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Abstract: To demonstrate the importance of sample preparation used in Fourier transform infrared
(FTIR) spectroscopy of microbiological materials, bacterial biomass samples with and without grind-
ing and after different drying periods (1.5–23 h at 45 ◦C), as well as biogenic selenium nanoparticles
(SeNPs; without washing and after one to three washing steps) were comparatively studied by
transmission FTIR spectroscopy. For preparing bacterial biomass samples, Azospirillum brasilense Sp7
and A. baldaniorum Sp245 (earlier known as A. brasilense Sp245) were used. The SeNPs were obtained
using A. brasilense Sp7 incubated with selenite. Grinding of the biomass samples was shown to result
in slight downshifting of the bands related to cellular poly-3-hydroxybutyrate (PHB) present in the
samples in small amounts (under ~10%), reflecting its partial crystallisation. Drying for 23 h was
shown to give more reproducible FTIR spectra of bacterial samples. SeNPs were shown to contain
capping layers of proteins, polysaccharides and lipids. The as-prepared SeNPs contained significant
amounts of carboxylated components in their bioorganic capping, which appeared to be weakly
bound and were largely removed after washing. Spectroscopic characteristics and changes induced
by various sample preparation steps are discussed with regard to optimising sample treatment
procedures for FTIR spectroscopic analyses of microbiological specimens.

Keywords: sample preparation; FTIR spectroscopy; bacterial biomass; biogenic selenium nanoparti-
cles; Azospirillum brasilense; Azospirillum baldaniorum

1. Introduction

The Fourier transform infrared (FTIR) spectroscopic technique is versatile and sen-
sitive to the molecular composition and fine structural features, as well as intra- and
intermolecular interactions, of functional groups in samples virtually in all aggregation
states. This has made it indispensable for both theoretical and experimental structural
and spectrochemical analytical studies of diverse materials ranging from small molecules
(see, e.g., [1–6]) to more complicated materials, macromolecules and supramolecular struc-
tures [7–11], up to prokaryotic or eukaryotic cells and tissues [12–18]. Over recent decades,
FTIR spectroscopy has been increasingly used in microbiological studies for the identifi-
cation and classification of microorganisms, as well as for solving various bioanalytical
problems related to microbiology [12,13,15,19–25]. Nevertheless, standardised sample
preparation for biological objects, including microbial cells, as well as mathematical meth-
ods for analysing the resulting complicated spectra, are still under development. To date,
a few topical articles have been published in which the preparation of microbiological
samples for analysis by using FTIR spectroscopy and some specific features of the technique
are discussed (see, e.g., [19,20,22–24]). Nevertheless, further development and optimisation
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of methodologies for preparing various microbiological samples for FTIR spectroscopic
analysis are still of significance to ensure obtaining reliable spectroscopic data. The latter
are indispensable for the most meaningful interpretation adequately reflecting the objects
under study.

In this report, we consider some methodological approaches in sample prepara-
tion and their effects when using FTIR spectroscopy as applied to bacterial cultures
(dried biomass) and biogenic selenium (Se0) nanoparticles (SeNPs) of bacterial origin.
In our work, two widely studied strains were used which belong to the genus Azospirillum,
Gram-negative alphaproteobacteria, among which there are many ubiquitous rhizobacteria
with phytostimulating capabilities and a number of other biotechnologically attractive traits
(for reviews, see, e.g., [26–28], as well as some of our earlier experimental reports [21,24,25]
and references cited therein). FTIR spectroscopy in its various variants is a useful technique
providing a wealth of information on their ecology and physiological behaviour, particu-
larly under stress conditions [21,24,25]. The strains under study in this work, A. brasilense
Sp7 [29] and A. baldaniorum Sp245 (earlier known as A. brasilense Sp245 [30] and reclas-
sified only recently [31]), have also been documented to be capable of reducing selenite
(SeIVO3

2−) with the formation of SeNPs [32,33]. This trait, which is common for a number
of microorganisms [34,35], is of importance for agrobiotechnology (e.g., bioremediation
of seleniferous soils and aquifers) and nanobiotechnology (green synthesis of biogenic
SeNPs and other Se-containing nanostructures) [35]. Thus, analysing such biogenic SeNPs
using instrumental techniques, including FTIR spectroscopy, particularly with regard to
the bioorganic capping layer of such nanostructures [34,36], is of primary importance.

2. Results and Discussion
2.1. Bacterial Biomass: Sample Treatment Effects in FTIR Spectroscopic Analysis

To date, large amounts of results and data obtained using FTIR spectroscopy have
made it possible to form an extensive database for the analysis and interpretation of FTIR
spectra of various microbiological objects. Nevertheless, as noted above, many aspects of
sample preparation of such samples, which can commonly be structurally and composition-
ally complicated and non-uniform, are still not fully standardised. As has been mentioned
earlier (see, e.g., [19,20,24,25] and references therein), FTIR spectra of microbial biomass
can be obtained in various ways. Each way of sample preparation has its peculiarities
which, if even slightly altered, may result in some changes (sometimes directly visible or
resolvable using special approaches) in spectroscopic images, reflecting some structural
changes in the sample. Therefore, it is of importance to have information on how various
sample preparation steps can influence the resulting spectra and ultimately to standardise
and develop a valid methodology for preparing bacterial samples for a reliable FTIR spec-
troscopic analysis. In this work, our attention was directed to some specific and important
processing steps (grinding and drying) and to studying their effects on the measured FTIR
spectra in the case of bacterial samples.

2.1.1. Effects of Grinding

Prior to measurement, the dried bacterial culture was pretreated in two variants:
(1) the sample was thoroughly powdered (ground in a mortar), and the resulting powder
was resuspended in Milli-Q water and processed as described in Section 3.3; (2) the
grinding stage was excluded from sample preparation, so that the dry biomass was directly
processed as described in Section 3.3. Traditionally, the grinding stage is an important part
of sample preparation in the FTIR spectroscopy of materials (especially non-uniform or
heterogeneous materials), since it allows for obtaining a more homogeneous aqueous or
oil suspension. In the case of an aqueous suspension (as used by us previously [25] and
in this work), when dried, it forms a uniform thin film on ZnSe glasses. Such films make
it possible to obtain high-quality transmission FTIR spectra with a high signal-to-noise
ratio and, therefore, to greatly facilitate further analysis of the data obtained. (Note that,
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while grinding, part of material may be lost, which has to be taken into account when the
amounts of samples are limited.)

Figure 1 shows FTIR spectra of A. baldaniorum Sp245 and A. brasilense Sp7 biomass
samples (dried for 23 h) with and without grinding. As can be seen, the spectra contain
all the bands typical of bacterial FTIR spectra [19,20] (see Table 1 for band assignments of
typical bands for A. baldaniorum Sp245), and all the spectra generally look very similar.
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Table 1. Band maxima of typical vibration bands in FTIR spectra of dry biomass samples of A. baldaniorum Sp245
(see Figure 1a) and their assignments 1 [19–25].

Samples of A. baldaniorum Sp245
Assignment (Functional Groups)

Without Grinding With Grinding

3288 3286 O–H; N–H (amide A in proteins), ν

2962 2961 C–H in –CH3, νas

2930 2929 C–H in >CH2, νas

2878 2877 C–H in –CH3, νs

2854 2854 C–H in >CH2, νs

1737 1729 Ester C=O, ν (PHB; phospholipids)

1654 1653 Amide I (proteins)

1543 1542 Amide II (proteins)

1454 1453 –CH3, δ (in proteins, lipids, polyesters, etc.)

1391 1388 COO−, νs (in amino acid side chains and carboxylated
polysaccharides) 2

1301 1285 C–O–C/C–C–O, ν (in esters; PHB)

1246 1236 C–O–C (esters)/amide III/O–P=O, νas

1188
1124

1187
1127 C–O, C–C, C–OH, ν; C–O–H, C–O–C, δ (polysaccharides)

1084 1085 O–P=O, νs

1 Notations: ν—stretching vibrations; νs—symmetric stretching vibrations; νas—antisymmetric stretching vibrations; δ—bending vibrations.
2 The corresponding antisymmetric stretching vibrations (νas of COO–, usually of somewhat higher intensities than νs) may vary in
wavenumbers (observed commonly around ~1650–1580 cm−1) and in microbial biomass are commonly masked by significantly more
intensive amide I/II bands of cellular proteins.

In the FTIR spectra of the samples in Figure 1, some differences (exceeding the spectral
resolution of 4 cm−1) are observed only in the region around ~1730 cm−1, as well as
~1300 cm−1. For the samples subjected to grinding, the values of the maxima of these
bands are noticeably lower. Thus, for A. baldaniorum Sp245, the bands observed at 1737
and 1301 cm−1 shifted to 1729 and 1285 cm−1, respectively, after grinding (see Figure 1a).
A similar shift is observed for A. brasilense Sp7 (the bands observed at 1737 and 1303 cm−1

shifted to 1732 and 1288 cm−1, respectively; see Figure 1b).
It is common knowledge that the aforementioned bands correspond to the functional

groups of the intracellular reserve biopolyesters of the polyhydroxyalkanoate (PHA) se-
ries [19,37], which in azospirilla are represented by the homopolymer poly-3-hydroxy-
butyrate (PHB) (see [21,24,25] and references cited therein). In PHB, polyester chains are in-
terconnected by weak C–H···O hydrogen bonds [37]. Changes in the intensity of inter- and
intramolecular interactions formed by these hydrogen bonds between the ester carbonyl
group (showing a band at ca. 1720–1750 cm−1 due to C=O stretching vibrations, which are
sensitive to H-bonding) and the –CH3 group in the polymer chains cause some variability
in the degree of ordering (crystallinity), which is one of the most important properties of
native PHB. As the degree of ordering decreases, the aforementioned bands in FTIR spectra
shift to higher frequencies, and vice versa [37–39]. (In our case, a shift is also observed in
the region of ~1240 cm−1 related in part to C–O–C vibrations of ester moieties.)

It has to be mentioned that the capability of PHA biosynthesis and accumulation
as intracellular granules is of primary importance for bacterial survival and stress en-
durance [40–44]. Bacteria of the genus Azospirillum are known to be capable of accumu-
lating relatively large amounts of PHB which, under appropriate conditions (e.g., lack of
bound nitrogen, i.e., a high C:N ratio in the medium), may exceed 60–70% of dry cell
weight (d.c.w.) [21,25,45]. Thus, as follows from the spectra (see Figure 1), the relative
amounts of intracellular PHB in the samples studied in this work are low, around or below
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~10% d.c.w. (cf., e.g., [25]), because of the presence of a minimal normal concentration [21]
of bound nitrogen (as NH4

+) in the culture medium (see Section 3.1). Nevertheless, the
observed downshifting of several PHB-related bands in samples after grinding (vide supra)
to slightly but statistically significantly lower wavenumbers unambiguously show that the
grinding step induces partial transition from the metastable and more amorphous state of
the intracellular PHB to its more ordered state (i.e., its partial crystallisation). Note that
a very similar but even more strongly expressed downshifting of the main PHB-related
bands, ν(C=O) around ~1740 cm−1 and ν(C–O–C/C–C–O) at ~1300 cm−1, was shown to
be induced by the sample preparation procedure that involves grinding and pressing the
bacterial biomass with KBr [24] often used in FTIR spectroscopy.

2.1.2. Effects of Drying

Another variation in sample preparation conditions tested in this work was associated
with the duration of drying. The presence of water (which is featured by strong vibration
bands, particularly the “scissoring” mode of δ(H–O–H) vibrations at ~1640–1650 cm−1

which falls within the amide I region of proteins [19,46]), even in traces, in a sample can
alter the measured FTIR spectrum.

The drying periods for the bacterial samples adopted in this study were 1.5 h and 23 h
(at 45 ◦C). Photographs of the samples just applied to the ZnSe glass and dried for 1.5 h
and 23 h are shown in Figure 2.
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Figure 2. Photographs of aqueous suspension of A. brasilense Sp7 bacterial biomass freshly applied to a ZnSe glass (A),
dried for 1.5 h (B) and for 23 h (C).

From the same sample of the dried bacterial culture of A. brasilense Sp7, three sepa-
rate ZnSe glasses were prepared for FTIR spectroscopy of these parallel measurements.
The amide I band (~1645–1655 cm−1, peptide bonds in proteins) was used as a normal-
isation standard for the FTIR spectra. As can be seen from Figure 3, some differences
were observed in the intensities for the three parallel samples (each dried for 1.5 h) in the
region of the broad band at 3700–2700 cm−1 (the region of stretching vibrations of O–H
and N–H groups), as well as in the region of 1485–1000 cm−1 (C–O, C–C, C–O–H, C–O–C
in polysaccharides and polyesters).

However, the intensities of all the bands for three similar replicate samples of
A. brasilense Sp7 biomass dried for 23 h were virtually the same (Figure 4). It is important to
emphasise that, despite some differences in the intensities of the bands in the FTIR spectra
between shorter (1.5 h) and longer (23 h) drying periods, the positions of the maxima of
all bands in the FTIR spectra of all samples remained unchanged. Thus, with a longer
drying time (23 h in our case), greater reproducibility was observed in measuring trans-
mission FTIR spectra with regard to absorption band intensities. Accordingly, it may be
recommended to dry bacterial samples being prepared for FTIR spectroscopic analysis at
moderate temperatures up to 40–45 ◦C (to avoid denaturation of proteins) overnight to
ensure a good reproducibility of both the intensities and band positions.
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It is also worth noting a specific difficulty that we encountered in our work. In some
cases, sample preparation of the bacterial biomass for transmission FTIR spectroscopic
measurements (for obtaining aqueous suspensions to be applied to a ZnSe glass) may be
hampered both in the case of grinding and without it. This is observed when bacteria have
accumulated significant amounts of PHB (e.g., over ~40% d.c.w.). Since this polyester has
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hydrophobic properties, and its physical properties are similar to those of some commercial
plastics, large PHB amounts in bacterial culture lead to difficulties in the process of sample
preparation; the culture becomes difficult to grind and is also practically not resuspendable
in Milli-Q water [25]. Such difficulties in sample preparation require a special approach
to bacterial biomass with a high PHB content and the development of additional steps
that would make it possible to obtain the most homogeneous sample appropriate for FTIR
measurements.

Thus, in this part, it has been shown that varying the conditions in some stages of sam-
ple processing, such as drying time, as well as the use of the grinding of bacterial biomass
samples, can lead to changes in the obtained FTIR spectra when analysing microbiological
objects. Consequently, the application and details of such steps can be optimised with
regard to the expected composition of the bacterial specimens, which has been attempted
in this study.

2.2. Analysis of Bacterially Synthesised Selenium Nanoparticles by FTIR Spectroscopy

In this part of the work, using the example of biogenic SeNPs, we discuss the influence
of the sample preparation process on the state of the samples reflected in their FTIR spectra.
The isolated SeNPs of bacterial origin obtained using A. brasilense Sp7, with different
numbers of washing steps, were studied by FTIR spectroscopy.

Figure 5 shows the region 2000–700 cm−1, which reflects the greatest changes in the
samples under study and is most informative in FTIR spectra when studying biological
samples. Note that the FTIR spectra of samples with two and three washing steps, owing to
a partial loss of material occurring during the purification of SeNPs performed by washing,
are characterised by a lower signal-to-noise ratio, which has led to some increase in
noise in the FTIR spectra, as can be seen in spectra C and D under 1000 cm−1 (however,
not impairing the analysis).

First of all, from Figure 5, it is clearly seen that the FTIR spectrum of isolated biogenic
SeNPs without additional washing steps (spectrum A) is noticeably different from FTIR
spectra of those after one to three washing steps (see spectra B–D which have much
fewer differences between them). As has been well documented, microbially synthesised
SeNPs always contain specific capping layers of biomacromolecules originating from the
biological system in which they were synthesised [34–36]. We performed a comparative
analysis of the spectra in Figure 5 (as the SeNPs were obtained using A. brasilense Sp7,
they are expected to contain bioorganic components from this bacterium; hence part of the
assignments listed in Table 1, which are typical of bacterial cell biomass, may be used).

For the FTIR spectrum of nanoparticles that were not washed (spectrum A), as com-
pared to the other spectra, the most significant difference is the presence of a strong band
at 1564 cm−1. This band may be assigned to antisymmetric stretching vibrations of ionised
carboxylate residues (salts of carboxylic acids), νas(COO−), in the biomacromolecular shell
of SeNPs. This assignment is also confirmed by the presence of the accompanying band
related to the symmetric stretching vibrations νs(COO−) at 1412 cm−1, as well as of the
bands related to its bending vibrations δ(COO−) (at 821 and 772 cm−1). The carboxylates
may evidently represent various amino acid residues and be contained in carboxylated
polysaccharides (the typical polysaccharide region within 1200–950 cm−1 is also seen in
spectrum A). Note that the positions of carboxylate-related vibration bands are known
to vary depending on the interactions with the surrounding biomolecules. The band at
1654 cm−1 in spectrum A represents the amide I region of proteins (see below); the ac-
companying amide II band around 1540 cm−1 is definitely overlapped by the strong and
broad νas(COO−) absorption. Very similar results were reported earlier for biogenic SeNPs
isolated from A. brasilense Sp7 biomass without the additional washing steps [47].
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As can be seen in spectrum B, the amount of carboxylic residues significantly de-
creased after the first washing step; further washing brings about only minor changes
(spectra C,D). Thus, the carboxylate-containing components are most likely rather weakly
bound to the surface of SeNPs, in contrast to the rest of the biomacromolecular shell,
which evidently remains stable. This is in line with the recently reported comparative data
on SeNPs of bacterial origin, where the bioorganic capping layers (showing differences
when obtained using different bacteria) are postulated to contain an outer, more weakly
bound shell and an inner part more strongly bound to the Se core [36].

In spectra B–D, both amide I (1655–1653 cm−1) and amide II (1547–1543 cm−1) bands
related to proteins are more pronounced. The polysaccharide region (1200–950 cm−1) is
slightly diminishing with each additional washing step (cf. spectra B–D), indicating that
part of carboxylic groups may indeed be associated with weakly bound carboxypolysaccha-
rides removed upon washing. Besides proteins and polysaccharides, the presence of lipids
at all steps is corroborated by the typical ester ν(C=O) band around 1740 cm−1 (which in
spectrum A is seen as a weaker shoulder and appears to be somewhat more pronounced
after even the first washing; cf. spectra B–D).

In order to reveal unresolved (closely overlapping) bands, second derivatives of the
spectra can be informative, especially for complicated spectra of microbiological sam-
ples [19,48]. Using OMNIC software, the second derivatives of the FTIR spectra shown
in Figure 5 were calculated and presented in the most informative spectroscopic region
(~1800–1400 cm−1; Figure 6, Table 2). Minima on the second derivatives (below zero point)
correspond to both well-resolved spectral bands and inflection points (poorly resolved
bands that may be seen as shoulders, overlapping with stronger adjacent bands) in the
original spectrum [19].

Table 2. Peak assignments 1 in second derivatives of FTIR spectra of biogenic SeNPs obtained using A. brasilense Sp7
measured without washing and after 1–3 washing steps (see Figure 6, curves A–D, respectively) [19–25,46–48].

Functional Groups SeNPs without
Washing

SeNPs after
1 Washing Step

SeNPs after
2 Washing Steps

SeNPs after
3 Washing Steps

C=O
(ester), ν

1737 (v.w.)
1728 (v.w.)

1742
1726 (w.) 1737 1734

Amide I
(in proteins)

1696 (v.w.)
1679 (v.w.)

1657
1635 (v.w.)

1690
1676 (w.)
1658 (s.)

1644

1690
1675 (w.)
1655 (s.)

1627

1684
1668 (w.)
1654 (s.)

1633

Carboxylate (COO–,
νas) 1561(v.s.) 1566 1583 (w.) 1556 (w.)

Amide II
(in proteins) 1539 (v.w.) 1546 (s.) 1549 (s.) 1542 (s.)

“Tyrosine” band 1518 (w.) 1516 1518 1520

Carboxylate (COO–, νs) 1410 (s.) 1409 1413 (w.) 1418 (w.)
1 Notations: ν—stretching vibrations; νs—symmetric stretching vibrations; νas—antisymmetric stretching vibrations; δ—bending vibrations;
v.s.—very strong, s.—strong, w.—weak, v.w.—very weak.

As can be seen from Figure 6, the two typical protein bands, amide I and amide II,
in curve A (SeNPs separated without additional washing) at 1657 and 1539 cm−1, respec-
tively, are weaker than the two dominating peaks assigned to νas and νs of carboxylate
(at 1561 and 1410 cm−1). The ester ν(C=O) band in curve A (split into two components,
at 1737 and 1728 cm−1) is also very weak. However, after the first washing, when a signifi-
cant part of the carboxylate-containing components have evidently been removed, and after
the next two to three washing steps, the protein bands at ~1650 and ~1540 cm−1, as well as
the ν(C=O) bands related to lipids (at ~1740 cm−1), are much more clearly seen (see curves
B–D). It is necessary to add that, owing to the presence of carboxylic groups, especially in
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the form of ionised carboxylates (salts which dissociate in solution), in the surface capping
layer of biogenic SeNPs, the latter are most often characterised by negative zeta potentials
which stabilise their aqueous suspensions [33,34,36].
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It may also be noted that for the amide I band, which is sensitive to the secondary
structure of protein and is known to contain several closely overlapping bands within the
region ~1690–1620 cm−1 [19,21], besides the main band within 1658–1654 cm−1 (the region
typical of the dominating α-helix), there are several weaker component bands within the
“full” amide I region clearly seen in curves B–D in Figure 6, which correspond to several
β-structured protein components [19,21,48]. (Their detailed discussion is, however, out of
the scope of this paper.)
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Thus, it has been shown that, in the case of biogenic SeNPs, their sample preparation
for FTIR spectroscopic analysis is an important step. As has been found, additional washing
(even one step) decreases the content of weakly bound carboxylic components in the
sample, which is reflected in the FTIR spectra. On the one hand, generally during sample
preparation, it is necessary to take into account that the components of the buffer or
medium can contribute to the measured spectrum. On the other hand, the procedures for
removing these components, particularly the widely used method of washing a biological
sample in combination with centrifugation, can concomitantly lead to a change in its state
and/or composition, which is reflected in FTIR spectra, as shown in this work.

3. Materials and Methods
3.1. Bacterial Strains and Growth Conditions

Wild-type strains Azospirillum brasilense Sp7 [29] (ATCC 29145) and Azospirillum
baldaniorum Sp245 [31] (previously known as Azospirillum brasilense Sp245 [30]) were
taken from the Collection of Rhizosphere Microorganisms [WDCM 1021] maintained
at the Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian
Academy of Sciences, Saratov, Russia [49] (URL: http://collection.ibppm.ru/catalogue/
azospirillum/azospirillum-brasilense/ accessed on 13 January 2021). The bacteria were
cultivated in a liquid modified malate salt medium (MSM) as reported earlier [24,25] which
contained the following salts (g·L–1): K2HPO4, 3.0; KH2PO4, 2.0; NH4Cl, 0.5; NaCl, 0.1;
FeSO4·7H2O, 0.02 (added as chelate with nitrilotriacetic acid); CaCl2, 0.02; MgSO4·7H2O,
0.2; Na2MoO4·2H2O, 0.002; sodium malate, 5.0 (obtained by mixing 3.76 g of malic acid
with 2.24 g NaOH per litre), yeast extract, 0.1, pH 6.8–7.0. The cultures (100 mL in 250 mL
Erlenmeyer flasks) were grown under aerobic conditions on a shaker (180 rpm) for up to
19 h. Cell growth was monitored at λ = 595 nm (Spekol 221, Germany); the optical density
(A595) values of the resulting culture suspensions were about 1.0.

3.2. Bacterial Synthesis of SeNPs and Their Purification

The SeNPs were obtained according to the procedure reported elsewhere [47] with
minor modifications. Briefly, bacterial cells of A. brasilense Sp7 (grown as described in
Section 3.1) were harvested by centrifugation in 2 mL Eppendorf tubes (Minispin cen-
trifuge; 15 min, 7000g ×) and washed three times with sterile saline solution (0.85% NaCl
aqueous solution) to remove the culture medium components. All the next steps were
performed under sterile conditions. The resulting wet biomass pellet was resuspended
in half of the initial volume of sterile saline solution. Sodium selenite (Na2SeO3·5H2O,
“Merck”) as 0.5 M stock aqueous solution was added to the suspensions up to 10 mM.
Suspensions containing the cells (washed as above) and selenite were placed in a thermo-
stat (at 31–32 ◦C). The SeNPs thereby formed were monitored by transmission electron
microscopy (TEM; data not shown; see, e.g., [33,47]). After 24 h, the bacterial cells were
removed from the suspension by “soft” centrifugation (1400g ×, 5 min); the supernatant
with SeNPs was collected and filtered through a 0.22 or 0.44 mm PVDF filter to remove
occasional bacterial cells. The suspensions of SeNPs were further centrifuged at 12,000g ×
for 30 min, and the collected precipitate pellet was resuspended in a minimum volume of
Milli-Q directly for FTIR spectroscopic analysis (on a ZnSe disc) or after 1 to 3 additional
washing steps in Milli-Q water and centrifugation at 12,000g × for 30 min.

3.3. Sample Preparation for FTIR Spectroscopic Analyses

The bacterial cells of A. brasilense Sp7 and A. baldaniorum Sp245 (see Section 3.1) were
collected by centrifugation (10,000g ×, 10 min, 4 ◦C), washed 3 times with physiological
solution and dried (on open Petri dishes, ø 3.5 cm) in a thermostatted desiccator at 45 ◦C
up to a constant weight. For infrared spectroscopic measurements, the samples of dried
biomass were prepared in several ways: with/without grinding and with different drying
periods (1.5 or 23 h). As for grinding, dry bacterial biomass was powdered in a small agate
mortar (for about 5 min). The bacterial samples were resuspended in a small volume of

http://collection.ibppm.ru/catalogue/azospirillum/azospirillum-brasilense/
http://collection.ibppm.ru/catalogue/azospirillum/azospirillum-brasilense/
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Milli-Q water. SeNPs were prepared as described above (Section 3.2). Then the resulting
aqueous suspensions (about 30–70 µL) were placed as thin films on clean flat ZnSe discs
(CVD-ZnSe, “R’AIN Optics”, Dzerzhinsk, Russia; ø 1.0 cm, thickness 0.2 cm) and dried at
45 ◦C again as described above.

3.4. FTIR Spectroscopic Measurements

Transmission FTIR spectroscopic measurements were performed as described else-
where [47] on a Nicolet 6700 FTIR spectrometer (Thermo Electron Corporation, Waltham,
MA, USA; DTGS detector; KBr beam splitter). Spectra were collected with a total of 64 scans
(resolution 2 cm–1 for spectra of SeNPs and 4 cm−1 for bacterial biomass samples) against
the ZnSe disc background and manipulated using OMNIC software (version 8.2.0.387,
Thermo Electron Corporation, Waltham, MA, USA) supplied by the manufacturer of the
spectrometer. For each spectrum, the baseline was corrected using the “automatic baseline
correct” function, and then each spectrum was smoothed using the standard “automatic
smooth” function of the software which uses the Savitsky–Golay algorithm (95-point mov-
ing second-degree polynomial). All the FTIR spectroscopic measurements were repeated
two (for SeNPs) or three times (for bacteria) for each sample and were well reproducible.

4. Conclusions

It has been shown that preliminary sample preparation steps (such as grinding, wash-
ing and drying) of microbiological specimens for transmission FTIR spectroscopic measure-
ments may in some cases alter the composition and other properties of samples, which is
reflected in their FTIR spectra. Thus, special care should be taken to ensure that samples
are analysed by FTIR spectroscopy in their stable state which would ensure obtaining
reproducible spectra. However, if any sample preparation step is expected to alter the
properties of the samples under study, this can be checked by comparing their FTIR spectra
before and after a sample treatment step. For complicated microbiological objects (such as
bacterial biomass or nanoparticles of microbial origin, as studied in this work), the de-
scribed examples could allow a most adequate protocol for sample preparation to be chosen
to ensure obtaining reliable and reproducible spectroscopic data.
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