(Ti,Tj)~
kp(Ti,Tj)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(kp(Ti,Ti)kp(Tj ,Tj)
p

so that the resulting kernel matrix was less sensitive to differences

in the sizes of the respective trees. Values of kp for replicate sets of

phylogenies generated from random samples were averaged for

every pairwise comparison of viruses or virus clades, and the

resulting group mean distance matrix was renormalized. Kernel

principal components analysis and support vector machine

classification were performed on this normalized kernel matrix

using the R package kernlab [31].

Simulating Phylogenies
We used the R package diversitree [32] to simulate the growth of

phylogenies under different evolutionary scenarios of branching or

‘speciation’ rates. Trees were generated under a Quantitative State

Speciation and Extinction (QuaSSE) model [33] whereby speci-

ation rates were determined by a continuous trait whose evolution

was simulated by a Brownian motion (with zero drift and variance

per unit time s2~0:1) under two different mutation rates (m = 0.1

and 0.01). This continuous trait was mapped to a speciation rate by

a sigmoidal function with a zero midpoint, exponential decay rate of

0.25, and minimum and maximum values of 0.05 and 0.25,

respectively. We performed two sets of 100 replicate simulations

under the different mutation rate scenarios. The simulated data

were converted into Newick tree strings using a Python script

derived from the Biopython Phylo module [29]. These strings are

publicly available at http://bioinfo.cfenet.ubc.ca/pub/phylokernel.

We calculated nine different tree balance statistics – Colless’ index,

Sackin’s index, mean path length, variation in path length, Shao

and Sokal’s B1 and B2, and the sum, total mean, and mean of the 10

earliest nodes of Fusco and Cronk’s imbalance statistic [34] – for all

trees using functions written in Python. A kernel matrix was

computed for all trees using the methods described above. We

trained a n-support vector machine classifier [35] using the R

package kernlab on a random subset of half of the phylogenies, and

then measured the sensitivity and specificity of classification by

mutation rate on the remaining half. Likewise, the sensitivity and

specificity of classifying trees by tree balance statistics was evaluated

at varying cutoffs using the R package ROCR [36].

Results

Performance on Simulated Trees
We simulated two sets of 100 replicate phylogenies under

different mutation rates (200 trees total) that influenced the

branching rates in the phylogeny in an autocorrelated fashion

[32]. In other words, the branching rate was allowed to evolve as

each phylogeny grew from a common ancestor to 100 descen-

dants. These simulations provide a reasonable approximation of

the kind of evolutionary scenarios between which tree balance

statistics were meant to differentiate [12], since preferential

branching along fewer lineages will tend to produce an imbal-

anced tree. For all simulated phylogenies, we computed nine

different balance statistics (the eight statistics assessed in [12] and

Sackin’s index). In addition, we computed the kernel matrix for all

simulated phylogenies using our phylogenetic tree shape kernel.

Note that the kernel method does not function as a summary

statistic; it cannot assign a value to a given tree in the absence of

any other information. Consequently, we compared the kernel

method to balance statistics by evaluating their performance at

correctly classifying trees that had been generated under different

models of speciation, which is analogous to the transmission of an

infectious disease between hosts.

The sensitivity and specificity of classifying the simulated

phylogenies by mutation rates (m = 0.01 and m = 0.1) is summa-

rized in Figureô 3. Using our kernel method, we obtained a

median sensitivity of 97.7% (interquartile range, IQR = 95.6%,

98.0%) and specificity of 90.8% (IQR = 89.1%, 92.8%) when

averaged over 100 replicate training sets. These results were

unambiguously superior to all nine balance statistics that were

evaluated over the same simulated data. For instance, the sum of

Fusco and Cronk’s imbalance statistic was the most effective

among the balance statistics, but none could exceed a sensitivity of

*80% without a corresponding drop in specificity below *80%.

Thus, the kernel method is capable of providing a substantial

advantage for recognizing virus trees that have evolved under

different evolutionary and epidemiological scenarios.

To determine the sensitivity of the kernel function to l and s,

we evaluated our ability to classify simulated phylogenies under

varying parameter settings. We found that both sensitivity and

specificity were robust to different settings of l and s (Figure S1).

For example, mean sensitivities varied by less than 1% (0.97 to

0.98) for values of s ranging from 1.0 to 20.0, given l~0:2; setting
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s~5:0 conferred a slight advantage over this range in the

classification of simulated phylogenies. These tests indicated that

results from applying our kernel function to RNA virus

phylogenies would be robust to varying parameter settings. This

conjecture was supported in a comparison of kernel matrix

projections under different settings (Figure S2; see below).

Tree Balance in RNA Viruses
We used maximum likelihood-based heuristics to reconstruct

phylogenies from 62 sequence alignments representing 38 different

human and zoonotic RNA viruses from 12 different taxonomic

families (Table S1). Genetic sequences from viruses with highly

divergent clades, such as the human immunodeficiency virus type

1 (HIV-1) subtypes or influenza A virus serotypes, were grouped

accordingly into separate multiple sequence alignments to allow

for clade-specific epidemiological or evolutionary dynamics.

Replicate phylogenies were generated from random samples of

100 sequences (given adequate sample size) to control for the well-

documented confounding effect of variation in sample size on

conventional tree shape statistics [9].

For each alignment, we calculated the means across replicates of

two tree balance statistics (Colless’ index and Sackin’s index),

which quantify the asymmetry in rates of branching among

ancestral lineages in each tree. Specifically, Sackin’s index [8]

counts the number of ancestral nodes separating each tip to the

root, while Colless’ index [37] evaluates the difference in the

number of tips that descend from the left and right branches of

each bifurcating ancestral node. The distribution of mean Colless’

indices is displayed in Figureô 4. As expected, influenza A virus

(IAV) serotype H3 assumed one of the highest mean Colless’

indices (0.544) indicating that the replicate trees were severely

imbalanced; only Murray valley encephalitis virus (MVEV)

presented a higher index (0.548). Only 39 published MVEV

envelope sequences were available after culling 7 identical

sequences; however, Colless’ index is expected to be biased

downwards with decreasing sample size, suggesting that the mean

index for 100-sequence MVEV trees could have been even greater

still. MVEV is endemic to Australia and Papua New Guinea and

comprised almost entirely of mosquito isolates sampled over six

decades (1956–2008). The IAV H3 sequences were strictly human

isolates from around the globe but also sampled over a period of

several decades (1968–2012).

This raises a concern of whether tree balance is an artefact of

biased sampling of virus isolates over time, such that the

overrepresentation of isolates from a narrow range of years might

tend to yield balanced trees. To address this, we calculated the

mean Colless’ indices for phylogenies generated from samples that

Figure 3. Classification of simulated phylogenies using nine
balance statistics and the kernel function. We simulated the
growth of two sets of 100 phylogenies relating 100 taxa under different
scenarios in which rates of speciation (branching) evolved at different
rates. Greater variation in speciation rates tended to produce more
imbalanced trees. Nine different balance statistics, including eight from
[12], were computed for all phylogenies: Colless’ index, Sackin’s index,
the mean and variance in path lengths from tips to the root, Shao and
Sokal’s B1 and B2 statistics, and the imbalance value (I ) for the sum,
total mean, and the mean of the earliest 10 internal nodes of the tree.
This plot illustrates the trade-off between sensitivity and specificity of
classifying phylogenies by applying a cutoff value each of these balance
statistics. A single point (star) indicates the sensitivity and specificity
attained by applying the phylogenetic kernel function (with s~5:0 and
l~0:2) to train a support vector machine (SVM) on a random subset
(50%) of the phylogenies, and classifying the remaining half.
doi:10.1371/journal.pone.0078122.g003

Figure 4. Distribution of mean normalized Colless’ indices. Each
label represents the mean index of a virus or virus clade. The vertical
axis is used to elucidate the clustering of points by forcing overlapping
labels (phylogenies with similar indices) to ‘pile up’ like a histogram. A
higher Colless’ index corresponds to a less ‘balanced’ tree in which
branching events tend to occur along the same lineage. A conventional
histogram is displayed in the background. Labels are defined as follows:
AstV = astrovirus; CCHF = Crimean-Congo hemorrhagic fever virus;
ChikV = chikungunya virus; CA24v = coxsackievirus A24; DEN = dengue
virus; E30 = echovirus 30; EMCV = encephalomyocarditis virus; EV71 = en-
terovirus 71; GBVC = GB virus C; HTNV = Hantaan virus; H[A-E]V = hepatitis
[A-E] virus; HIV = human immunodeficiency virus type 1; I[A-C]V = in-
fluenza [A-C] virus; JEV = Japanese encephalitis virus; MeV = measles virus;
MuV = mumps virus; MVEV = Murray valley encephalitis virus; NV = Nor-
walk virus; OROV = Oropouche virus; hPIV-1 = human parainfluenza virus;
PV = poliovirus; Rab = rabies virus; Rot = human rotavirus; RhiV = human
rhinovirus; RSV = human respiratory syncytical virus; Rub = rubella virus;
RVF = Rift valley fever virus; SapV = sapovirus; SeoV = Seoul virus; TBEV = -
tick-borne encephalitis virus; WNV = West Nile virus; YFV = yellow fever
virus.
doi:10.1371/journal.pone.0078122.g004
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were uniform with respect to sample collection years for

alignments in which an adequate number of sequences were

annotated with collection dates (N~23). Using Lin’s concordance

correlation coefficient (rc) [38] to quantify the agreement between

indices, where rc indicates perfect agreement and rc~0 indicates

no agreement, we found that the mean Colless’ indices for

phylogenies whose tips were uniformly distributed over years were

highly concordant with indices from random samples (rc~0:94,

95% C.I.~0:88{0:98). In other words, constraining the phylog-

enies of other viruses such as HIV to have evenly distributed tips

over time did not make their Colless’ indices more IAV-like.

In sum, the distribution of mean Colless’ indices was highly

peaked in the interval between 0.15 to 0.2, such that this summary

statistic did not discriminate substantially among the phylogenies

of most RNA viruses in our study (Figureô 4). For example, the

third-highest mean index (0:337) derived from IAV serotype H1

phylogenies was similar to the index of a hepatitis C virus (HCV)

genotype 2a phylogeny (N~78), which would not seem to be

consistent with the observation that phylogenies from HCV and

IAV have conspicuously different shapes [2]. Specifically, we

found that 6 out of 100 replicate samples of IAV-H1 sequences led

to Colless’ indices that were less than the value observed for HCV-

2a. Similarly, the relatively low Colless’ indices of phylogenies of

influenza B virus (IBV, 0:176), which together with IAV serotypes

H1 and H3 is responsible for the majority of seasonal influenza

outbreaks, implies that the imbalance of IBV-derived trees is no

different from the bulk of animal RNA viruses (Figureô 4).

Furthermore, the mean Colless’ index did not differentiate the

phylogenies of HIV and HCV from other RNA viruses. We

obtained the same qualitative results from an evaluation of mean

Sackin’s indices (Figure S3), which were highly correlated with the

respective mean Colless’ indices (Pearson’s r~0:94, Pv10{5).

There is much more to the conspicuously star-like shape of HIV

and HCV phylogenies that remains unquantifiable by balance

statistics. Consequently, relying too heavily on tree balance

statistics potentially limits our ability to measure the diversity of

human and zoonotic RNA virus phylogenies, and to link recurring

shapes to epidemiological or evolutionary processes.

Kernel Analysis of RNA Virus Trees
Here, we develop and apply a new approach to comparing

RNA virus tree shapes by using a method from machine learning

known as the ‘kernel trick’ [10]. Rather than attempting to reduce

a complex tree shape down to one or more summary statistics, like

the tree balance indices examined above, we defined a kernel

function (Figureô 2) that efficiently computes inner products

between phylogenies with respect to their tree shapes. By this

approach, a tree’s shape is quantified only by its comparison to

other trees. We have shown above that this method can be highly

effective at discriminating between the shapes of phylogenies that

were simulated under different evolutionary scenarios. We applied

this phylogenetic tree kernel to our collection of RNA virus

phylogenies to generate a kernel matrix that is akin to a pairwise

similarity matrix. Entries in the kernel matrix were averaged

across replicate phylogenies from the same alignments, and

renormalized to yield a smaller kernel matrix with rows or

columns corresponding to different viruses or virus clades and

sampling schemes (completely at random or uniformly with

respect to collection year). According to the eigenvalues of this

projection, about 90% of the variance was explained by the first 2

principal components alone, with about 70% of the variance

explained by the first component; these percentages varied slightly

with different parameter settings of the kernel function (Figure S2).

In all cases, the first component distinctly separated the

phylogenies derived from HIV and HCV sequences from the rest

of the RNA viruses. However, none of the remaining principal

components were as readily interpretable. Furthermore, neither

Sackin’s nor Colless’ indices were significantly correlated with any

of the principal components based on a simple Pearson correlation

test after adjusting for multiple comparisons. Additionally, we

trained a support vector regression model using the kernel matrix

and Colless’ indices for a random subset of the data. The mean

concordance correlation coefficient [39] between the observed

Colless’ indices and those predicted by this model for the

remaining phylogenies was only 0.12 (interquartile range 0.07,

0.18), which is considered poor. These results, which were robust

to varying l and s, suggested that the kernel was manifesting

aspects of phylogenetic tree shapes other than those captured by

tree balance statistics.

A scatterplot of the largest 2 principal components from the

preceding analysis described a single arc in which HIV and HCV

phylogenies comprised a distinct cluster from the other RNA

viruses (Figure S2). However, the majority of the other viruses

were agglomerated at the base of the arc, making it difficult to

discern patterns from this visualization. This is a known issue in

PCA in which the largest components are assumed to represent

the important structure in the data whereas smaller components

represent noise. To provide a clearer visualization, we generated

another scatterplot (Figureô 5) using a t-distributed stochastic

neighbor embedding algorithm (t-SNE) which attempts to preserve

both global and local structure in a low-dimensional visualization

of high-dimensional data [40]. Again, HIV and HCV comprised a

distinct cluster in this visualization. Phylogenies derived from these

viruses tend to feature long terminal branches and relatively short

internal branches (Figureô 1), which has been attributed to the

exponential spread of these viruses and their propensity to

establish persistent infections. This outcome was robust to

partitioning sequences by clade; for example, a phylogeny

comprised of all three HIV subtypes in our study mapped

adjacent to the HIV subtype-specific phylogenies in both types of

projections (data not shown).

GB virus C (GBVC), which is not known to be associated with

any human disease, was consistently located within the cluster of

HIV and HCV phylogenies in the kernel PCA projections. (Due to

the stochastic nature of the t-SNE algorithm, GBVC was not

always embedded in the vicinity of HIV and HCV.) A close

relative of HCV, GBVC can establish persistent infections in its

human hosts and may inhibit HIV replication when an individual

has become co-infected by both viruses [41]. Thus, the ability to

establish persistent infections appears to be a common character-

istic of viruses whose phylogenies map to this region of tree shape

space. To test this hypothesis, we trained a support vector machine

(SVM) classifier to differentiate between viruses having the ability

to establish persistent chronic infections (HIV, HCV, and GBVC)

and those without. We randomly selected half of the members

from each category and used the corresponding rows and columns

in the kernel matrix as training data. Validating the classifier on

the remaining half of the kernel matrix, we consistently obtained a

sensitivity and specificity of 1.0 irrespective of varying the kernel

parameters l and s, indicating that viruses that can establish

persistent chronic infections were unambiguously separated from

the other RNA viruses in the space defined by the tree kernel.

The influenza viruses predominantly responsible for the

seasonal epidemics around the world (IAV-H1, IAV-H3, and

IBV) were located close together in both projections of the kernel

matrix. In contrast, the Sackin’s and Colless’ indices for IBV were

substantially lower than those of IAV-H1 and IAV-H3. This

suggests that the kernel was more successful in identifying
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commonalities in the shapes of the phylogenies of these influenza

viruses. On the other hand, these influenza viruses were located in

the midst of many other RNA viruses in both projections, despite

the strikingly pectinate shape of IAV-H3 (Figureô 1). Phylogenies

from the other influenza viruses in this study (IAV-H2, IAV-H5,

and influenza C virus) mapped further away from the seasonal

epidemic influenza viruses. These other phylogenies tended to

have longer internal branches (relative to terminal branches) than

the phylogenies of IAV-H1, IAV-H3, and IBV. Specifically, the

ratio of the median branch lengths of internal and terminal

branches, respectively, was significantly greater for the other

influenza viruses than the seasonal epidemic influenza viruses

(Wilcoxon rank sum test W~101, P~5:8|10{11). A possible

explanation for this pattern is that the H2 and H5 subtypes are

infrequently re-introduced into the human population from under-

sampled avian host populations; consequently, the evolving

diversity of these viruses would be represented by only a small

number of lineages in phylogenies.

Our survey of animal RNA viruses included several examples of

zoonotic viruses. One might anticipate that these viruses could

map to one or more distinct regions in projections of the kernel

matrix. We observed that mosquito-transmitted zoonotic viruses

such as the highly divergent dengue serotypes (DEN-1 to -4), the

arboviral encephalitides (Japanese encephalitis virus and West Nile

virus), and yellow fever virus tended to map to a similar region in

projections of the kernel matrix, although this region was not

exclusive of other viruses for which humans are the only known

natural hosts, such as rubella virus and poliovirus (Figureô 5).

Another interesting feature of this projection was that phylogenies

representing clades of the zoonotic rabies virus (RabV-1 to -3)

mapped to a similar region as the mosquito-transmitted zoonotic

viruses. The majority of the rabies virus sequences were isolated

from non-human hosts predominated by canine (numbered here

as clades 1 and 3) and bat species (clade 2), with about 2%–9%

sequences isolated from human hosts (Table S1).

Finally, we observed that phylogenies from certain viruses

shared a distinctive rapid proliferation of short terminal branches

within one or more specific clades which may be a signature of

sporadic outbreaks, as illustrated by the coxsackievirus A24 variant

phylogeny (CA24v) depicted in Figureô 1. For example, the

majority of CA24v sequences within the highly unresolved clade of

its phylogenies were sampled during outbreaks of acute hemor-

rhagic conjunctivitis in Brazil and China. The proximity of the

zoonotic viruses Hantaan virus (HTNV) and Murray Valley

encephalitis virus (MVEV) to CA24v in projections of the kernel

matrices (Figure S2) suggested that the shapes of the respective

phylogenies may have also been shaped by sporadic outbreaks.

To assess the potential bias of uneven sampling over time, we

incorporated replicate phylogenies into the kernel matrix that were

generated from samples of virus sequences drawn at random with

respect to collection year. We found that the mean distances

between phylogenies sampled completely at random and phylog-

enies sampled uniformly by collection year from the same virus or

virus clade were significantly shorter (larger kernel scores) than the

mean distances between phylogenies from different viruses or virus

clades (Wilcoxon rank sum test, W~5513, Pv1:2|10{12).

Specifically, the mean normalized kernel score between phylog-

enies of the same virus obtained by different sampling schemes was

0.98, whereas the mean among phylogenies from different viruses

was 0.84, where a normalized score of 1.0 indicates an exact

match with respect to tree shape. On visually examining a PCA

projection of this kernel matrix, we found that sampling uniformly

by collection year tended to shift phylogenies along the same

trajectory in the space of tree shapes (Figure S4). With the

exception of HCV genotype 6a (for which about 50% of isolates

were obtained in 2006 alone), the cluster of HIV and HCV viruses

remained distinct from other RNA viruses including the influenza

viruses.

Discussion

In this study, we have proposed a new framework for comparing

phylogenetic tree shapes by extending a parse tree kernel from

computational linguistics [16]. Our kernel function compares all

subset trees shared by two phylogenies and weights this

comparison by the concordance of branch lengths that comprise

the respective subset trees (Figureô 2). It therefore bears some

similarity to the weighted Robinson-Foulds metric that is based on

comparing the lengths of branches that descend from each

ancestral node [14]. However, the Robinson-Foulds metric is

restricted to comparing alternative trees relating the same taxa; in

other words, the terminal branches must have the same labels.

This requirement makes it impossible to use the Robinson-Foulds

metric to compare phylogenies from different viruses. In contrast,

our kernel is designed to compare trees from completely different

sets of taxa because it discriminates among subset trees primarily

by the number of terminal branches that descend from each

ancestral node, regardless of what taxa occupy the tips of those

branches. Moreover, if two phylogenies had a subset tree in

common, that subset tree would have to occur in the same location

of the trees to be counted towards the Robinson-Foulds metric. In

contrast, since the tree shape kernel iterates over all internal nodes

in both phylogenies, subset trees in different locations can

contribute towards the kernel score. This is an important

distinction because we are primarily interested in recurring motifs

in tree shape, irrespective of where they appear in either tree,

Figure 5. A visualization of RNA virus phylogenies in the tree
shape kernel space (l~0:2, s~5:0) using t-distributed stochas-
tic neighbor embedding (t-SNE). The t-SNE algorithm attempts to
find the optimal map of high-dimensional data into a low-dimensional
space while preserving the distances among points as much as
possible. Thus, the distance between pair of viruses or virus clades
(labelled by the same abbreviations as Figureô 4) is approximately
proportional to their mean kernel distance. Groups of virus clades of
particular interest are highlighted with the corresponding colours: HIV,
red; HCV, yellow; Dengue (DEN), green; IAV-H3, IAV-H1, and IBV (blue).
doi:10.1371/journal.pone.0078122.g005
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because this commonality may represent the imprint of a common

epidemiological or evolutionary process acting on both viruses.

Using conventional tree balance statistics, we found limited

variation among phylogenies from different RNA viruses, with

most viruses falling into a narrow range of Colless’ or Sackin’s

indices after controlling for sample size variation. In contrast, our

kernel function was able to separate the distinctively star-like

phylogenies of HIV and hepatitis C virus. However, it was unable

to distinguish the conspicuously pectinate shapes of IAV-H1 and -

H3 phylogenies to the same extent as the tree balance statistics.

This is most likely due to our use of a decay factor l in computing

the kernel function to penalize larger subset tree matches. Unless

we penalize subset trees by l, large phylogenies would result in

enormous values along the diagonal of the kernel matrix because a

phylogeny will always match itself exactly, washing out any

patterns from comparisons between different phylogenies. In other

words, our use of a decay factor places greater emphasis on local

than global similarities between the shapes of two phylogenies.

Using a decay factor evidently prevents the full extent of the

imbalance in the IAV-H1 or -H3 phylogenies from being

expressed in the kernel matrix, since the longer subset trees that

would represent this large-scale pattern are penalized more

heavily.

A common concern directed at studies of phylogenetic tree

shapes is that variation in tree shapes may be an artefact of

differences in sampling. For example, influenza A virus sequences

in our data were sampled over a wide range of years from 1925 to

2012, with 72% of sequences sampled after 2001. It is possible that

differences among viruses in the distributions of sample dates may

introduce a bias to tree balance statistics or the kernel method.

However, when we constrained samples across viruses to be

sampled uniformly with respect to collection years, we found no

significant effect on the distributions of RNA viruses for either tree

balance or kernel-based methods. Analyses of tree shapes can be

robust to temporal sampling biases because the internal structures

of the phylogenies are often comprised of ancestors that are

substantially further back in time. For example, there was very

little clustering of HIV-1 subtype B sequences in the phylogeny

with respect to collection year, implying that a phylogeny

reconstructed a tree from sequences collected in a specific year

will retain most of its deeper structure.

The tree shape kernel presented here potentially represents an

important new exploratory tool for studying RNA virus phylog-

enies. By extracting recurring local motifs in the internal structures

of different phylogenies, it can complement the established tree

balance statistics to provide a more complete description of the

diversity of tree shapes among RNA viruses [3]. Our kernel is not

a parametric model in itself; unlike recent advances in viral

phylodynamics [42], it does not attempt to directly estimate

epidemiological model parameters from tree shapes. Unlike a tree

balance statistic, the kernel function cannot assign a numerical

value to a single phylogeny in the absence of any other data.

Without summary statistics to compare to reported values in the

literature, it is necessary to have at hand all the phylogenies that

one wishes to compare in order to compute the entire kernel

matrix. On the other hand, the use of a kernel method presents

opportunities to utilize other techniques from machine learning

such as support vector machines (SVMs) to extract and analyze

patterns in phylogenetic tree shapes. For example, we simulated

phylogenies under two different evolutionary scenarios that

influenced the asymmetry in branching rates among lineages,

and we found that an SVM assisted by our kernel function clearly

outperformed nine different tree balance statistics at predicting

which phylogeny was generated under which scenario (Figureô 3).

Furthermore, we trained another SVM classifier on a random

subset of phylogenies labelled by whether the respective RNA

viruses could establish persistent chronic infections. The trained

model consistently predicted these labels for the remaining

phylogenies with very high sensitivity and specificity (see Results

section).

It is possible that a similar procedure could be used, for

example, to determine the natural animal reservoir of an

incompletely characterized zoonotic virus. This may not only

require further development of kernel methods such as those

presented here, but also greater coverage and more detailed

annotation of published sequence data for RNA viruses that are

under-represented in public databases. Additionally, the tree shape

kernel may provide an effective distance measure for fitting

complex phylodynamic models by approximate Bayesian compu-

tation [43], a rapidly emerging class of highly versatile and

efficient computational methods in which a distance measure (such

as the difference in summary statistics) is used to assess the

congruence between model simulations and observed data.

Supporting Information

Figure S1 Sensitivities (solid lines) and specificities
(dashed lines) of classifying simulated phylogenies
where the kernel matrix was generated under different
settings of l and s. Classification was performed using a kernel

n-support vector machine implemented in the R package kernlab

[31]. For a given kernel matrix, sensitivity and specificity were

averaged over 1000 replicate cross-validations on random samples

of trees stratified by evolutionary scenario. Note that the x-axis is

log10-transformed and the y-axis is scaled to the range of the

observed values, which all exceeded the performance of classifi-

cations based on tree balance statistics. Varying the decay factor l
had little effect on either sensitivity or specificity; setting l~0:2
conferred a very slight advantage in sensitivity over l~0:1 or

l~0:3. Both sensitivity and specificity were fairly robust to a wide

range of values for the Gaussian radial basis function variance

parameter s. For example, mean sensitivities varied by less than

1% for values of s ranging from 1 to 20.

(PDF)

Figure S2 PCA projections for kernel matrices generat-
ed from the RNA virus phylogenies under different
settings for kernel function parameters s and l. Labels

corresponding to virus species and clades are the same in

Figureô 4. Viruses of particular interest (such as HIV and the

common pandemic influenza A viruses) are highlighted with

coloured convex hulls as in Figureô 5. The proportion of variance

explained by the first two principal components (roughly 90% to

95%), as determined by eigenvalues, are reported as percentages

in the axes labels.

(PDF)

Figure S3 Distribution of mean normalized Sackin’s
indices. Each label represents the mean index of a virus or virus

clade. The vertical axis is used to elucidate the clustering of points

by forcing overlapping labels (phylogenies with similar indices) to

‘pile up’ like a histogram. A higher Sackin index corresponds to a

less ‘balanced’ tree in which branching events tend to occur along

the same lineage. Label annotations are identical to Figureô 4.

(PDF)

Figure S4 Visualizing the effect of resampling virus
sequences uniformly at random with respect to year of
collection. The kernel matrix calculated from the original sample

phylogenies (black) and the additional phylogenies from uniform
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sampling by year (red) is projected onto the first two principal

components. Arrows are drawn between phylogenies generated by

different sampling schemes from the same set of virus sequences.

Note that this PCA projection is slightly different from projection

generated under the same settings (l~0:1, s~0:5) depicted in

Figure S2 because it incorporates the uniform sample points.

(PDF)

Table S1 A list of all animal RNA viruses in this study,
grouped by taxonomic family (bold face). Abbrev. = ab-

breviation used in figures. N = number of sequences. %human = -

percentage of sequences isolated from human hosts. L = length of

alignment in nucleotides. Outgroup accession = Genbank acces-

sion number of sequence used as outgroup. Reference = citation of

article in peer-reviewed literature on which choice of outgroup is

based; or a short note on the method used for outgroup selection.

(PDF)

Table S2 Performance of kernel support vector ma-
chine classifier on 200 simulated phylogenies. Trees were

simulated with the R package diversitree by evolving a latent

character state (with mutation rates m~0:1 and m~0:01) which

controlled the rate of speciation (branching). All trees were

modified by rotating branches around nodes according to some

predefined scheme, resulting in different but evolutionarily

invariant shapes. Kernel matrices were generated with the

parameter settings d~0:2 and s~2:0. Sensitivity and specificity

values were generated by R package ROCR and averaged across

1000 cross-validations (using a random subset of 100 trees to train

the kernel classifier and validating on the remaining 100).

Empirical 95% confidence intervals (C.I.) were derived from the

25th and 975th-ranked cross validations. Randomly rotating

branches in the trees did not significantly affect our ability to

classify them by evolutionary scenario (Student’s t-test, P~0:12).

Ladderizing the trees, such that the most prolific branches were

rotated to the same side, conferred a substantial and significant

gain in sensitivity and specificity of classification relative to the

unmodified trees (Pv3|10{6). Rotating ‘cherries’ (pairs of tips

that descend directly from their common ancestor) of a ladderized

tree, so that the longest branch was always to the same side,

conferred a slight but significant advantage in classification

(Pv0:001). However, we found no advantage to rotating branches

around internal nodes according to any of the schemes we

evaluated. ‘Ties’ refer to nodes that are not cherries and have the

same number of descendant tips to the left and right, making them

ambiguous to ladderization. Rotating branches ‘by subtree’

indicates that the branch with the largest total branch length in

the descendant subtree was rotated to the same side.

(PDF)

Text S1 Proof that kp is a positive semidefinite kernel.

(PDF)
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