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Abstract: 3D visual recognition is a prerequisite for most autonomous robotic systems operating in
the real world. It empowers robots to perform a variety of tasks, such as tracking, understanding
the environment, and human–robot interaction. Autonomous robots equipped with 3D recognition
capability can better perform their social roles through supportive task assistance in professional jobs
and effective domestic services. For active assistance, social robots must recognize their surroundings,
including objects and places to perform the task more efficiently. This article first highlights the
value-centric role of social robots in society by presenting recently developed robots and describes
their main features. Instigated by the recognition capability of social robots, we present the analysis
of data representation methods based on sensor modalities for 3D object and place recognition
using deep learning models. In this direction, we delineate the research gaps that need to be
addressed, summarize 3D recognition datasets, and present performance comparisons. Finally, a
discussion of future research directions concludes the article. This survey is intended to show how
recent developments in 3D visual recognition based on sensor modalities using deep-learning-based
approaches can lay the groundwork to inspire further research and serves as a guide to those who
are interested in vision-based robotics applications.

Keywords: 3D visual recognition; sensors; object detection; place recognition; camera; LiDAR; sensor
fusion; deep learning; 3D detection dataset; autonomous vehicles; robotic systems

1. Introduction

Today, robotic systems with social characteristics are considered an important keystone
in household chores, healthcare services, and modern industrial production [1]. 3D visual
recognition is the fundamental component of these social robots. Social robots [2] are
autonomous robots that are currently being developed on a large scale for safe and secure
robot interactions in the human-centric environment [3]. The appearance and applications
of these robotic systems vary; however, recognition in the context of object and place plays
a central and vital role in these systems for semantic understanding of the environment.
This article starts with the impact of social robots and lists the key features of some recently
developed social robots that are tailored in public, domestic, hospital, and industrial use.

These robots are designed to interact and exhibit social behaviors with broad human-
like capabilities, which integrate visual recognition, knowledge representation, task plan-
ning, localization, and navigation. Among all these, we focus on a systematic review of the
approaches that address the most essential robotic capability, known as visual recognition.
In this direction, we present data representation methods based on sensor modalities for
3D recognition using deep learning (DL) and examine the approaches for both 3D object
recognition (3DOR) and 3D place recognition (3DPR).
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Visual recognition is a vital component for robotic systems that operate in human
environments. The methods to perform visual recognition tasks generally fall into two
categories: either machine-learning-based approaches, which first require feature definition,
i.e., using scale invariant feature transform [4], histogram of oriented gradients [5], and then
classification techniques, such as support vector machine [6] or deep learning (DL)-based
approaches that perform recognition task using convolutional neural networks (CNN) [7]
without specifically defining the features.

Autonomous robotic systems deal with a large amount of real-world data. Therefore,
the manually designed models of traditional machine learning algorithms are not feasi-
ble [8] for real-world robotics applications. On the other hand, the flexibility of DL-based
models and their better performance as the scale of data increases make them well suited
for use in robotics applications. Over the last few years, CNN-based DL models, starting
in 2D space using two-stage [9,10] and one-stage object detectors [11–16], have achieved
state-of-the-art object recognition results with the output of 2D bounding boxes (BBoxes).

Typically, two-stage detectors, such as R-CNN [17], Fast R-CNN [18], and Faster R-
CNN [9], exploit region proposal networks in a first step to propose regions of interest
(RoI). Afterward, they send region proposals to the network pipeline for object prediction
by calculating features over RoI. As a trade-off for run time, one-stage detectors, such as
YOLOv3 [15], YOLOv4 [19], Scaled-YOLOv4 [20], and single shot multibox detector [12]
do not involve region proposal.

Researchers [12,15] have handled object detection as a regression problem and directly
learned class probabilities to detect the object with bounding box coordinates. One-stage
detectors are faster and capable of real-time performance; however, their accuracy rate
is lower than two-stage detectors [21]. The task of place recognition is similar to object
retrieval [22] and has been performed using dynamic object detection [23] or constructing
object maps that contain object information in a place [24]. Although extensive research
has been conducted on 2D recognition, it has potential limitations compared with 3D
recognition.

With the recent monumental innovations in sensor technology, a wide variety of
DL-based 3D object [25–28] and place recognition approaches [29–31] have been developed
for different types of sensors. LiDAR and camera are two frequently used and increasingly
popular sensors [32] that have been employed for object and place recognition in robotic
systems. 3D object recognition predicts 3D information of objects, such as the pose, volume,
and shape of the object with 3D BBoxes and class labels. It plays an important role in the
intelligent perception of robotic systems.

In contrast to 2D object detection, it requires richer input data and efficient algorithms
to estimate six degrees of freedom (DoF) poses [33] with high precision of oriented 3D
BBox [34,35] dimensions for objects. 3D Place recognition involves distinguishing two
identical places based on their sensor information [36]. Different approaches for place
recognition are used, such as several feature maps that are correctly matched between im-
ages, learning representative features [37], and calculating the pixel-wise distance between
camera images.

LiDAR-based methods for place recognition concentrate on developing local [38] and
global [39] descriptors from structural information, segmenting [40] the point cloud (PC)
data in 3D LiDAR point clouds and utilizing CNN techniques with 3D LiDAR PC by
projecting range sensors on 2D images [41]. However, the synchronization of camera and
LiDAR sensors [42] is essential for capturing detailed information of objects and large-scale
place recognition.

1.1. Contributions

During the last decade, there has been rapid progress in the domain of social robots,
including autonomous vehicles. Parts of this success rely on the implementation of both
3D object and place visual recognition tasks.
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Previous reviews, shown in Table 1, concentrated only on 3D object recognition and
did not address the 3D place recognition methods. In contrast to the previous studies, this
article reviews and analyzes sensor-based data representation methods for both 3D object
and place recognition (3DOPR) using state-of-the-art DL-based approaches. Moreover, we
also discuss recently developed social robots.

This review is concentrated on 3D visual recognition approaches that have their appli-
cations in the domain of robotics, while approaches in the domain of smart environments
are beyond the scope of the current survey. We aim at facilitating novice researchers and
experts to overcome the challenging task of determining and utilizing the most suitable
visual recognition approach for their intended robotic system, as one can quickly explore
the recent research progress through this review.

Table 1. The Contributions of This Survey.

Covered Topics Guo et al. [43] Sing et al. [44] This Survey

Representative Social Robotic Systems No No Yes [45–54]

3D Object Recognition (3DOR) Yes Yes Yes [55–77]

3D Place Recognition (3DPR) No No Yes [78–89]

Compared to the existing survey papers, shown in Table 1, the present review is
different in the following terms, to the best of our knowledge:

• We discuss the latest representative social robots that have been developed recently
(Section 2).

• The present study is the first article that comes up with a combined review of two
robotic capabilities: 3D object recognition and 3D place recognition in a comprehensive
assessment. It provides data representation modalities based on camera and LiDAR
for both 3D recognition tasks using DL-based approaches (Section 3).

• It reviews 14 3D object detection datasets.
• The current survey presents a comparison of existing results to evaluate the perfor-

mance on datasets.
• It yields an analysis of selected approaches from the domain of robotics, delineates the

advantages, summarizes the current main research trends, discusses the limitations,
and outlines the possible future directions.

• Compared to the earlier surveys, this study is more concerned with the most recent
work. Therefore, it provides the reader an important opportunity to advance their
understanding of state-of-the-art robotic 3D recognition methods.

1.2. Survey Structure

The survey has been organized in a top-down manner. The overall structure of the sur-
vey with corresponding topics and subsections is diagrammatically illustrated in Figure 1.
In Section 2, the aim is to provide fresh insight to the readers into recently developed social
robots with their impact on society, use cases, sensors, tasks (i.e., recognition), and semantic
functions (i.e., assisting) in public places (Section 2.1), domestic (Section 2.2), hospitals
(Section 2.3), and industrial environments (Section 2.4).

In Section 3, inspired by the recognition capabilities of social robots, as described in
Section 2, the article examines the sensor (camera and LiDAR) based data representation
approaches used for the 3D object (Section 3.1) and place (Section 3.2) recognition applying
DL-based models. In addition, it gives a brief overview of datasets (Section 4) that have
been used for the evaluation of 3D recognition methods. Consequently, in Section 6, the
article discusses current research challenges and future research directions, and finally we
conclude the survey with a summary in Section 7.
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Figure 1. The overall structure of the survey that shows all the topics discussed in each section.

1.3. Inclusion and Exclusion Criteria

The inclusion and exclusion criteria are mainly focused on Section 3 for 3DOR and
3DPR methods. Section 2 does not involve comparison (instead it highlights the importance
of visual recognition capability by giving the examples of recently developed robots from
different sectors); therefore, it is not restricted to follow the same time span as Section 3.
However, Section 3 performs the literature analysis for 3DOR and 3DPR methods; therefore,
all studies in Section 3 are restricted to follow a specific time span based on inclusion and
exclusion criteria. For 3DOR (Section 3.1) and 3DPR (Section 3.2), the inclusion criteria are
as follows:

• The research publications must be from 2014 to 2021.
• Their domain must be a robotic system.
• They must be either journal or conference publications.
• They must address 3DOR or 3DPR methods using deep-learning approaches based

on Camera and LiDAR sensor modalities.

Table 2 represents both inclusion and exclusion criteria that were applied to perform
the paper selection, and the results of the systematic approach for paper filtering process
are described below.

Results of the Paper Selection Process

We conducted a systematic literature review for Section 3 to determine which DL-
based models are being used for 3D object and place recognition based on sensor modalities.
We used four search strings (“Camera” AND “3D” AND “Object Recognition”, “LiDAR”
AND “3D” AND “Object Recognition”, “Camera” AND “3D” AND “Place Recognition”,
and “LiDAR” AND “3D” AND “Place Recognition”) to extract the research articles from
two key digital databases of academic journal articles that were IEEE Explorer and the
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ACM Digital Library. The paper selection process of this article consists of four steps as
shown in Figures 2 and 3.

First, the relevant articles for the survey from digital libraries using search strings
were collected that correspond to the type of sensor (camera and LiDAR) and category
of 3D recognition (object and place). In the second step, 329 articles in IEEE explores
library and 593 articles in ACM digital library were extracted by applying the time period
filter. The third step refined the 93 articles from IEEE Explorer and 144 articles from ACM
Digital Library that belonged to the robotics category. We used MS Access database
management software to find duplicates among these articles. For this, we ran SQL query
on the database table and found that 35 articles in ACM and 21 articles In IEEE Explorer
were duplicates.

After removing the duplicate articles, the fourth step involved splitting the articles that
used deep-learning-based approaches and resulted in 23 articles from IEEE explorer and
51 articles from the ACM Digital Library that met the inclusion and exclusion criteria. Lastly,
the selected articles based on their sensor data representation methods were arranged into
3DOR and 3DPR categories in which 17 articles from IEEE Explorer and 44 articles from
ACM Digital library are related to the 3DOR task and five articles from IEEE Explorer and
seven articles from ACM Digital library are related to the 3DPR task.

Table 2. 3D Recognition: Inclusion and Exclusion Criteria.

Inclusion Criteria Exclusion Criteria

Time Period 2014–2021 Before the year 2014

Domain Robotic System Non-robotic system

Articles’ Type Journal and conference publication Text book chapters, encyclopedia,
and posters

Subject Area 3D object and place recognition 2D object and place recognition

Approaches Deep learning, neural networks, and
CNN Traditional methods

Sensors Camera and LiDAR Radar, GPS, and Ultrasonic

Figure 2. Results: IEEE Explorer paper selection based on the inclusion and exclusion criteria.
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Figure 3. Results: ACM Digital Library paper selection based on the inclusion and exclusion criteria.

2. Representative Social Robotic Systems

This section presents recently developed social robotic systems that demonstrate
recognition tasks and semantic understanding to perform a function in public (Section 2.1),
domestic (Section 2.2), medical (Section 2.3), and industrial (Section 2.4) environments.

2.1. Robots in Public Spaces

Robots in public spaces indicates social robots used in places that are generally ac-
cessible for everyone, such as airports, supermarkets, libraries, and museums. Amazon
launched a six-wheeled autonomous Scout delivery robot [45] in its Seattle-based research
and development lab. It is commercially available in a few places in the USA, which
are Atlanta, Georgia and Franklin, Tennessee after a long test run [90]. It uses an array
of cameras and ultrasonic sensors for route planning and navigation on sidewalks at a
walking pace and climbing up the front porch for package delivery. It has the ability of
semantic task understanding, such as recognizing people and pets, detecting, and avoiding
obstacles using machine learning algorithms.

AIMBOT [46] is an anti-epidemic autonomous driving robot that is designed for
indoor crowded public environments, including schools, hospitals, and office buildings
to provide safe and efficient Covid-19 protection. It is available for commercial use. It
recognizes 200 people per minute, uses infrared thermal imaging camera to measures
their body temperature, detects whether individuals are wearing masks, and sends a voice
reminder to the people without a mask. Table 3 lists the sensors, purpose, and tasks as well
as their algorithm, appearances, semantic functions, and development status.
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Table 3. Robots in Public Spaces.

Amazon Scout [45] AIM BOT [46]

Sensor(s) Array of cameras and ultrasonic
sensors

HD, infrared, RGB-D, surround
and facial recognition cameras,
ultrasonic and Pressure sensors,

and high precision LiDAR

Purpose/Usability Parcel delivery to destination. Anti- epidemic COVID-19
protection assistant

Scenario
People monitoring scenario for
epidemic prevention in indoor

crowded places

Safe package delivery scenario
in a robot carrier with potential

benefits of immediate and
cheap service

Task
People and pets’ recognition.

Obstacle and sidewalks
detection

Face recognition
Mask detection

Algorithm Machine Learning 3D Detection
USLAM

Appearance Wheeled robot Autonomous driving mobile
base robot

Semantic Functions
To navigate in sidewalks and

climb up front porch for
parcel delivery

To provide contact-less
long-distance human body
temperature measurement

and screening

Commercially Available Yes Yes

2.2. Robots in Domestic Environment

Robots in the domestic environment refer to the robots that are used at homes for
household chores, entertainment, or personal assistance. At the consumer electronics show
2020, Samsung showcased a robotic chef’s assistant [47], which consists of a pair of arms
that mimic human gestures to cook the meal and performs the task on voice commands.
It downloads the appropriate skills and performs the tasks, such as slicing by picking
up the knife, pouring the ingredients, and mixing them. It is equipped with sensors and
cameras and relies on AI and computer vision algorithms for the recognition task. The
prototype of the Samsung chef robot was first unveiled at KBIS 2019 [91]. It is not available
commercially.

Amazon’s Astro [48] is an Alexa-based home assistant robot that combines Alexa,
computer vision, and AI software. It is a commercially available robot for home security,
including a six-month free trial of Ring Protect Pro that allows saving videos in Ring’s
cloud storage [92]. It obeys voice commands, such as follow me or go to a specific room. It
performs face recognition to deliver items to a specific person. It acts as a family companion
and entertains children by playing music. It cares for elderly people by reminding them to
take medicine and record their blood pressure. It also assists to take voice or video calls. It
uses SLAM for mapping the environment and roaming around the house. It automatically
attaches itself to the charging dock. House members can use its mobile application for
remote monitoring if they are outside.

Table 4 presents the sensors, usability, and tasks of domestic robots along with their
algorithm, appearances, semantic functions, and development status.



Sensors 2021, 21, 7120 8 of 61

Table 4. Robots in Domestic Environments.

Chef Bot [47] Astro [48]

Sensor(s) Cameras, internal and external
sensors

Cameras and the full range of
audio-video sensors

Purpose/Usability Chef assistant in the Kitchen Family companion

Scenario
Collaborative cooking scenario
with AI powered chef assistance

in kitchen

Human-robot interaction scenario
to perform day-to-day home tasks

Task Kitchen utensils recognition,
Speech recognition

Object detection, facial recognition,
target tracking, and human pose

estimation

Algorithm AI and vision-based algorithm Computer Vision, AI and SLAM

Appearance Arm- shaped robot Wheeled robot with a screen

Semantic Functions

To help in cooking the meals on
voice commands

To recognize and manipulate
kitchen appliances

To bring coke
To help with video calls and

conferencing
To play music

To dance and entertain the children
To care the elders

To perform remote home
monitoring

Commercially
Available No Release Date Yes

2.3. Robots in Hospitals

Robots in hospitals are used in healthcare and treatment centers for relieving med-
ical personnel either by aiding in surgery or caring for the patients. Moxi is a robotic
assistant [49] in semi-structured hospital environments that is commercially available. The
Medical City Dallas Heart and Spine Hospital is the first North Texas health care provider
using the Moxi robot to combat a lack of nursing personnel in hospital systems [93]. It
uses AI and machine learning algorithms to reduce the cognitive workload of nurses by
performing tasks that do not require interaction with patients, such as delivering supplies
to patient rooms, fetching items, and removing linen bags. Table 5 illustrates its charac-
teristics, which include the robot’s sensors, purpose, and tasks, algorithm, appearances,
semantic functions, and development status.

Ahn et al. [50], developed a multi-robot system consisting of ReceptionistBot and
CareBot for the hospital environment that performs the tasks of receptionist, nurse assistant,
and medical server. Both ReceptionistBot and CareBot are in the prototype stage and are
not available commercially. ReceptionistBot communicate with patients and obtains their
personal information. If visitors want to meet the medical staff, it guides them to meet
CareBot for treatment. Carebot collects data about the patient’s health condition by asking
questions. It assists the nurse using different healthcare devices to measure the blood
pressure, pulse rate, and oxygen level of the patients. It also communicates with RoboGen,
which is a secure server for managing patient information. MAiRA [51] is a multi-sensing
intelligent robot that assists in complex medical procedures. This intelligent assistant is a
commercially available cognitive robot [94]. It has voice recognition capability.



Sensors 2021, 21, 7120 9 of 61

Table 5. Robots in Hospitals.

Moxi [49] Reception- istBot [50] CareBot [50] MAiRA [51]

Sensor(s)

LiDAR sensor from
Velodyne, camera from
Intel, arm from Kinova,

and a gripper

Camera, microphone,
and speaker

Camera, microphone,
speaker, and various

health care device
sensor

3D Vision sensors,
voice recognition

sensors, Smart touch
sensitive 6-DOF sensor

Purpose/Usability Hospital Robot Assistant Patient Greeting Clinical staff Assistance Surgical Procedures

Scenario

Relieves the pressure
from the hospital nursing

staff in clinical setting
scenario by retrieving

and bringing supplies to
hospital rooms or

delivering the samples to
the laboratories

Human–robot
interaction scenario to

perform hospital
receptionist task

Patient care scenario in
everyday nursing

practices

Clinical care scenario to
perform robot assisted

procedure

Task Detect and recognize
objects and people

Face detection, speech
Recognition

Face detection, speech
recognition, server

communication

Object and face
recognition, voice

recognition, gesture
detection, pose

estimation

Algorithm

Object and people
recognition, human

guided learning, object
manipulation

OpenRTM [95], Yujin
voice engine

OpenRTM [95], Yujin
voice engine

Object recognition,
voice recognition,
human detection,

gesture recognition

Appearance Compliant arm, hand,
mobile base

Wheeled base, arms,
touch screen

Wheeled base, touch
screen Robotic Arm

Semantic Functions

To help clinical staff, i.e.,
nurses to complete their

task, such as item
collection

To communicate with
patients, gather

personal information
from patients , assign

them to CareBot

To acquire data about
patients’ health

condition, assist the
nurses , measure the
vital signs, i.e., pulse
rate and report the

results to medical staff

To assists medical staff
in complex medical

procedures

Commercially
Available Yes No (field testing) No (field testing) Yes

It performs human–robot interaction in a collaborative industrial environment. It can
learn from instructions given through voice commands or gestures. It can perform object
detection, pose estimation, and object grasping tasks either with professionals or wholly
autonomously.

2.4. Robots in Industrial Environment

Robots in industry are used to assist in manufacturing by automating repetitive tasks,
such as welding, assembly, and shipping. Handle is an autonomous mobile manipulation
robot [52] developed by Boston Dynamics for moving boxes in a warehouse and unloading
them from shipping containers. It relies on a 2D and 3D perception learning-based vision
system to detect boxes. Table 6 enumerates the sensors, usability, tasks, algorithm, appear-
ances, semantic functions, and development status. Handle will be available for sale in two
years according to Playter the Chief Executive Officer at Boston Dynamics [96]. LARA [53]
is a collaborative industrial robotic arm, developed recently. Its prototype is complete.
However, it is expected to be realized soon for commercial use [97]. It is available in two
sizes with 5 and 10 kg payload capacities. Its 3D vision allows detection and recognition of
an object for a manipulation task.

Stretch [54] is a recently designed robot for autonomously moving boxes around
the warehouses. Boston Dynamics expects that the robot will be commercially available
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from 2022 [98]. The strength of its arm makes it unique for potential entry into robotic
warehouses. It is flexible and can do different tasks, such as loading, unloading boxes, and
building up pallets.

Table 6. Robots in Industrial Environments.

Handle [52] LARA [53] Stretch [54]

Sensor(s) Cameras, 2D and 3D
sensors

3D Vision sensor,
torque sensor

2D camera, depth
sensor

Purpose/Usability Warehouse robotic
assistant

Collaborative
manipulation task

Warehouse robotic
assistant

Scenario
Material handling

scenario in
warehouse

Human and
industrial robot

collaborative
scenario to perform
manipulation task

Box handling
scenario in
warehouse

Task 3D Box detection Object recognition
and grasping

Object detection and
localization, smart

grasping

Algorithm
Deep

Learning-based
vision

AI and Deep
Learning

AI and Deep
Learning

Appearance Wheeled Robot with
a manipulator arm

Wheeled base with
robotic arm

Mobile base with
wheels, robotic arm

Semantic Functions

To move boxes in the
warehouse, unload

trucks and build
pallets

To perform
industrial

manipulation tasks
with more speed and

precision.

To perform
warehouse

operations (box
shifting and platte

building) more
efficiently

Commercially Available No No Expected in 2022

3. 3D Recognition

With the recent breakthroughs in deep learning (DL) and significant improvements
in sensor technologies, 3D recognition has made great progress, which leads toward
rapid development in autonomous robotic systems, including autonomous driving. In
this section, we concentrate on camera and LiDAR-based data representation methods
employed for both 3D object recognition (3DOR) (Section 3.1) and 3D place recognition
(3DPR) (Section 3.2) using DL models. Recently developed autonomous robotic systems
(as described in Section 2) are mostly equipped with both cameras and LiDAR for visual
perception tasks.

LiDAR is suitable to work with real-time autonomous systems in both indoor and
outdoor environments, although most of the perception approaches focus on the use of
LiDAR in autonomous vehicles. However, recent trends in deep-learning-based end-to-
end approaches have also led researchers’ interest in the innovative use of LiDAR in
autonomous robots for recognition tasks that benefit from the detailed 3D PC data to detect
objects accurately. The PC data provided by the LiDAR sensor retains information related
to the object’s position and reflection intensity as well as shape representation of different
objects in complex scenes.

Hence, integrating this 3D PC information with DL-based recognition models is
indispensable to perform precise 3D recognition. On the other hand, monocular and stereo
cameras are less expensive sensors than LiDAR for 3D object detection but require post-
processing techniques to determine the size and relative distance. The detection capability
and reliability of the camera and LiDAR are limited in different environments. Table 7
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summarizes the advantages and limitations of both sensors. Camera-LiDAR fusion is used
to overcome these issues.

Table 7. Comparison of Camera and LiDAR Sensors.

Sensors Advantages Limitations

Camera

Color distribution,
better sensing of objects,

detailed information about objects
by capturing their fine textures,

low cost

Limited field of view,
not accurate position estimation,

affected by illumination condition,
limited ability to detect the distance

LiDAR

Wide field of view,
high angle and range resolutions,

accurate position estimation,
can be used at night

Unstructured point cloud data,
insufferable in fog, snow, and rain,

cannot capture fine textures of objects,
expensive

3.1. 3D Object Recognition (3DOR)

This section categorizes data representation methods based on sensors’ modalities
for 3D object recognition using deep learning in autonomous robotic systems. Compared
with traditional recognition methods, the success of DL in the past ten years for robust and
accurate object detection has made deep CNN the most promising method to perform 3D
vision recognition tasks for robotic systems. The overall taxonomy is shown in Figure 4,
which illustrates data representation in visual sensors that include a camera (Section 3.1.1),
LiDAR (Section 3.1.2), and camera-LiDAR fusion (Section 3.1.3).

Figure 4. Camera and LiDAR-based Data Representation Modalities for 3D Object Recognition (3DOR).

3.1.1. Camera-Based 3DOR

This section explores the methods that perform 3DOR by estimating 3D bounding
boxes (BBoxes) based on either monocular or stereo camera images as discussed in Table 8
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with limitations and research gap. We first give an overview of camera-based methods and
then describe their advantages and limitations in Table 9.

Table 8. Methodology and Limitations: Camera-based 3DOR.

Camera

Methodology
Uses RGB image for object detection and predicts 2D BBoxes, which are

inferred to generate 3D BBoxes by re-projection or BBox regression,
computationally less expensive compared to other methods

Limitation(s) Input image does not have depth information, which causes low
localization performance and inaccurate object size estimation

Research Gap CNN architectures for estimating the depth information need to be
investigated to improve the detection results

(i) Monocular-based 3DOR

A monocular camera is essential for the deployment of low power and low-cost
systems in the real-world application of robotics or autonomous driving [99]. Therefore,
researchers have shown increasing interest in monocular 3D object detection in recent
years [34,100–104]. Even though existing 3D detectors have achieved good accuracy, most
of them do not consider the information related to occluded objects, which are partially
visible. To this end, Chen et al. [55] improved 3D object detection by establishing a
relationship of paired samples, which allows modeling spatial constraints for occluded
objects. Its 3D detector introduced an uncertainty-aware prediction module for computing
object location and object-to-object distances.

This method adopted a one-stage architecture by sharing the anchor-free 2D object
detection approaches, consisting of one backbone and several task specific dense prediction
network branches. The backbone accepted one monocular image as input while (WxHx64)
size as output feature map. It had eleven output branches as shown in Figure 5, which
were divided into three parts: three for 2DOR, six for 3DOR, and two for the prediction of
pairwise geometric constraints, which were estimated among adjacent objects using key
points on the feature map.

Figure 5. The architecture [55] overview with eleven prediction branches divided into 2DOR, 3DOR, and pair constraints.

Li et al. [56] presented a 3D object detection method by extracting 3D information from
a 2D image and generated accurate 3D BBoxes by obtaining coarse cuboids of predicted
2D boxes. In contrast to typical methods that rely on feature extraction from 2D BBoxes, it
exploited 3D structural information by employing visual features and used the extracted
features from surfaces to eliminate the feature ambiguity problem of 2D bounding boxes.
It modified faster R-CNN for orientation prediction by including a new branch. Figure 6
shows an overview of its proposed framework in which single RGB image was passed as
input, and it was processed in four steps. First, a CNN-based detector, known as 2D+O
subnet, was used for extracting 2D BBoxes and orientations of the objects.
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Table 9. Literature Analysis: Camera-based 3D Object Detection Methods.

Model Detector
Category

Environment Camera Scenario Advantage(s) Limitation(s)

Mono
Pair [55] One-stage Indoor Monocular

Partially
occluded objects
scenario in case
of autonomous
driving systems

Refines 3D object
detection based on spatial

relationship
Uses 3D distances of
adjacent neighbors to

detect partially occluded
objects

Detects cars
only and
ignores

detection of
other classes

GS3D [56] Two-stage Outdoor Monocular

3D object
detection based
on a single RGB

image in the
scenario of

autonomous
driving

Overcomes the feature
ambiguity issue by

employing the features of
visible surfaces to

discover information of
3D structures

Restricts object
detection on the
boundary of the

image

SS3D [57] One-stage Indoor Monocular

3D object
detection

scenario from a
single view in

case of
autonomous

system.

Detects 3D objects and fits
corresponding 3D BBoxes

by a joint architecture
Improves performance by
modeling heteroscedastic

uncertainty

The internal
ranking is less
pronounced

M3D
SSD [58] One-stage Outdoor Monocular

Objects’
mismatching and

misalignment
scenario in the

anchor size and
the anchor center

overcomes the size
mismatching in receptive

fields and anchors
Reduces the center

misalignment of object
and anchor

Does not detect
well for small

objects at a
distance greater

than 60m

SRCNN [59] Two-stage Outdoor Stereo

Sparse, dense,
semantic and

geometric
information

retrieval scenario
from stereo

imagery

Uses sparse and dense,
semantic, and geometric
information for 3D object

detection without
acquiring depth input and
3D position supervision.
Simultaneously detects

and associates the objects
for left and right images
with small modifications

Doubled
training set

Center
Net [60] Two-stage Outdoor Stereo

Stereo based 3D
object detection

scenario that does
not require depth

estimation and
anchor boxes

Does not reply on
anchor-based 2D

detection methods
Does not use depth

estimation and LiDAR
data

Detects small target
objects that are occluded

Anchor-free left
and right

association and
back-end

optimization
require

improvement

Figure 6. The proposed 3D object detection paradigm [56] consisting of a CNN based model (2D+O subnet), 3D guidance
generated using the obtained output of 2D+O subnet, and extracted features utilized by the refinement model (3D subnet).
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In the second step, these were utilized with the prior knowledge for driving scenario
and basic cuboid were generated, which were called guidance. In the third step, this
guidance was projected on the image plane and features were fused as distinguishable
structural information to eliminate the ambiguity. In the fourth step, another CNN called
3D subnet was used fused features as the network input to improve the guidance.

Jörgensen et al. [57] proposed single-stage monocular 3D (SS3D) architecture. It
contained two main parts: a CNN that was used for detecting the objects by regressing
a surrogate 3D representation and a 3D BBox optimizer for fitting respective 3D BBoxes.
SS3D regressed 2D and 3D BBoxes simultaneously after specifying the object’s center
and its 2D and 3D BBox tuple contained 26 surrogate elements. Its proposed pipeline is
illustrated in Figure 7 and consists of three steps. The first step is object detection with
class scores and regression for 3D BBoxes’ fitting, while the second step involves non-
maximum suppression for the elimination of redundant detections. Finally, 3D BBoxes
were yielded through an optimizer using learning weights, and these 3D BBoxes were
fitted independently and in parallel using the non-linear least squares method.

Figure 7. The pipeline of SS3D [57] for 3DOR from a single view.

Luo et al. [58] introduced a monocular 3D single stage object detector (M3DSSD) to
overcome the feature mismatching issue of anchor-based monocular 3DOR methods by
proposing a two-step feature alignment approach. The major components of its architecture
shown in Figure 8 are a backbone network that is modified version of [105], feature
alignment, attention block, and prediction head. Its asymmetric non-local attention block
(ANAB) extracts depth-wise features for representing the global information. Its feature
alignment consisted of two steps to handle the misalignment of 2D and 3D BBoxes. The
first step obtained the target region based on the classification confidence and allowed the
respective filed of the feature map to concentrate on the anchor regions. The second step
used the 2D/3D center prediction for feature offset estimation to reduce the gap between
predictions and feature maps.

Figure 8. The architecture of M3DSSD [58] for monocular 3D object detection (a) Framework backbone. (b) The two-step
feature alignment, classification and regression heads with ANAB for depth prediction. (c) Other regression heads.
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(ii) Stereo-based 3DOR

Compared to the monocular camera, there are relatively fewer studies that utilize
stereo vision for 3D object detection. Li et al. [59] exploited semantic and geometric
information in the stereo image by proposing a stereo R-CNN based 3D object detector,
which was an extension of Faster R-CNN. The stereo region proposal network, stereo
R-CNN, and key points branch were three major components of its architecture as shown
in Figure 9.

The stereo region proposal network module generated right and left RoI proposals.
The stereo R-CNN module applied RoI-Align [10] on feature maps and concatenated them
for object classification. It adds a stereo regression branch for accurate regression of 2D
stereo boxes. The key point branch took left RoI features for detecting object key points.
It performed 3D box estimation by projecting the relations between 2D right-left boxes
with 3D box corners and key points. It specified accurate 3D bounding boxes and object
localization by employing a dense region-based photometric alignment method.

Figure 9. The architecture of Stereo R-CNN [59], which outputs key points, stereo boxes, along with the viewpoint angle
and dimensions, followed by 3D BBox estimation.

Inspired by CenterNet [106] and Stereo R-CNN [59], Shi et al. [60] proposed a 3D object
detection method to recognize the target by extracting semantic and geometric features in
stereo RGB images without relying on depth information. It used 2D left-right boxes and
predicted four semantic key points of the object’s 3D BBoxes while optimizing the position
of 3D BBoxes using a photometric alignment module. Its network was built on CenterNet,
which extracted the features from left and right image architecture as shown in Figure 10
using a weight-share backbone, which outputs 10 sub-branches. It performed two tasks.
The first task is related to stereo 2D detection in which five sub-branches estimate the
center, offset, and BBox of the left object. The second task is the stereo 3D component in
which five sub-branches were used to estimate the dimension, orientation, vertices, and
center distance of 3D BBoxes for left objects.
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Figure 10. Network architecture of Stereo CenterNet [60] with 10 outputs and sub-branches for two tasks and the estimated
3D BBoxes.

3.1.2. LiDAR-Based 3DOR

LiDAR gives accurate depth information of the environment for 3DOR by discretizing
the whole 3D space [107]. The major challenges toward applying DL-based approaches
for LiDAR-based 3D object recognition research are the unordered, irregular, discrete,
and sparse data representation of PCs, which makes it difficult to process point clouds
data directly with CNN-based models. This is due to CNN models rely on convolution
operation, which takes ordered, regular, and structured data. More recently, literature has
emerged with different methods to address PCs data processing challenges using CNN
for 3D recognition. This section divides DL-based 3D recognition methods for LiDAR
point clouds into three categories: structured (ordered), unstructured (un-ordered), and
graph-based representation.

(i) Structured Representation for 3DOR

This section discusses 2D image grid and 3D voxel grid-based representation for
LiDAR-based 3DOD via deep-learning approaches.

(a) 2D Image Grid-Based 3DOR

Much of the current literature on 3DOR pays particular attention to project discrete
3D PC data into a 2D grid representation using DL-based models. Table 10 gives a brief
overview of the 2D image grid-based 3DOR method with current restrictions and research
gaps. Studies along with their advantages and limitations are discussed in Table 11.

Table 10. Methodology and Limitation(s): 2D Image Grid-based 3DOR Methods.

2D Image Grid

Methodology

Projects 3D point clouds into a 2D image grid, which is passed to CNN for
object detection with 2D BBoxes

The 3D BBoxes are inferred from 2D BBoxes by performing position and
size regression

Limitation(s) Projection of 3D point clouds onto a 2D image grid causes information loss,
which leads to inaccurate spatial information compared to raw PC data

Research Gap Encoding of the input image by hand-engineered features could be
replaced with learned representations to improve detection results
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Zeng et al. [61] utilized pure LiDAR PC on a 2D grid and introduced a real-time 3D
detection method RT3D illustrated in Figure 11 using two sub-networks: region proposal
network and classification sub-network. Its pipeline contained three major steps. First,
sparse 3D point clouds were projected on a 2D grid representation for converting them into
the input format of CNN. After that, height information from point data was embedded
in the 2D grid for 3D object detection. Thirdly, the 2D grid information was passed to a
two-stage CNN detector, which generated region proposals.

This was initialized with pre-trained ResNet-50 model [108], while it adopted Faster-
RCNN [109] techniques for the generation of region proposals on feature map and in-
troduced pre-RoI pooling convolution techniques before RoI operations to improve the
computation efficiency. Subsequently, classification and location regression for each RoI
was performed to define the location, orientation, and size estimation with a pose-sensitive
feature map. This addressed two problems related to the sparsity of PC: First, deleting
empty anchors that contained no data on feature maps; Second: adopting automatic se-
lection of hard examples using online hard example mining [110] to provide end-to-end
efficient and effective network training.

Most PC-based 3D object detection methods use anchor-based detection methods,
which have two major disadvantages. First, these methods require Non-Maximum Sup-
pression (NMS) to filter redundant, overlapped, and imprecise bounding boxes (BBoxes),
which causes non-trivial computational costs. Second, they require tricky anchor tuning,
which is time-consuming.

Figure 11. The pipeline of RT3D [61]: (a) LiDAR-based 3D point cloud on (b) a depth map encoded
with height information of points; (c) a CNN-based two-stage detector is utilized for region proposals
generation and their classification on pose-sensitive feature maps; (d) visualization of detected
vehicles with orientated 3D BBoxes.
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In this direction, Ge et al. [62] proposed AFDet, which is the first anchor and NMS-
free PC 3D object one-stage detector with straightforward post-processing. Its 3DOR
detection pipeline consisted of four major components, which were a point cloud encoder,
the backbone, and necks, and it also included an anchor free detector as shown in Figure 12.
It encoded PC to image-like feature maps in birds eye view (BEV) using [111]. Then, it
used a CNN with up-sampling necks, which were connected to five different heads for the
prediction of object centers in the BEV plane using key point heat map and regression of
3D BBoxes. It combined the head outputs to generate detection outcomes. Every heat peak
was selected by a max pooling operation during the inference, which eliminated the need
for NMS.

Figure 12. 3D detection pipeline of AFDet [62]. The numbers in square brackets represent output channels of the last
convolution layer, and C indicates the number of categories.

Table 11. Literature Analysis: 2D Image Grid-based 3DOR Methods.

RT3D [61] AFDet [62]

Detector Category Two-stage One-stage

Environment Outdoor Outdoor

Projection FV BEV

Scenario 3D vehicle detection scenario for
collision avoidance.

3D object detection scenario on
embedding system that is anchor

free and Non-Maximum
Suppression free

Advantage(s)

Completes detection in a shorter
time than the scan period of the
LiDAR using pre-RoI pooling

convolution and pose sensitive
feature maps

Provides anchor-free and
NMS-free end-to-end 3D object

detection

Limitation(s) Performance on the test dataset is
not as good

Height information is not fully
preserved
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(b) 3D Voxel Grid-Based 3DOR

Many LiDAR-based 3DOR techniques use a voxel grid representation [112]. Table 12
explains the brief methodology, limitations, and the research gap, and we summarize the
reviewed models with advantages and limitations in Table 13.

Table 12. Methodology and Limitation(s): 3D Voxel Grid-based 3DOR Methods.

3D Voxel Grid

Methodology Discretizes 3D point clouds into 3D voxel grid representation that preserves
shape information and performs recognition using CNN or fully CNN

Limitation(s) Empty cells in their sparse representation make it computationally
inefficient, 3D convolutions result in increased inference time

Research Gap Generating 3D region proposals could improve localization accuracy and
reduce computational time

LiDAR PC-based 3D vehicle detection is important for obstacle avoidance in real-
world robotics applications, such as autonomous driving. The semantic context information
in LiDAR-based sensors is not deeply explored in the literature. Therefore, despite signifi-
cant progress, vehicle ambiguity and the varying distribution of PC across different depths
are two main problems. Yi et al. [63] addressed these issues by developing free-of-charge
BEV semantic masks and a depth-aware learning head in the fully convolutional network.
They proposed a one-stage detection framework, SegVNet, consisting of three major com-
ponents: a voxel feature encoder (VFE), semantic context encoder (SCE), and depth-aware
head as shown in Figure 13.

They introduced a VFE for voxelized feature representation of raw PC and developed
a SCE for taking BEV feature maps from VFE as input and generated the semantic context
encoded feature maps as output for 3D detection. SCE shared VFE feature maps with
its two branches, in which, the first is adopted from [113], while the second learns BEV
semantic masks predictions. Its depth-aware head consisting of convolution layers with
different kernel sizes was designed for learning distinctive depth-aware features across
different depths in autonomous driving scenarios.

Many recent PC-based 3D detectors are optimized for classes, such as cars, pedestrians,
and cyclists with multiple models; therefore, it requires a large number of resources to run
multiple models for obtaining the desired detection results, which are not desirable for
autonomous driving vehicles that have limited resources.

Figure 13. The SegVNet [63] with major components VFE, SCE, and depth aware head.

Muramatsu et al. [64] presented their solution by developing the SECOND-DX model
to support multi-class LiDAR-based 3D object detection with only a single model in real-
time. This extended the [113,114], and [111] models to provide support for three classes:
cars, pedestrians, and cyclists. It divided the PC into a 3D spatial grid and extracted fine
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local features using a high-resolution voxel. It contained three sub-networks in which the
first [111] was used to convert points to voxel-wise representations, the second sub-network
improved the spatial feature map and encoded it to a 2D feature map, and class probabilities
and direction classification were performed by the last region proposal network.

Feng et al. [65] proposed a LiDAR-based multi-task learning network (LidarMTL) to
perform six perception tasks in a unified network for 3DOR. Its network architecture based
on the voxelized Lidar point cloud is shown in Figure 14, which voxelized the 3D space
into regular voxels. It well-preserved the geometric information by proper voxel size. It
used UNet architecture to add task-specific heads and trained this entire network with
multi-task loss. Following [115], they extended the encoder–decoder based [116] UNet
architecture for efficient processing of 3D LiDAR points that were represented as voxels
using 3D sparse convolution [113].

Figure 14. The network [65] is based on a UNet backbone with 3D sparse convolution and deconvolution to perform object
detection on the Lidar BEV.

Table 13. Literature Analysis: 3D Voxel Grid-based 3D Object Recognition Methods.

SegV Net [63] SECONDX [64] LidarMTL [65]

Detector Category One-stage Two-stage Two-stage

Environment Outdoor Outdoor Outdoor

Projection BEV FV BEV

Scenario
Ambiguous vehicles

identification scenario
from point cloud

Multi class 3D object
detection scenario

with a single model

Dynamic object
detection and static
road understanding

scenario

Advantage(s)

Encodes the semantic
context information

in the feature maps to
distinguish

ambiguous vehicle
for better detection

Provides multiple
class support in a

single model.

Performs robust 3D
object recognition in

complicated
environment Also
useful for online

localization

Limitation(s)
Partial occlusion

leads to false
positives

Performance is not
satisfactory for all the

classes (e.g., cyclist
and pedestrian.

The necessity of using
loss weights with

grid search
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(ii) Unstructured Representation for 3DOR

This section focuses on Point-nets, and we analyze methods with their advantages
and limitations in Table 14.

(a) PointNet-based 3DOR

Point-nets directly handle the irregularities by taking raw LiDAR PC data as the input.
This aims at reducing the information loss in 3D space caused by projection or quantization
methods. Table 15 illustrates brief methodology, limitations, and the research gaps of
pointNet-based 3DOR techniques, while Table 14 gives a literature analysis of the reviewed
studies.

Table 14. Literature Analysis: PointNet-based 3DOR Methods.

IPOD [66] FVNet [67] DPointNet [68]

Detector Category Two-stage Two-stage Two-stage

Environment Outdoor Outdoor Outdoor

Scenario
Intensive point-based

3D object detection
scenario

3D front view proposal
generation scenario for
extracting point-wise

features from the
extruded object points

Point-cloud-based 3D
object detection

scenario that involves
density-oriented

point net

Advantage(s)

Reduces redundancy
and ambiguity by
seeding each point

with proposals,
without losing

localization
information from PC

data.

Provides multi-scale 3D
object detection.

Generates 3D proposals
from the front view

without using a camera

Does not require
additional

calculations for
inference

Limitation(s) Weak performance on
cyclists’ class

Front view maps are
not reliable for object
detection in case of

occlusion

Performance drops
for “easy” instance
due to mismatched
test and validation
data distribution

Table 15. Methodology and Limitation(s): PointNet-based 3DOR Methods.

PointNet

Methodology
Raw 3D point clouds are directly passed to CNNs for class predictions and
BBox estimations without converting 3D points to 2D-image and 3D-voxel

grids

Limitation(s)
Processing the entire point cloud causes increased computational complexity

Uses region proposals (RP) to restrict the number of points, however,
generating RP on raw point clouds is difficult

Research Gap Processing of whole point cloud and methods to limit the number of points
needs to be further investigated

Most of the existing methods encode 3D PCs to 2D grid images by projection [73,117]
or 3D voxel grid [114,118] and then apply CNN. However, the detection performance
through these representations is not always optimal. Moreover, the limitation of these
methods is their dependency on image detection results of 2D detectors, which do not
give satisfactory performance in a large-cluttered environment. In a study, Yang et al. [66]
addressed these issues by proposing an IPOD framework for 3D object detection on raw PC
and provided a high recall rate. It seeded all points of cloud and object proposals without
losing localization information.
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It also extracted their local and context information, which was fed to PointNet for
result generation through inference. It produced a 3D BBox from point-based object
proposals and introduced the techniques for ambiguity reduction. Its network architecture
shown in Figure 15 was consisted of a backbone network work based on PointNet++ [119],
a proposal feature generation module with two parts for feature map extraction, and a
BBox prediction network for the prediction of object’s size, shape, class, and orientation. It
followed [114,120] to train one network for cars and the other for cyclists and pedestrians.
3D object detection from raw PC has been deeply investigated compared to other 3D
detection methods.

Figure 15. Illustration of IPOD [66] consisting of a sub-sampling network, point-based proposal generation, and the
components of network architecture, which classifies and regresses the generated proposals.

In a seminal study, Zhou et al. [67] presented an FVNet framework for raw PC-based
3D object detection and front-view proposals generation. Direct learning from PC is a
challenging task due to its sparse and irregular points. The FVNet circumvented this
issue by projecting raw PC on a cylindrical surface for front view feature map generation
and took the advantage of both 2D image grid and 3D voxel grid while retained the rich
information of 3D PC. The architecture of FVNet shown in Figure 16 was composed of
two sub-networks. It used a proposal generation network (PG-Net) to predict the region
proposals from the generated maps.

Then, these maps were used for the prediction of 3D region proposals. Finally, param-
eter estimation network (PE-Net), which extended the PointNet [121] structure, was used
for the extraction of point-wise features and regression of 3D BBox parameters.

Figure 16. The network pipeline of FVNet [67] composed of PG-Net and PE-NET.
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Li et al. [68] proposed density-oriented Point-Net (DPointNet) shown in Figure 17 to
overcome the inhomogeneity of point clouds for 3DOR and verified its effectiveness on
3DOR by applying it to PointRCNN [122]. This network was proposed with two kinds
of layers known as the SG (Sampling and Grouping) layer and several FA (Fusion and
Abstraction) layers. It used the SG layer for sampling the seeds and their neighbors and
several FA layers for fusion and abstraction of seeds features. The seeds from the input
point cloud were sampled using farthest point sampling, and repeated random sampling
was used if the neighbors were not sufficient.

The seed neighbors were divided into several groups according to the number of
FA layers. Then, the next step was performed by FA layers, which used all neighbor
information from SG layer. The FA layers were designed based on three schemes to fuse
and abstract information for each seed. First, the feature appending scheme was used
to transform the features of all groups in FA layer. Second, the coordinate concatenation
scheme, was used to adopt the ‘concatenation’ mechanism for fusion using coordination
information. Third, the feature concatenation scheme was used to combine first and second
schemes by sufficient feature extraction and feature fusion. The auxiliary heads were
applied to PointRCNN for training process.

Figure 17. The architecture with DPointNet [68] detector consisting of two stages for 3D proposal
generation and proposal refinement.

(iii) Graph representation for 3DOR

Graph-based representation preserves the irregularity of PC. However, only a few
studies have investigated graph neural networks for 3D object detection in LiDAR PC. This
section first discusses recent graph-based 3DOR methods and then analyzes them with
their advantages and limitations as shown in Table 16.

Instead of converting PC data into grid or voxel representation, Shi et al. [69] pro-
posed Point-GNN, a graph neural network for compact representation of PC in which
neighbor-hood points were linked with the graph edges. It facilitated accurate detection of
multiple objects on PC using 3D BBoxes in a single shot from LiDAR PC. The points were
coordinated by the auto-registration method while detection results from different vertices
and integrated by box merging and scoring operations.

Existing 3D object detectors individually recognize the objects without considering
their relationship in learning and inference. The overall architecture contains three compo-
nents. The first is graph construction in which a voxel down-sampled point cloud was used
for reducing the density of a point cloud during graph construction. The second contained
a GNN of T iterations in which a graph convolutional neural network was designed to
refine the vertex’s state. The third was related to bounding box merging and scoring in
which the merged boxes were calculated by considering the entire overlapped box cluster.
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Feng et al. [70] presented a 3D relation graph network for building an object–object
relation model by learning pseudo centers and direction vectors to improve the prediction
accuracy. It was composed of two main parts in which 3D BBoxes were predicated through
the proposal generation module, directly on the PC with PointNet++ [119] backbone. Its
second part introduced the relation module for point attention pooling and exploit the
object–object relationship.It also used point attention pooling for converting the point
features into a uniform vector and performed relational reasoning using 3D object–object
relation graph. It applied a 3D NMS post processing step for the extraction of high-quality
3D BBox candidates.

3D object recognition requires both geometric and semantic information (e.g., the
object’s shape). However, many PC-based object detectors do not effectively capture
the semantic characteristic of PCs. In this direction, Chen et al. [71] introduced the hi-
erarchical graph network (HGNet) as shown in Figure 18 that processes raw PCs using
multi-level semantics for 3D object detection. It contained three main parts, which are a
graph convolution-based U-shape network called GUnet, proposal generator, and proposal
reasoning module (referred to as ProRe Module).

It depicted the shape information of objects by extracting local features from geometric
positions of the points. It employed a shape-attentive graph convolution, which is a U-
shape network for mapping multi-level features through the voting module, and used
ProRe Module to reason about proposals for BBox prediction by taking the advantage of
global scene semantics. The proposal features were updated by GConv, combining the
global scene semantics and including proposals’ relative positions as an attention map.

Figure 18. 3D object detection pipeline of HGNet [71] framework with three main components: GU-net, Proposal Generator,
and ProRe Module.

Wang et al. [72] overcame the inherent drawbacks of partition-based methods that
limit the 3DOR of small objects by proposing the spatial-attention graph convolution
(S-AT GCN), which include EdgeConv, attention, far distance feature suppression, and
aggregation steps as shown in Figure 19. For partition operation, single instance, e.g., a
pedestrian was sliced, which is called the partition effect. The partition effect was used to
influence the performance of 3DOR, particularly in the case of small object detection.

An extra layer called feature enhancement (FE) layer was included after partition
operation. The S-AT GCN was cascaded to form FE layers, while the effectiveness of these
layers was presented by adding [121]. They added the feature enhancement (FE) layer
to the baseline model, point pillars [121] after partition operation and a spatial attention
mechanism for GCN to extract geometric information. This enabled the network to extract
more accurate foreground features.
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Figure 19. The pointPillars [72] with a feature enhancement layer.

Table 16. Literature Analysis: Graph-based Representation for 3DOR.

Point- GCNN [69] RGNet [70] HGNet [71] S-AT GCN [72]

Detector Category One-stage Two-stage Two-stage Two-stage

Environment Outdoor Indoor Indoor Outdoor

Scenario

Object detection
scenario from a LiDAR

point cloud using
Graph neural network

3D object proposal
generation and

relationship extraction
scenario in point cloud

using relation graph
network

Raw point clouds
processing scenario for
direct 3D bounding box

prediction.

Local geometrical
feature extraction

scenario

Advantage(s)

Detects multiple objects
by predicting their

category and shape in a
single shot with auto

registration mechanism

Extracts uniform
appearance features by
point attention pooling

method
Holds appearance and
position relationship

between 3D objects by
building a relation

graph

Learns semantics via
hierarchical graph

representation,
Applies multi-level

semantics by capturing
the relationship of the

points to detect 3D
objects

FE layers boost the
contrast ration of
feature map and
increase the 3D

recognition (true
positive) rate of the

subsequent CNN for
small and sparse

objects

Limitation(s)

Does not maintain the
accuracy with down
sampled data for the
hard and moderate

levels

Gives poor
performance for

detecting thin objects

The ProRe module is
not effective for object

detection if object
features had been

adequately learned

Run-time speed drops
with FE layers

3.1.3. LiDAR-Camera Fusion-Based 3DOR

This section discusses 3D object detection based on camera-LiDAR fusion [123] using
DL approaches to overcome the limitations and uncertainties of a single sensor. Camera-
LiDAR fusion has become a practical approach for 3DOR [124]. The reliance on a single
sensor can be risky for the accurate understanding of the surrounding environment, there-
fore, it is advantageous to equip robotic systems with a second sensor to achieve robust
environment perception for the detection of 3D objects. To this end, sensor fusion, which
leverages the data derived from multiple sensors and gives less uncertain information
compared to the individual sensor, has become an emerging research area. Table 17 demon-
strates the methodology and limitations along with the research gap of camera-LiDAR
fusion-based 3DOR techniques.
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Table 17. Methodology and Limitation(s): Camera-LiDAR fusion-based 3DOR Methods.

Camera-LiDAR Fusion

Methodology

Uses multi-modal CNN to fuse both LiDAR 3D point cloud and
camera images

Shows state-of-the-art and robust detection performance by taking
advantage of both sensors

Limitation(s)

Computationally expensive to use data from two different sensors
Requires calibration between LiDAR and camera

An appropriate representation of different sensor modalities is difficult and
passing them to a fusion network is also challenging

Research Gap More research should be focused on improving the fusion of different
sensing modalities

The fusion approaches can be divided into three categories. Early fusion (EF), also
called data-fusion, takes inputs from multiple sensors that are first combined in the begin-
ning and makes a new representation that is used for transformations (e.g., convolutions).
Late-fusion (LF), also known as decision fusion, first transforms the sensors’ inputs and
then combines them. Deep-fusion (DF) or middle-fusion (MF) [125] is the combination of
both EF and LF. We review some camera-LiDAR fusion methods and present their literature
analysis in Table 18.

Table 18. Literature Analysis: Camera-LiDAR Fusion-based 3D Object Recognition Methods.

Model Detector
Category Environment Scenario Fusion Level Advantage(s) Limitation(s)

MV3D [73] Two-stage Outdoor

Multi-view
feature fusion
and 3D object

proposal
generation

scenario

Early, Late,
Deep

Introduces a deep
fusion scheme for

leveraging
region-wise features
from bird-eye and

front view for
multi-modalities’

interaction

The low LiDAR
point density

does not allow
the detection of
far objects that
are captured by

the camera
The BEV-based
region proposal
network limits
the recognition

Detects cars only

BEVLFVC [74] One-stage Outdoor

Fusion scenario
for LiDAR

point cloud and
camera-

captured
images in CNN

Middle

Exploits and fuses
the whole feature
map in contrast to

previous
fusion-based

networks
Generates

high-quality proposal
by fusion but boosts
the speed by the fast

one-stage
fusion-based detector

Does not have
superior LiDAR

input
representation

Detects
pedestrians only

D3PD [75] Two-stage Outdoor

3D person
detection

scenario in
automotive

scenes

Early, Late,
Deep

Performs end-to-end
learning on

camera-LiDAR data
and gives high-level

sensor data
representation

Dependent on
ground plane
estimation for

finding 3D
anchor proposals



Sensors 2021, 21, 7120 27 of 61

Table 18. Cont.

Model Detector
Category Environment Scenario Fusion Level Advantage(s) Limitation(s)

MVX-Net [76] One-stage. Outdoor.

Integration
scenario for

RGB and
point-cloud
modalities.

Early, Middle.

Reduces false
positives and

negatives due to its
effective multi-modal

fusion.

Does not provide
a multi-class

detection
network.

SharedNet
[77] One-stage. Outdoor.

LiDAR-camera-
based 3D object

detection
scenario with

only one neural
network for
autonomous

vehicles.

Early, Middle.

Achieving a good
balance between

accuracy and
efficiency.

Reduces the memory
requirements and

model training time.

Slightly inferior
performance in

case of car
detection.

Fusion approaches for 3D object detection are either very complicated or rely on
late-fusion. Therefore, they do not provide multi-modalities interaction at the early stages.
In this direction, Chen et al. [73] proposed multi-view representation of 3D (MV3D) point
cloud, which included a bird’s eye view and front view of LiDAR and an image as input as
shown in Figure 20. The representation of bird’s eye view was encoded by height, intensity,
and density, while the complementary information was provided by the bird’s eye view
representation. It was used for the fusion of both LiDAR PC and RGB camera images and
the prediction of 3D BBoxes.

MV3D was composed of two sub-networks for the generation of 3D object proposals
from BEV PC representation and fusion of multi-view features. It provided a deep fusion
scheme after region proposal for combining region-wise features and enabled intermediate
layer interaction. MV3D used 3D proposals to support different modalities and performed
3D box regression for accurate detection of objects, location, orientation, and size in 3D
space.

Figure 20. The input features of the MV3D [73] network.

Wang et al. [74] used deep CNN for camera-LiDAR fusion architecture to detect
3D objects in the autonomous driving scenario and efficiently transformed the features
between BEV and front view by developing a sparse non-homogeneous pooling layer.
The main idea to transform feature maps into different views by point cloud and matrix
multiplication. A fusion-based network was built The network structure of one-stage
fusion-based detection network was shown in the Figure 21, which contained two fully
convolutional backbones for image and LiDAR units.

The PRN similar to many camera-based one stage detectors was used in image convo-
lutional networks. However, region proposal was not used during the testing process. The
auxiliary loss was applied to get supervision from the label and 3D proposal in the front
view. It mapped two views by sparse PC and used a pooling layer to perform multi-view
fusion before the proposal stage to transform the entire feature map. The architecture of
its one-stage detector consists of two kinds of CNN backbone: VGG for camera-LiDAR
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with a feature map down-sampled four times for BEV and eight times in front view; MS-
CNN [126] for camera-VoxelNet [114] with a feature map down-sampled two times for
BEV and eight times in front view.

Figure 21. The fusion-based one-stage object detection [74] network.

Roth et al. [75] performed deep end-to-end 3D person detection with a camera and
LiDAR PC using deep CNN for estimating the 3D location and extent of people in the
automotive scenes. Its architecture refined 2D anchor proposals by developing a region
proposal network (RPN and subsequent detection network). It extracted high-level features
from camera images using VGG-like CNN, obtained PC features through Voxel Feature
Encoders [114], and performed end-to-end learning. The deep CNN learned low-level
features from camera images and 3D LiDAR point clouds. It fused their high-level repre-
sentations from both modalities and then passed them to the regression model as input for
estimating the 3D person BBoxes.

Figure 22 illustrated the network architecture, which was inspired by AVOD [120].
It adopted VGG16 network to extract the features of the image while features from the
point cloud were extracted using voxel partitions. These partitions were applied by VFE
layers and 3D convolutions. They size of the feature map was reduced by applying 1 × 1
convolution in RPN. The proposals were obtained by project 3D anchors on the feature
map. The features from both modalities were fused after resizing and object’s location was
estimated by applying fully CNN. In the second stage, the best proposal were cropped
and fused from full feature maps. The fully connected layers for fused crops were used for
the implementation of object detection layers. It allowed end-to-end network to the 3D
locations of the persons from camera image and LiDAR point cloud data.

Figure 22. Aggregate view object detection [120] network pipeline for 3D object detection in the context of autonomous
driving.
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Sindagi et al. [76] extended VoxelNet [114] by introducing two fusion techniques: The
point-fusion as an early-fusion scheme was employed to give a projection of PC to image
feature space using a known calibration matrix, extract the features using a 2D detector,
and perform point-level concatenation of image features. The voxel fusion as a late-fusion
strategy was used to project non-empty 3D voxels generated by VoxelNet, extract features
in 2D ROIs, and perform voxel-level concatenation of pooled features.

It was a later fusion technique to handle the empty voxels. The MVX-Net effectively
fused multimodal information. Its PointFusion based method is illustrated in Figure 23 in
which convolutional filters of faster RCNN were used to for extracting the image feature
map. The 3D points on the image were projected by calibration information and related
features were appended to the 3D points. The 3D RPN and voxel feature enhancement
layers were used for the processing the aggregated data and 3D detections.

Figure 23. The overview of the MVX-Net [76] PointFusion method.

Wen et al. [77] proposed an early-fusion method to use both camera-LiDAR data for
efficient 3DOR with single backbone network architecture. It extracted point-wise features
from RGB images, which were fed into a 3D neural network. It used two strategies for
reducing information loss during 3D voxel grid-based point-cloud representation. The
first one was using small voxel size, while the second strategy was projecting point cloud
features onto RGB images. A point feature fusion module, a voxel feature encoder module,
a detection head, and a loss function were developed as the four main components of its
one-stage 3D multi-class object detection model as shown in Figure 24.

The point clouds and RGB images were used as inputs and while the predictions of
oriented 3D BBoxes for cars, pedestrians, and cyclists were the output. It used a point
feature fusion module for the extraction of point features from the image and fused those
features with the related point cloud features. High-level representation of fused point-
wise features was performed by a voxel feature encoder module and 3D backbone and 3D
BBoxes were classified and regressed by the detection head.
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Figure 24. The pipeline of 3D object detection [77] network for the LiDAR and camera, including input, the point feature
fusion module, the 3D backbone, and the detection head.

Summary

The summary of 3DOR according to the studies reviewed in Section 3.1 and listed
in Tables 9, 11, 13, 14, 16, and 18 is presented. Current applications of 3DOR are gen-
erally categorized into two environments: outdoor and indoor, with the first category
being more frequently studied (19 vs. 4 studies). The article divides these 3DOR studies
according to sensor modalities that include camera-based (monocular—five studies and
stereo cameras—two studies), image grid-based (two studies), 3D voxel grid-based (three
studies), pointNet-based (three studies), graph-based (four studies), and camera-LiDAR
fusion-based (five studies). These 3DOR methods use state-of-the-art DL-based object
recognition networks that follow either one-stage (nine studies) or two-stage (14 studies)
object detection pipelines.

The advantages and limitations of 3DOR methods show that developing DL-based
multi-model recognition systems is a particularly challenging task for ADV in outdoor
environment because it requires a high level of accuracy and real-time performance while
current models cannot generate prediction consistency over time. On the other hand, object
recognition is a challenge in an indoor environment consisting of cluttered scene with
many occluded objects. In addition, the fusion of multiple sensors and different feature
representations as well as optimal fusion architecture for 3DOR are still open questions
that require more focus on these research topics.

3.2. 3D Place Recognition (3DPR)

3D place recognition is a task of identifying the location in a view of a place by query-
ing the similar images that belong to the same location in a large geo-tagged database [127].
It retrieves the database images according to the robot pose and current query image
taken by the robot’s sensor (i.e., camera) to find the association between query images and
database images of known places. Robots and automated vehicles on the road use the place
recognition approaches for accurately recognizing the locations and efficiently identifying
the revisited places.

Although, place recognition systems can also benefit from the existing research on
object recognition by detecting the objects in the context of scene knowledge [128]. However,
place recognition approaches are more concentrated on larger scale targets called the place
landmarks [129]. Another major characteristic that distinguishes the place recognition from
other visual recognition tasks is that it has to perform the condition-invariant recognition
to a degree that many other recognition tasks do not have. Moreover, an architecture that
is apt for 3DOR may not fit well into 3DPR tasks because their visual cues are different.



Sensors 2021, 21, 7120 31 of 61

Place recognition is an active research area and a key capability of autonomous mobile
robots. However, it is still a challenging task to achieve. The recent literature on place
recognition concentrates on replacing traditional handcrafted feature extractors [4,130–137]
with CNN for feature extraction [138–141], which aids in the direct learning of 3D structural
descriptors. Camera and LiDAR are two main sensors to perform place recognition tasks.

Camera-based place recognition methods contain efficient descriptive information, but
they struggle to cope with illumination and occlusion problems [142]. LiDAR-based place
recognition approaches are invariant to appearance change [143], however, rich descriptive
representation is still an open research question for LiDAR-based place recognition, and it
suffers from limited ranging and motion distortion issues [114,144,145] Therefore, fusing
information from both sensors provides better solutions.

This section reviews data representation methods for 3D place recognition based on
Camera and LiDAR sensors using DL models. It is subdivided as Camera-based 3DPR
(Section 3.2.1), LiDAR-based 3DPR (Section 3.2.2), and Camera-LiDAR Fusion-based 3DPR
(Section 3.2.3).

3.2.1. Camera-Based 3DPR

Visual place recognition (VPR) is the problem of recognizing a place from the robot’s
current camera images based on the visual appearance [146,147]. It has been around for
many years. However, research in this field is growing rapidly due to recent developments
in camera technologies [148] with their compatibility for DL-based techniques. In this
direction, 3D depth vision cameras and event-based cameras have drawn researchers’
attention. 3D depth cameras have made it possible to collect 3D data with ease. However,
the limited range of depth, less accurate distance information, and training 3D data with
DL-based models are the challenges still underdeveloped [149].

As DL-models rely on the networks trained only on RGB data, which lacks the depth
features. In this direction, Song et al. [78] addressed these limitations using RGB-D videos
for taking advantage of the richer depth and RGB information. It introduced a two-step
training approach that involves weekly pre-training via patches to learn powerful depth-
specific features. Its proposed CNN-RNN framework was used to model RGB-D scenes for
recognition.

Inspired by the two-step CNN techniques that were trained on still images, a three-
step training strategy was introduced for CNN-RCNN architecture to obtain the significant
gain through the integration of depth videos. It created a joint embedding by combining
convolutional and recurrent neural networks for capturing spatial and temporal informa-
tion as shown in Figure 25. LSTM blocks were used to implement the recurrent neural
networks. It used independent branches for RGB and depth data. LSTMs based temporal
embedding was modality specific and late fusion was performed using fully connected
layer while combined architecture was trained jointly end-to-end.

To the best of our knowledge, there are very few studies that use an event-based
camera for place recognition. Among them, Kong et al. [79] proposed Event-VPR, the first
end-to-end VPR method using an event camera. These cameras work differently from
the frame-based cameras because there are neuromorphic visual sensors that are inspired
by the biological retina and have the advantage of low latency, low bandwidth and low
power consumption [150]. The key idea of Event-VPR, as shown in Figure 26, was to apply
NetVLAD to EST voxel grid, which was generated by event streams.
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Figure 25. The CNN-RNN [78] architecture for video recognition.

It selected the corresponding positive and negative of event bins and trained the
network to learn the global descriptor vectors of the bins. First, it used event streams as
input and divided the consecutive event stream into the bins. These bins were converted
into EST voxel grid using MLP-based kernel. Then, the visual features of EST voxel grids
were extracted using ResNet34 [108]. Then, feature descriptor aggregation was performed
by a VLAD-based aggregated description layer, and finally the network was trained with
weakly supervised training for 3DPR.

Figure 26. The pipeline of Event-VPR [79] for 3DPR.

3.2.2. LiDAR-Based 3DPR

Place recognition using LiDAR-based 3D PC is still an open issue and a harder task
in large-scale dynamic environments due to the difficulty in feature extraction from raw
3D PC and global descriptor generation [151]. The article focuses on recent LiDAR point-
cloud-based methods for 3D place recognition using DL-based techniques and provide
their comparison in Table 19.
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Table 19. Literature Analysis: 3D Place Recognition (3DPR) Methods.

Model Environment Scenario Sensors 3D Place Recognition

RGBD-Net [78] Indoor
Depth-specific features

learning for scene
recognition scenario

Camera RGB-D:3D Depth
Feature based

Event-VPR [79] Outdoor
Event-based visual place
recognition scenario in
changing environment

Camera Event-based

Pointnetvlad [80] Outdoor Point-cloud-based retrieval
scenario for place recognition LiDAR Point Cloud based

ISR-Net [81] Indoor

Indoor scene recognition
scenario with 3D scene

representations (point clouds
or voxels)

LiDAR Point Cloud based

PCPR-Net [82] Outdoor

Point-cloud-based place
recognition scenario using

hierarchical features
extraction with CNN

LiDAR Point Cloud based

Lpd-net [83] Outdoor

Large scale place recognition
scenario with feature

extraction using global
descriptors

LiDAR Point Cloud based

OREOS [84] Outdoor
Oriented recognition

scenario to retrieve nearby
place candidates

LiDAR Point Cloud based

SDM-Net [85] Outdoor
Place recognition scenario

from a scene’s structure with
semi-dense point clouds

LiDAR 3D-voxel grid

SDes-Net [86] Outdoor
3D segment based on

learned descriptors for place
recognition scenario

LiDAR. Point Cloud based

MinkLoc3D [87] Outdoor
Place recognition scenario

with discriminative 3D point
cloud descriptor.

LiDAR. Sparse voxelized
point-cloud-based

CLFD-Net [88] Outdoor
Fused global feature

generation scenario for place
recognition scenario

Camera, LiDAR Image and Point Cloud
based Fusion

PIC-Net [89] Outdoor
Fusion based Place

recognition scenario based
on image and point clouds

Camera, LiDAR Image and Point Cloud
based Fusion

In contrast to image-based counterparts, most studies of 3D recognition have not dealt
with LiDAR PC for place recognition due to the difficulty of its local descriptors’ extraction
that can later be converted into global descriptors. A recent study by Angelina et al. [80]
applied DL networks and introduced PointNetVLAD to provide the solution of PC-based
place recognition using NetVLAD [152] and PointNet [121]. It extracted more general
global features proposing lazy triplet and quadruplet loss function while mapped 3D PC to
discriminative global descriptors by training PointNETVLAD using metric learning [153].

The PointNetVLAD was a combination of existing PointNet [121] and NetVLAD [152],
shown in Figure 27 for global descriptor extraction from given 3D point clouds by end-to-
end training and inference. Its included first block of PointNet that was cropped before
maxpool aggregation layer. Its input was the same as PointNet consisting of a set of 3D
points. The dimensional local feature descriptors were extracted from each input 3D point.
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These descriptors were fed to NetVLAD layer, which was designed to aggregate local image
features from VGG/AlexNet into global descriptor vector. The VLAD descriptor [154] was
the output of the NetVLAD layer.

Place recognition and scene understanding is also an important area of research in the
indoor environment. However, in contrast to the outdoor environment, there are fewer
studies of place recognition from 3D PC data for the indoor environment. An autonomous
robot must be aware of different places, such as rooms, hallways, and kitchens in an indoor
environment to perform its task. Huang et al. [81] performed 3D PC (voxel) based scene
recognition in an indoor environment by combining semantic segmentation with the multi-
task framework. It worked on scene recognition in indoor environment as supervised
classification using neural network.

The network was composed of encoder to extract feature representation from input
scene and a classification head to obtain class-conditional likelihood. It explored two
different options for encoder: First was the working with subsampled version of original PC
networks (Pointnet [121], Pointnet++ [119] DGCNN [155]) while second was sparse voxel
grid networks (Resnet14 [108]). It demonstrated that multi-task learning with semantic
segmentation improves the performance of scene recognition by sharing information
among related tasks.

Figure 27. The architecture of our PointNetVLAD [80] network.

The multi-task network was composed of an encoder for converting the scene into a
feature representation, and two output heads, which were semantic segmentation head
(top) and a classification head (bottom) for computing the class likelihood as shown in
Figure 28. For semantic segmentation, sparse Resnet14 variant with U-net style decoder
was extended that mirrored the encoder with skip connections. The network weights of
encoder were froze and only scene classification head was trained. Finally the network
was fine-tuned with small learning rate to yield better recognition.

Figure 28. The multi-task network structure [81] for scene recognition in indoor environments.
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An efficient place recognition system is invariant to illumination variation and object
motion in that place [156]. Sun et al. [82] presented PC-based place recognition using CNN
that was pre-trained on color images and provided robust detection to moving objects,
which were also rotation and illumination invariant. The 3D place recognition system in
Figure 29 shows that it first aligned the PC with its principal directions then represented
it onto the cylindrical image plan. It performed feature extraction using CNN followed
by the principal component analysis dimension reduction and specified a threshold to
determine the trade-off between recall and precision.

In its preprocessing step, it considered a 3D PC created by a Velodyne LiDAR to
cover for full 360◦ environmental view. PCA was used to align the PC by finding the
orthogonal directions and obtain more compact features. It generated the range image
through the projection of PC on cylindrical plane while extracted the features by CNN
using convolutional layers. It used fully connected layers to perform reshaping and pooling
layer on the top of hidden layer for dimension reduction. Since one place contained one
descriptor; therefore, the variance of dimension indicated its discrimination ability. For
retrieval, the descriptor vector of each PC was normalized, and the cosine distance was
used as similarity metric.

Figure 29. The system overview [82] for point-cloud-based place recognition using CNN feature extraction.

Liu et al. [83] proposed a large-scale place description network (LPD-Net) for ex-
tracting distinct and general global feature descriptors from 3D PC. It used local features
rather than isolated point positions as the network input. The network architecture was
composed of three major modules to handle large scale environment as shown in Figure 30.
The adaptive local feature extraction module was used to obtain the PC distribution and
the local features. The graph-based neighborhood aggregation module was used in feature
and Cartesian space to learn structure information of PC. The resulting vectors were passed
to NetVLAD [152] for the generation of a global descriptor.

The computational and storage complexity was reduced by extracting global descrip-
tor to perform real-time place recognition tasks. Its feature network captured the local
structure using features around each point in the local neighborhood. The raw PC data was
passed as input to Transformation Net [121], which aimed at ensuring the rotational trans-
lation invariance and the adaptive local feature extractor, which considered the statistical
local distribution.

The appropriate neighborhood size in different situations was selected using adaptive
neighborhood structure, which were merged into feature vectors. The output of the
feature network was passed to a graph network as input, and feature aggregation was
performed using the kNNgraph network in the Cartesian space. It introduced the relational
representation from the GNN to LPD-Net for representing the scene compositions as graph
nodes, their intrinsic relationships and scene descriptors generated by GNN.
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Figure 30. The LPD-Net [83] for large scale place recognition.

Most research on place recognition [80,157,158] has not fully addressed the problem of
3 DoF transformation. Schaupp et al. [84] dealt with the aforementioned issue by proposing
an efficient data-driven framework for extracting compact descriptors from 3D LiDAR PC
using CNN, which aimed at recognizing the place and regressing the orientation between
point clouds. The network was trained by a triplet loss function and a hard-negative
mining scheme was applied to improve the descriptor extractor. It developed a metric
global localization in the map reference frame from single scan of 3D LiDAR PC.

For this, it used four sequential components known as point cloud projection, descrip-
tor extraction, yaw estimation, and local point cloud registration as shown in Figure 31. In
the first step, PC projection used spherical model for PC representation and converted the
LiDAR point cloud scan onto a 2D range image. In the second step, descriptor extraction
was implemented for place representation and deriving orientation details using CNN.

For this, 2D range images were taken as input and two compact descriptor vectors
were generated, which were used to represent rotation invariant and encode it for yaw
angle discrepancy between the query PC and the PC of the nearest place in the map. Finally,
local registration method was applied to obtain three DoF pose estimation using planar co-
ordinates and orientation estimate. The deep CNN architecture based on [159,160] learned
mapping from range image through encoding 3D PC onto feature vector representation to
effectively perform oriented place recognition.

Figure 31. The methodology [84] of oriented recognition from 3D point clouds.

Robust place recognition can be achieved using 3D scene structure. Ye et al. [85] repre-
sented structural information of the scene with semi-dense point clouds using DSO [132]
and developed local descriptor matching to perform place recognition. It used 3D CNN
like [118,161] and generated discriminative descriptors by learning features from a 3D-
voxel grid. Its place recognition pipeline as shown in Figure 32 was composed of four main
components. It used DSO [162] to acquire the information in semi-dense point cloud. It
extracted the local patches from semi-dense point clouds and normalized them.

In the next step, keypoints were selected from random 5% resulting points and local
cylindrical patches were extracted from them, which were chosen with the size to be as
small as possible. These patches were represented using CNN-based descriptors, which
contained two 3D convolutional layer, ReLU, a pooling and two fully connected layers for
mapping from voxel grid to 512-dimensional descriptor. Finally, the resulting descriptors
were matched to the descriptors that were stored in the database and their matches were
aggregated to keyframe matches. It also used PCA to reduce the dimensionality, which
resulted in efficient matching.
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Figure 32. The pipeline of [85] place recognition pipeline in semi-dense maps.

Cramariuc et al. [86] used segment extraction combined with a matching method to
perform the place recognition task in LiDAR-based 3D point clouds. It used CNN to gener-
ate descriptors for 3D PC segments and introduced a segment recognition approach based
on learned descriptors, which outperformed the SegMatch descriptors [163]. It extended
the structures of [164,165] to the 3D domain for generating learning-based descriptors. It
implemented place recognition task using three different CNNs as shown in Figure 33 for
generating descriptors for 3D point cloud segments.

For preprocessing, the alignment method was chosen to increase the robustness and
make the extraction process less sensitive. The augmentation techniques were used to make
multiple copies of the segmented data by rotating each image at different angles. Then,
the segments were scaled to fit and centered inside the voxel grid. A CNN was proposed
for feature extraction. Figure 34 shows the structure of descriptor extraction CNN, which
tested different depths and sizes for layers and filters to keep the network small enough it
could be feasible to run on the mobile robot platform. The amount of dropout in the final
layers was tuned separately to ensure a correct regularization.

The first approach was group-based classification. In this approach, training the CNN
for segment classification was based on the groups that represent the classes. The layer
before the classification was used as descriptor [166]. The closeness between the descriptors
of segments of same group in the Euclidean space was loosely enforced by the classification
layer. The probability of a segment belonging to a class was considered proportional to the
dot product. The descriptors with small Euclidean distance were classified belonging to
the same group. The candidate matches were generated by correlation between similarity
and Euclidean distance between descriptors. The network was trained using SGD for
minimizing the categorical cross-entropy.

The second approach was training a Siamese convolutional neural network [167] in
which two inputs were passed to two distinct CNNs. These two CNNs were considered
as two identical descriptor extraction networks. Then, the combination of output of two
networks was given to third network, which generates the final output. The advantage
of Siamese over two stage detectors was that it allowed training of feature extraction
simultaneously. Feature extraction and classifier were used independently during the
inference process to boot the performance. It also used GSD for training to reduce the
binary cross entropy of the network.

The third approach was training the classifier with contrastive loss [165] for min-
imizing the Euclidean distance between the matching vectors while maximizing it for
non-matching pairs. It recalculated the hard pairs (which had lowest Euclidean distance
between their descriptors but the segments did not match and vice versa) at the end of
each training epoch to increase the performance and avoid the local minima.

Figure 33. Three network structures [86] (a) group based CNN (b) Siamese CNN, and (c) descriptor extraction CNN trained
using contrastive loss.
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Figure 34. The descriptor extraction network [86] used in the three CNNs.

Komorowski et al. [87] used 3D FPN [168] and sparse voxelized point cloud rep-
resentation inspired by MinkowskiNet [169] to propose discriminative 3D point cloud
descriptor for place recognition. The local feature extraction network and generalized
mean (GeM) pooling [170] layer were the two main parts of its network architecture as
shown in Figure 35 for PC-based place recognition. A set of 3D point coordinates was
passed as input and quantized into a sparse, single channel tensor. It used 3D Feature
Pyramid Network [168] for local feature extraction. The GeM, which was the generalization
of global max and average pooling, was used for the generation of global descriptor vector.

The network model was composed of four convolutional blocks that were used to
generate sparse 3D feature maps and transposed convolution at its bottom-up and top-
down parts, respectively. The top-down part was aimed at generating the upsampled
feature map, which used lateral connection for concatenating with the features from the
layers of bottom-up. It was intended to produce a feature map with a large respective field
and high spatial resolution.

The bottom-up blocks from convolutional layer 1 to layer 3 were contained stride
of two for decreasing the spatial resolution followed by residual block. batch normaliza-
tion [171] layer and ReLU non-linearity were used for all layers in bottom-up blocks. Two
1x1 convolution blocks were aimed at unifying the feature maps channels of bottom-up
blocks before they were concatenated in a top-down pass.

Figure 35. The network of MinkLoc3D [87] for point-cloud-based place recognition.

3.2.3. LiDAR-Camera Fusion-Based 3DPR

This section reviews the methods that use fusion networks to generate global fusion
descriptors based on camera-image and LiDAR PC for robust place recognition.

Xie et al. [88] presented the camera-LiDAR sensors fusion method, which robustly
captures data from both sensors to solve the 3D place recognition problem. It introduced a
trimmed clustering approach in 3D PC to reduce unrepresentative information for better
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recognition. They also built a compact neural network for robust representation of visual
descriptor and 3D spatial global descriptor. It utilized deep neural network-based metric
learning to minimize the distance of fused descriptors and to distinguish the similar and
dissimilar places.

The image information and corresponding 3D PC were used as source input data.
The PC data acquired form the LiDAR may vary in sizes. Deep learning based down-
sampling preprocess was applied to extract features from 3D source PC. It then used NN
for generating compact representation of a place. CNN performed the place retrieval by
learning mapping from the input data space S = (I, P) to a new space. The whole framework
for place recognition in Figure 36 showed that mapping was performed by efficient feature
extraction operator (blue, green and yellow blocks) and using the similarity metric for the
evaluation feature descriptors (red block).

They applied MLP and feature transform for local spatial feature extraction by map-
ping each 3D dimensional point into higher dimensional space. The local rotation invariant
spatial features extracted by the CNN are in green block. It also introduced novel trimmed
VLAD block for PC in which redundant information and environment disturbance were
avoided by ignoring non-informative 3D PC clusters. It assigned the trimmed weight to
meaningful clusters in partial aggregation process for obtaining the global descriptor (yellow
block). It applied intra-normalization before vector concatenation, followed by L2 norm.

After the trimmed VLAD block, it used the fully connected layer to obtain useful
features for Q-dimension compact global descriptor. Images contain many appearance-
based features, which have mutual effects on the PC features. Features of camera-based
images were extracted using ResNet50 [108] while the additional LiDAR sensor data was
used to improve the place recognition in fused network. As a result, ResNet50 was used as
image feature extractor, followed by L2 norm to make image and PC components in equal
weights.

Figure 36. CNN based Camera-LiDAR Fused descriptor [88] for place recognition.

Lu et al. [89] proposed a PC and image collaboration network (PIC-Net) shown in
Figure 37 that fused image and PC features by attention method using DL approaches for
large-scale place recognition. It mined the information of camera image with LiDAR PC and
improved the place recognition performance by transforming the night image into daytime
style. It used Resnet50 [108] to obtain a feature map from the image while PointNet [121]
or LPD-Net [83] to extract features from PC. Then, both types of features were passed to
the spatial attention layer for finding discriminative pixels and points with global channel
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attention layers for enhancing the features. Finally, the output of these three layers was used
to generate final global features using an attention-based collaboration module.

The local spatial attention module shown was used in both images and point clouds
for the selection of discriminative pixels and points. As shown in Figure 37, the PointNet
and LPD-Net both were used for point feature extraction, while ResNet50 (after removing
the final pooling layer) was used for image feature extraction. It aimed at learning the
spatial attention map of the image and PC as well as adding the attention map to the
feature aggregation. NetVLAD was used for aggregating the local features. It learned the
cluster centers and calculated the residual, which was weighted by learnable parameter
and attention weight of correspond pixel or point.

PCAN was replaced with a 1 × 1 × D1 convolution layer for point cloud and 1 × 1 × D2
convolution layer for image attention map learning. The Local channel attention module
was used for learning the channel attention map to enhance the features from both PC and
image branch before their fusion. For this, fully connected layer was implemented and
then attention map was used to re-weight both image and PC features. The global channel
attention was proposed to choose reliable features from PC and image branch.

Figure 37. PIC-Net [89] composed of image and point cloud branch with spatial, channel, and global attention for large-scale
place recognition.

For this, global channel attention map was learned using fully connected layer for the
selection of reliable features.

Summary

We briefly summarize the 3DPR based on the reviewed methods in Section 3.2, which
are listed in Table 19. Applications of 3DPR were vastly more researched in outdoor envi-
ronments (10 vs. indoor environment two studies) based on sensor modalities that include
camera-based (two studies), LiDAR-based (eight studies), and camera-LiDAR fusion (two
studies). These studies show that current DL-based approaches use convolutional tech-
niques for place recognition [139]. Convolutional place recognition approaches for indoor
and outdoor environments are an extension of object recognition techniques. However,
they are more concentrated on larger scale targets called the place landmarks [129].

Reliable place recognition is a challenging task due to changes in the environment
and sensory ambiguity. Through the investigated studies, we found that LiDAR-based
3DPR methods were more robust to illumination, viewpoint change, and seasonal vari-
ations, which makes them competitive for outdoor 3DPR because of their longer-range
capability compared to RGB-D cameras. Recent research work is more focused on DL-
based applications in ADV, which shows that the integration of sensor-fusion process with
recognition-based network structure for 3DPR is difficult.

However, studies show that the 3DPR task can be improved by considering the
idea of using one sensor data to supervise the data of other sensors and integrating the
map with sensor data for providing better environmental information to improve the
detection. Furthermore, there is no optimal solution to handle the un-synchronization issue
of multiple sensors. However, through the investigated studies, we found that its implicit
solution can be learning from large-scale training data for landmark detection.
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4. Datasets

Many public and new datasets have been developed for training the DL-based
models. This section presents 3D datasets used in the studies that were reviewed in
Sections 3.1 and 3.2 for 3D object and place recognition tasks in the current review. We list
the datasets used by each study in Table 20.

Table 20. Literature Analysis: Datasets.

Ref # A B C D E G H I K L M N O P

3DOR

Table 9

MonoPair [55] o

GS3D [56] o

SS3D [57] o

M3DSSD [58] o

SRCNN [59] o

CenterNet [60] o

Table 11
RT3D [61] o

AFDet [62] o o

Table 13

SegV Net [63] o

SECONDX [64] o

LidarMTL [65] o

Table 14
IPOD [66] o

FVNet [67] o

DPointNet [68] o

Table 16

Point-GCNN [69] o

RGNet [70] o o

HGNet [71] o o

S-AT GCN [72] o

Table 18

MV3D [73] o

BEVLFVC [74] o

D3PD [75] o

MVX-Net [76] o

SharedNet [77] o

3DPR Table 19

RGBD-Net [78] o o o

Event-VPR [79] o o o

Pointnetvlad [80] o o

ISR-Net [81] o

PCPR-Net [82] o

Lpd-net [83] o o

OREOS [84] o o

SDM-Net [85] o

SDes-Net [86] o

MinkLoc3D [87] o o

CLFD-Net [88] o o

PIC-Net [89] o

A: ISIA RGB-D; B: HKUST; C: KAIST; D: NYUD2; E: Sun RGB-D; G: In-House; H: KITTI; I: Oxford Robot-car; K: NCLT; L: Argoverse; M:
ScanNet; N: DDD17; O: Waymo; P: MVSEC.
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Several methods discussed in the survey illustrate that KITTI dataset [172] published
in 2012 by [173] is the most frequently used dataset for 3DOR tasks. The review shows that
many 3DOR models (19 out of 23 studies) have used the KITTI dataset. This dataset has
been updated many times since its first release.

Current review shows that OXford RobotCar dataset [174] published in 2017 by [175]
has gained attention from several ADV studies to perform 3DPR tasks. In the current
survey, 7 out of 12 3DPR studies have used the Oxford RobotCar dataset. It contains over
1000 km of recorded driving of a consistent route with over 100 repetitions. It collected
almost 20 million images from six cameras, along with the LiDAR and GPS.

A series of recent studies has also indicated that many research institutes have de-
signed their datasets, such as the Waymo open dataset, HKUST, KAIST, and NYUD2
datasets.

Waymo is an open dataset [176] released recently by [177] for autonomous driving
vehicles. It is a large dataset consisting of 1150 scenes and each scene is spanned 20 s. It
is also well-synchronized dataset with 3D BBox in LiDAR data and 2D BBox in camera
images. In this review, one study [62] used the Waymo dataset for training one-stage
detector to recognize the objects in outdoor environment.

The HKUST dataset was captured by [82] for 3DPR task in their study. In this dataset,
each shot is contained on a grayscale image and a point cloud. The KAIST dataset [178]
was proposed by [179] to provide LiDAR and stereo images of complex urban scenes.
One [88] among the reviewed studies used the KAIST dataset to perform 3DPR tasks.
NYUD2 is a kinect dataset [180] that was used by one 3DPR study [78] in this survey. It
was introduced by [181] with 1449 RGBD images and 26 scene classes of commercial and
residential buildings.

Some networks (three 3DPR studies [80,83,86]) have used the in-house dataset that
includes university sector, residential area, and business direct. This dataset was created
by [80] using LiDAR sensors on the car driven in four regions at 10, 10, 8, and 5 km routes.

The SUN RGB-D dataset [182] used by one 3DPR [78] and two 3DOR [70,71] studies
was presented by [183]. It contains 10,355 RGB-D scene images as training set and 2860
images as testing set for 3D object detection, which is fundamental for scene understating.
ISIA RGB-D dataset is proposed by [78] for use in their own study for 3DPR task. It is a
video dataset to evaluate RGB scene recognition videos. It contains more than five hours of
footage of the indoor environment in 278 videos. it reuses 58 categories of the MIT indoor
scene database [184].

The multi vehicle stereo event camera dataset also called MVSEC [185] is a collection
of 3D perception data that was presented by [186] for event-based cameras. It has been
used by the model in [79] to perform 3D place recognition task. Its stereo event data has
been collected from a car, bike, handheld, and hexacopter in both indoor and outdoor
environments.

The DDD17 dataset DDD17Dataset used in one 3DPR study [79] was introduced
by [187]. It contains annotated dynamic and active-pixel vision sensors’ recordings, which
consist of over 12 h of video in city driving at night, daytime, and evening in different
weather conditions and vehicle speed. The ScanNet dataset was reported in [188]. It has
been used by two 3DOR [70,71] and one 3DPR [81] studies in the current survey. It is an
RGB-D video dataset containing 1513 scenes that are annotated with 3D camera poses. The
research community has used this dataset for 3D scene understanding and semantic voxel
labeling tasks.

The NCLT dataset [189] used by one 3DPR study [84] in this review, was documented
in [190]. It is a long-term autonomy dataset for robotic research, which was collected using
a Segway robot by 3D LiDAR, GPS, planar LiDAR along with proprioceptive sensors.
Argoverse dataset [191] is introduced by [192] to support machine learning tasks for object
detection in outdoor environment. A recent study [65] in the survey used this dataset for
3DOR task. It is mainly designed for 3D tracking and motion forecasting. Its 3D tracking
dataset contains 360◦ images taken from seven cameras with 3D point clouds from LiDAR
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while its motion forecasting dataset contains 300,000 tracked scenarios. It also includes
290 km “HD maps”.

Summary

Section 4 presented 14 datasets that have been used by 35 studies. The Sun RGB-D,
KITTI, and ScanNet datasets have been used for both 3DOR and 3DPR tasks. However,
KITTI is the most frequently used dataset for 3DOR tasks (used by 20/23 studies), while
Oxford Robot-car is a widely used dataset for scene understanding to perform 3DPR tasks
(7/12 studies) in autonomous driving vehicles.

5. Performance Evaluation

Section 5 analyzes and compares the existing results in the context of different datasets
(discussed in Section 4) to present the performance of the methods that have reviewed
in Sections 3.1 and 3.2 for 3DOR and 3DPR tasks. The evaluation metrics that have been
used for the KITTI dataset include average precision (AP) of Intersection over Union (IoU)
for both bird’s eye view (APbev) and 3D object detection (AP3D) along with the average
orientation similarity (AOS) [173] and average localization precision (ALP). AP, AOS, and
ALP metrics are divided into easy, moderate, and hard according to difficulty levels of 3D
object detection, which are height, occlusion, and truncation for all three categories: cars,
pedestrians, and cyclists. The recall @ 1 %, AUC, and accuracy % are the metrics that were
used to compare the performance of 3DPR tasks on different 3D detection datasets.

For performance evaluation based on the KITTI dataset, Mono Pair [55] uses 40-point
interpolated average precision metric AP40, which is evaluated at both the bird-eye view
APbev and the 3D bounding box AP3d. It reports AP with intersection over union (IoU)
using 0.7 as thresholds for cars, pedestrians and cyclists detection. Tables 21 and 22 shows
the performance of one-stage anchor-free detector of [55] on the KITTI validation and test
sets for the car category, while performance for pedestrians and cyclists on the KITTI test is
shown in Tables 23 and 24, respectively. It can also perform inference in real-time as 57 ms
per image, which is higher than [106].

GS3D [56] evaluated the framework on the KITTI object detection benchmark and
follows [193] to use two train/validation (val) splits. Its experiments were mainly focused
on the car category. Tables 21 and 22 show the evaluation results of 3D detection accuracy
on the KITTI for car category using the metric of AP3D on two validation sets val1 and
val2. The performance on val2 is higher than [102] for 3D object detection in autonomous
driving. In [56], researchers used the metric of Average Localization Precision (ALP) and
outperformed [193]. Table 21 presents the results of [56] for car category evaluated using
the metric of ALP with the results on the two validation sets val1/val2.

SS3D [57] evaluated its proposed methods primarily on the KITTI object detection
benchmark. It focused on three categories car, pedestrian and cyclist, which are most
relevant for autonomous vehicle applications. The metric used for [57] evaluation is the
average precision (AP), where valid detection is specified if the IoU is at 0.7, in bird’s-eye-
view and in 3D, respectively.

The researchers in [57] used the same validation splits and called them split-1 [194]
and split-2 [195], which divided the training data almost in half and performed the training
on all three categories simultaneously. Table 21 shows AP with the 3D IoU detection
criterion on validation set for the Cars class with a clear ranking Method 1 ≺ Method 2 ≺
Method 3 in terms of their performance. It also represents the results using the ALP metric.
Jörgensen et al. [57] used inference on the KITTI test set and the evaluation results on test
data for cars in Table 22, while pedestrians and cyclists classes in bird’s-eye-view (APbv)
and in 3D (AP3D) are presented in Table 24.

M3DSSD [58] evaluated the proposed framework on the challenging KITTI benchmark
for 3D object detection covering three main categories of objects: cars, pedestrians, and
cyclists. AP scores on validation and test sets of 3D object detection and bird’s eye view for
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cars are shown in Tables 21 and 22, while the 3D detection performance for pedestrians
and cyclists on test set at a 0.5 IoU threshold is reported in Table 24.

SRCNN [59] evaluated the proposed model using Average Precision for bird’s eye
view (APbv) and 3D box (AP3D) on the KITTI car validation and test sets, while the results
are reported in Tables 21 and 22, respectively. It outperforms state-of-the-art monocular-
based methods [34,196] and stereo-method [197] by large margins. Specifically, for easy
and moderate sets, it outperforms 3DOP [197] over 30% for both APbev and AP3D while for
the hard set, it achieved ∼25% improvements.

CenterNet [60] used restnet18 [108] and dla-34 [105] as backbone of its three methods
and showed that its methods are superior to the previous monocular-based methods.
The performance on APbev and AP3D for car 3D localization and detection on the KITTI
validation set is shown in Table 21.

RT3D [61] evaluated the proposed method on the KITTI for autonomous driving and
divides the samples in training and validation sets exactly the same as [194]. The results of
both 3D localization and 3D detection evaluations are obtained using Average Precision
(APloc) and (AP3D), as reported in Tables 21 and 22 respectively. It is 2.5× faster than
the [114]. Its detection time of 0.089 s allows it to be deployed in real-time systems and it
achieves at least 13% higher accuracy compared to [102,194,198].

Table 21. Comparison of the Results on the KITTI Validation Dataset for the Car Category.

KITTI Validation Dataset (Category: Car)

Task: 3DOR

APBV (IOU @ 0.7) AP3D (IOU @ 0.7) ALP

Ref Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

[55] 24.12 18.17 15.76 16.28 12.30 10.42 - - -

[56] - - - 13.46/11.63 10.97/10.51 10.38/10.51 71.09/66.23 63.77/58.01 50.97/47.73

[57] (M1) - - - 11.54/8.66 11.07/7.35 10.12/5.98 80.28/73.32 70.78/59.85 58.14/51.09

[57] (M2) - - - 13.90/9.55 12.05/8.07 11.64/6.99 79.33/72.83 71.06/59.90 58.31/51.44

[57] (M3) - - - 14.52/9.45 13.15/8.42 11.85/7.34 81.22/72.97 71.05/59.94 60.22/51.80

[58] 34.51 26.20 23.40 27.77 21.67 18.28 - - -

[59] 68.50 48.30 41.47 54.11 36.69 31.07 - - -

[60]

58.36 42.97 36.19 41.11 30.21 25.23 - - -

65.31 50.49 44.1 51.13 38.87 33.47 - - -

68.8 51.19 44.28 54.72 39.2 33.74 - - -

[61] - - - 72.85 61.64 64.38 88.29/54.68 79.87/42.10 80.42/44.05

[62]

87.1 82.72 78.97 81.01 72.62 67.47 - - -

88.91 84.69 79.83 85.18 75.33 69.18 - - -

89.42 85.45 80.56 85.68 75.57 69.31 - - -

[63] - - - 89.35 79.05 77.41 - - -

[64] - - - 85.94 75.96 74.37 - - -

[66] 88.3 86.4 84.6 84.1 76.4 75.3 - - -

[68] - - - 89.27 79.28 78.35 - - -

[72]
88.84 86.79 85.41 86.03 76.95 75.52 - - -

89.7 87.63 86.07 86.54 77.5 76.16 - - -

[73] - - - 71.29 62.68 56.56 86.55 78.1 76.67

[76] 89.5 84.9 79.0 85.5 73.3 67.4 - - -

[77] 89.75 86.97 85.42 88.04 77.60 76.23 - - -
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Table 22. Comparison of the Results on the KITTI Test Dataset for the Car Category.

KITTI Test Dataset (Category: Car)

Task: 3DOR

APBV (IoU @ 0.7) AP3D (IoU @ 0.7) AOS

Ref Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

[55] 19.28 14.83 12.89 13.04 9.99 8.65 - - -

[56] - - - 7.69 6.29 6.16 - - -

[57] (3) 11.74 9.58 7.77 11.74 9.58 7.77 - - -

[58] 24.15 15.93 12.11 17.51 11.46 8.98 - - -

[59] 61.67 43.87 36.44 49.23 34.05 28.39 - - -

[61] - - - 23.49 21.27 19.81 - - -

[63] 88.62 86.16 78.68 84.19 75.81 67.80 90.5 88.88 87.34

[66] 86.93 83.98 77.85 79.75 72.57 66.33 - - -

[67] 78.04 65.03 57.89 65.43 57.34 51.85 85.94 76.84 68.9

[68] - - - 81.67 76.34 70.34 - - -

[69] 93.11 89.17 83.9 88.33 79.47 72.29 - - -

[76] 89.2 85.9 78.1 83.2 72.7 65.2 - - -

[77] 89.61 85.08 80.42 81.11 72.93 67.24 - - -

Table 23. Comparison of the Results on the KITTI Validation Dataset for the Pedestrian and Cyclist Categories.

KITTI (Val Data)

Task: 3DOR

Category: Pedistrian Category: Cyclist

APBV (IoU @ 0.7) AP3D (IoU @ 0.7) APBV (IoU @ 0.7) AP3D (IoU @ 0.7)

Ref Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

[75] - - - 53.47 47.06 41.49 - - - - - -

APBV (IoU @ 0.5) AP3D (IoU @ 0.5) APBV (IoU @ 0.5) AP3D (IoU @ 0.5)

Ref Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

[64] - - - 57.07 53.1 47.19 - - - 78.85 60.71 58.93

[66] 72.4 67.8 59.7 69.6 62.3 54.6 84.3 61.8 57.7 81.9 57.1 54.6

[72] (1) 64.06 58.93 55.24 58.52 54.54 50.46 85.19 71.06 67.1 82.55 67.6 62.69

[72] (2) 63.52 58.51 55.38 58.62 54.16 50.02 84.77 71.8 68.25 82.97 66.39 63.61

[74] 51.3 45.0 40.02 - - - - - - - - -

[77] 71.67 64.22 61.03 66.65 60.49 54.51 81.03 63.5 61.06 75.87 60.07 55.87
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Table 24. Comparison of the Results on the KITTI Validation Dataset for the Pedestrian and Cyclist Categories.

KITTI (Test Data)

Task: 3DOR

Category: Pedistrian Category: Cyclist

APBV (IoU @ 0.7) AP3D (IoU @ 0.7) APBV (IoU @ 0.7) AP3D (IoU @ 0.7)

Ref Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

[55] 10.99 7.04 6.29 10.02 6.68 5.53 4.76 2.87 2.42 3.79 2.12 1.83

[57] (3) 3.86 3.52 2.5 3.52 3.28 2.37 11.52 9.65 9.09 10.84 9.09 9.09

APBV (IoU @ 0.5) AP3D (IoU @ 0.5) APBV (IoU @ 0.5) AP3D (IoU @ 0.5)

Ref Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

[58] 6.2 4.66 3.99 5.16 3.87 3.08 2.7 2.01 1.75 2.1 1.75 1.58

[66] 60.83 51.24 45.4 56.92 44.68 42.39 77.1 58.92 51.01 71.4 53.46 48.34

[67] - - - 42.01 34.02 28.43 - - - 38.03 24.58 22.1

[69] 55.36 47.07 44.61 51.92 43.77 40.14 81.17 67.28 59.67 78.6 63.48 57.08

AFDet [62] evaluated the results using average precision (AP) metric as shown in
Table 21, where the IoU threshold was 0.7 for the car class. They did not use complex
post-processing process and NMS to filter out the results.

SegV Net [63] evaluated the 3D vehicle detection results on the KITTI test dataset using
APbev and AP3D metrics, as shown in Table 22, while the results on validation dataset with
AP3D metric and orientation estimation (AOS) are reported in Table 21. It outperformed
LiDAR only single stage methods [111,113] in 3D vehicle detection.

SECONDX [64] supports cars, pedestrians and cyclists’ categories with a single model
and outperforms other methods for all APs in three classes. Its evaluation results on the
KITTI validation set are given in Tables 21 and 23. It runs in real time without increasing
memory usage and inference time compared with [120].

IPOD [66] follows AP metrics for all three classes where the IoU threshold is 0.7 for car
class and 0.5 for pedestrians and cyclists classes. For evaluation on the test set, the model
used train/val sets at a ratio of 4:1. The performance of the method is listed in Tables 21–24.
Yang et al. [66] showed that compared to [199], the detection accuracy of IPOD on hard
set has improved by 2.52%, and 4.14% on BEV and 3D respectively. Similarly, compared
to [73,120] it performs better in pedestrian prediction by 6.12%, 1.87%, and 1.51% on the
easy, moderate, and hard levels, respectively.

FVNet [67] presents the performance for cars category at 0.7 IoU using APbev and
AP3D and for the pedestrians and cyclists categories at 0.5 IoU using AP3D metric on the
KITTI test dataset, as shown in Tables 22 and 24. It achieved significant better results
despite using the raw point clouds, and its inference time was 12 ms. Compared to [73], it
performs best on all three categories except the car detection in easy setting, which employs
both front-view and bird’s-eye-view.

In DPointNet [68], the dataset includes three categories of car, pedestrian, and cyclist.
However, it only evaluates the car class for its rich data. Tables 21 and 22 show its
performance on the KITTI validation and test sets respectively using the average precision
(AP) of car class with a 0.7 IoU threshold. Li et al. [68] demonstrated that the effectiveness
of proposed DPointNet on the KITTI validation set has increased from 0.4% to 0.6%, with
only about 60% running time.

Point-GCNN [69] used the KITTI benchmark to evaluate the average precision (AP) of
three types of objects: car, pedestrian and cyclist. Following [111,114,200], it handles scale
differences by training one network for the car and another network for both the pedestrian
and cyclist. The AP results of 3D and BEV object detection on the KITTI test set for all three
categories are shown in Tables 22 and 24. It achieved good results for car detection on easy
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and moderate levels, for cyclist detection on moderate and hard levels while it surpasses
previous approaches by 3.45. The reason of low pedestrian detection compared to its car
and cyclist classes is that vertices are not dense enough to obtain more accurate bboxes.

S-AT GCN [72] evaluated 3D detection results using the 3D and BEV average pre-
cession at 0.7 IoU threshold for the car class and 0.5 IoU threshold for the pedestrian and
cyclist classes. The results on the KITTI validation data are reported in Tables 21 and
23. Its method 1 indicates the results of self-attention (AT) without dimension reduction
while method 2 represents the results of self-attention with dimension reduction (ATRD).
Compared to method 1, the second method performrf better for car detection on all three
difficulty levels, pedestrians at the hard difficulty level, and cyclists at moderate and hard
difficulty levels. Wang et al. [72] described that adding feature enhancement layer with
self-attention, can bring extra 1% and 2–3% improvement for its pedestrians and cyclists’
detection.

MV3D [73] followed [194] to split training set and validation set, each containing about
half of the whole dataset. It only focused on car category and performed the evaluation
on three difficulty regimes: easy, moderate, and hard. The results using AP3D and APloc
at IOU=0.7 on validation set are shown in Table 21. Chen et al. [73] has showed that the
proposed method [73] performed better than [41] by APloc under IoU threshold 0.7 and
achieves ∼45% higher APloc across easy, moderate, and hard regimes. Similarly it obtained
∼30% higher AP3D over [41] with criteria of IoU=0.7, and reaches at 71.29% AP3D on easy
level.

BEVLFVC [74] evaluated the pedestrian detection results using 3D detection average
precision AP3D on the KITTI validation dataset, as shown in Table 23. Wang et al. described
that its highest performance on validation set can be achieved by fusing [114,126] with the
proposed sparse non-homogeneous pooling layer and one-stage detection network.

D3PD [75] trained the model using different hyper parameters and evaluated the vali-
dation split using AP3D metric for pedestrian detection, as shown in Table 23. Roth et al. [75]
illustrated that the highest performance can be obtained using concatenation feature com-
bination in the detection network and showed that deep fusion scheme performs slightly
better than early fusion scheme.

MVX-Net [76] splits the training set into train and validation sets and does not include
the samples from same sequences in both sets [73]. It evaluated the 3D car detection
performance using AP metric in 3D and bird’s eye view for validation and test sets as
shown in Tables 21 and 22. The experimental results show that [76] with point fusion
significantly improves the score of mean average precision.

SharedNet [77] achieves competitive results compared with other state-of-the-art
methods. The results in the KITTI validation and test dataset for three classes (cars,
pedestrians, and cyclists) were evaluated on mean average precision metric. The results for
car validation and test set are given in Tables 21 and 22 respectively while for pedestrian
and cyclist categories on validation set are listed in Table 23. Wen et al. [77] illustrates that
the proposed model [77] competes with [199,201] in comprehensive performance. For the
cyclist class, it outperforms the [201] while in the car class, it is 2× faster than [201].

SDes-Net [86] trains and tests different descriptor extraction models on real world data
from the KITTI dataset. It evaluates their performance for 3DPR tasks to determine match-
ing and non-matching pairs of segments, and to obtain the correct candidate matches. First,
it compares the general accuracy of different descriptors using positive and negative pairs
of segments from the test set. The experimental results show that Siamese network [167]
achieves the best overall classification accuracy, which is about 80%, listed in Table 25.
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Table 25. Comparison of the Results on the KITTI, NCLT, and KAIST Datasets.

KITTI Dataset NCLT
Dataset

KAIST
Dataset

Task: 3DPR Task: 3DPR

Accuracy Ref Recall @ 1 % Recall @ 1 % Recall @ 1 %

Ref Descriptors Pair of Matching
Segments

Candidate
Matching [88] 98.1 - 95.2

[86]

Siamese 80% 30% [84] 96.9 97.0 -

Group-based - 50% -
Constructrive - 50%

The second comparison among descriptors was conducted to find the potential de-
scriptor for generating candidate matches based on the closest neighbor in the euclidean
descriptor-space. The experimental results demonstrates that the group-based classifier
and feature extraction network that was trained using contrastive loss function [165] per-
formed the best with around 50% positive matches, while the Siamese network [167] had
only around 30% positive matches.

OREOS [84] demonstrates the place recognition performance on NCLT and KITTI
datasets for an increasing number of nearest place candidates retrieved from the map. with
recall in % that is 96.7 on the KITTI dataset and 98.2 on NCLT dataset as shown in Table 25.

CLFD-Net [88] uses KITTI and KAIST datasets for place recognition task. KITTI
dataset supplies 11 scenes containing accurate odometry ground truth information. These
scenes are used in experiments and referred as KITTI 00, · · ·, KITTI 10. It has potential to
be applied in the field of autonomous driving or robotic systems with a recall @1%. The
performance is 98.1 for KITTI 00 scene, which is 1.7% higher than [80], and 2.5% higher
than [108]. The performance on KAIST3two scene is 95.2, which is 8.5% higher than [80],
and 6.9% higher than [108]. The overall performance of model [88] on the KITTI dataset
with average recall @ 1% is higher than KAIST dataset as shown in Table 25.

Table 26 illustrates the performance of proposed network in [65] for vehicle and
pedestrian detection using the standard average precision for 3D detection (AP3D) and on
the bird’s eye view (APbv). The AP scores are measured at IOU = 0.7 threshold for car class,
and IOU = 0.5 for pedestrian class with a reasonable inference speed (30FPS).

Table 26. Comparison of the Results on the Argoverse Dataset.

Argoverse Dataset

Task: 3DOR

Car Pedestrian

APbev (IoU @ 0.7) AP3D (IoU @ 0.7) APbev (IoU @ 0.5) AP3D (IoU @ 0.5)

Ref Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

[65] 72.9 56.9 14.1 53.4 24.3 1.80 40.6 22.9 6.1 33.3 17.0 4.20

RGNet [70] and HGNet [71] used the ScanNet and Sun RGB-D datasets to perform
3DOR tasks while [81] used ScanNet dataset for 3DPR task. In [70], the network model
performs better on 15/18 classes for 3D object (i.e., chair, table, bed etc.) detection task
using ScanNet dataset and evaluates the performance using mean average precession,
which is given in Table 27 as model accuracy is 48.5 in terms of mAP @ 0.25. Its 3D object
detection in point cloud on Sun RGB-D dataset showed the overall performance is 59.2 on
6/10 object classes with mAP @ 0.25.
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Table 27. Comparison of the Results on the ScanNet, Sun RGB-D, ISIA RGB-D, and NYUD2 Datasets.

ScanNet Dataset Sun RGB-D Dataset ISIA RGB-D Dataset NYUD2 Dataset

Task: 3DOR

Ref mAP @ 0.25

[70] 48.5 59.2 - -

[71] 61.3 61.6 - -

Task: 3DPR

Avg Recall Accuracy %

[78] - 53.8 58.3 67.5

[81] 0.70 - - -

In [71], 3D object detection results with 61.3 % accuracy on the ScanNet dataset has
been achieved with mAP @ 0.25 while 61.6 % on Sun RGB-D dataset for the ten most
commonly used object categories ( such as bed, sofa, chair, table etc). The results are listed
in Table 27.

RGBD-Net [78] evaluated the scene recognition results on NYUD2, SUN RGB-D and
the ISIA RGB-D dataset for 3DPR task. It follows the split by [181] to recognize 27 indoor
categories of NYUD2 dataset into 10 categories. Scene categories in the SUN RGB-D dataset
are 40 and in the ISIA RGB-D video database are eight. It contains 60 % data of each
category for training and 40 % for testing. Following [183], it uses ther mean class accuracy
for the evaluation and comparisons of results, which are shown in Table 27.

ISR-Net [81] uses the ScanNet benchmark to present the scene classification results
for place recognition (library, bedroom, kitchen, etc) and achieves an average recall of 0.70
as shown in Table 27. It performs better on 11/1three scenes and jumps to 70.0% recall
compared to [202], which has an average recall of at most 49.8%.

In Pointnetvlad [80], the performance on average recall at 1% is evaluated using the
Oxford dataset and three in-house datasets. It achieved reasonable results, which are 80.31,
72.63, 60.27, and 65.3 for the Oxford, U.S., R.A., and B.D. datasets, respectively, as shown in
Table 28.

Table 28. Comparison of the Results on the Oxford Robot-car, MVSEC, and In-House Datasets.

Oxford Robot-Car In-House

U.S. R.A. B.D.

Task: 3DPR

Ref Recall @ 1 %

[80] 80.09 72.63 60.27 65.3

[87] 97.9 95.0 91.2 88.5

[89] 98.23 - - -

[83] - 96.0 90.46 89.14

AUC

[85]
Pair

Sequence
1 2 3 4 5 6 7 8 9 10 -

0.774 0.736 0.583 0.419 0.764 0.557 0.489 0.599 0.443 0.594

Oxford Robot-car and MVSEC
-

[79]
Recall @ 1 %

-Day 1 Day 2 Night 1 Night 2 Night 3 Cloud Rain Snow Night

99.51 91.52 98.67 95.11 97.37 91.81 90.95 93.29 91.80
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MinkLoc3D [87] evaluated the experimental results on the Oxford dataset and three
in-house datasets that were acquired using LiDARs with different characteristics. The
evaluation results of place recognition model on Oxford Robot-car dataset have achieved
97.9 average recall at 1 %, which is higher than [83]. When [87] model is evaluated on three
in-house datasets, its performance compared to [83] is 1.0 and 0.6 p.p. lower for U.S. and
B.D. sets that is 95.0 and 88.5 respectively while 0.7 p.p. higher for R.A. set. The results are
listed in Table 28.

The experimental results of PIC-Net [89] show the performance of its optimal configu-
ration is 98.23% on average with the recall @ 1, as shown in Table 28, which is about 0.52%
better than the direct concatenation.

Lpd-net [83] evaluated the network model on the three In-House datasets and achieved
96.00, 90.46 and 89.14 average recall @ 1 % for U.S., R.A., and B.D. sets, shown in Table 28. It
is trained only on the Oxford Robotcar dataset and directly test it on the In-House dataset.

SDM-Net [85] considers ten place recognition cases and uses area under the precision-
recall curve (AUC) to evaluate the sequence pairs for representative cases. The results for
all of them are reported in Table 28. It outperforms [152], in six out of ten cases.

In Event-VPR [79] the performance of proposed method is evaluated on MVSEC and
Oxford RobotCar datasets, and the results are listed in Table 28. On the MVSEC dataset,
two daytime and three nighttime sequences are trained together, and then each of them is
tested separately. The recall @ 1 % of its model in night sequences has achieved 97.05% on
average while almost the same at daytime sequences. On the Oxford RobotCar dataset, it
shows the model performance for place recognition under various weather and seasons. It
uses night sequences for training and performs testing on the day and night sequences. Its
recall @ 1 % on Oxford Robot-car dataset is about 26.02% higher than [203] but about 7.86%
lower than [152].

Summary

Section 5 analyzes the performance of the 3DOR and 3DPR methods by comparing
the published results based on three evaluation metrics (AP, AOS, and ALP) for 3DOR
and three evaluation metrics (Recall, Accuracy, and AUC) for 3DPR tasks. It classified the
results for comparison according to the datasets used by each method.

Performance comparison on the KITTI car validation and test sets is presented in
Tables 21 and 22 respectively. Analysis on the KITTI pedestrian and cyclist validation set is
given in Table 23 and on the test set is given in Table 24.

Table 21 shows that the performance of [77] on easy while [72] on moderate and hard
difficulty levels is better for APbev (IoU @ 0.7); [63] on easy while [68] on moderate and
hard levels performs better than the other methods for AP3D (IoU @ 0.7); [61] val11 set
surpasses all models for ALP on all three levels.

Table 22 presents that [77] outperforms on easy while [69] performs better on moderate
and hard sets for APbev (IoU @ 0.7); [69] performance is higher on all three levels compare
to other methods for AP3D (IoU @ 0.7); [63] model exceeds over [67] for AOS on all
three levels.

In Table 23, the performance analysis of pedestrian category illustrates that [66] on
all three levels outperforms for APbev (IoU @ 0.5); [77] on easy and moderate while [66]
on hard level performs better for AP3D (IoU @ 0.5). The comparison on cyclists category
shows that first method of [72] on easy while its second method on moderate and hard
levels gives better results using APbev (IoU @ 0.5); first method of [72] on moderate while
its second method on easy and hard levels outperforms for for AP3D (IoU @ 0.5).

Table 24 presents that, for the pedestrian category, the results of [55,66] outperform
other methods on all three levels for APbev and AP3D (IoU @ 0.7) and for APbev and AP3D
(IoU @ 0.5) respectively. For cyclist category the results of [69] and third method of [57]
have higher performance on all three levels when compared using APbev and AP3D (IoU @
0.5) and APbev and AP3D (IoU @ 0.7).
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For 3DPR tasks, Table 25 presents that [88] has higher recall than [84] on the KITTI
dataset while Constructrive and group-based methods have equally higher accuracy in [88].
Performance comparison for 3DOR task on ScanNet and Sun RGB-D datasets shows
that [71] has higher mAP @0.25 compared to [70] in Table 27. Table 28 presents that [89] on
Oxford Robot-car and [83] on the In-House datasets outperform [80,89] when evaluated
with average recall @ 1 % for 3DPR task.

6. Discussion and Future Research Directions

This section summarizes the most relevant findings on the review of social represen-
tative robots (Section 2), camera and LiDAR-based data representation of 3D recognition
(Section 3) for both object (Section 3.1) and place (Section 3.2).

This article first highlighted the value-centric role of social robots in the society
by presenting recently developed robots. These social robots are performing front-line
tasks and taking complex roles in public, domestic, hospitals, and industrial settings.
The semantic understanding of the environment varies depending on the domain and
application scenarios of the robots. For instance, the semantic understanding task for a
robot working in a factory with a human co-worker is different from those robots working
at home due to different objectives. Usually, these robots are equipped with a variety of
sensors, such as camera and LiDAR to perform human-like recognition tasks.

Focusing on the recognition capability of social robots, It has explored camera and
LiDAR-based 3D data representation methods using deep learning models for object and
place recognition. Both sensors are affected by the changes in the scene lighting conditions
as well as the other weather factors [204]. In addition, both object and place recognition
(OPR) tasks rely on different methods of semantic understanding, which help to detect
small and occluded objects in cluttered environment or objects in occluded scenes.

Examining the existing literature on 3D recognition reveals that there are relatively
fewer studies on 3D place recognition compared to 3D object recognition. Moreover, a
stable model for 3D recognition has not yet been formed. In the real world, a robot’s
behavior strongly depends on its surrounding conditions and it needs to recognize its
environment through the input scenery. However, literature search shows that up to now,
little attention has been paid to LiDAR-based 3D recognition in indoor environment using
DL-based approaches in contrast to outdoor recognition.

A monocular camera is a low-cost alternative for 3DOR and depth information is
calculated with the aid of semantic properties understanding from segmentation. 3D
monocular object detection can be improved by establishing pairwise spatial relationships
or regressing 3D representation for 3D boxes in the indoor environment, while visual
features of visible surfaces for extracting 3D structural information in the outdoor envi-
ronment. Compared with the monocular camera more, precise depth information can be
obtained through the stereo camera by utilizing semantic and geometric information and
region-based alignment methods can be used for 3D object localization. However, it can be
extended to general object detection by learning 3D object shapes.

At present, most of the 3DOR methods heavily depend on LiDAR data for accurate
and precise depth information. However, LiDAR is expensive, and its perception range is
relatively short. The article categorized the LiDAR-based 3DOR methods into structured,
unstructured, and graph-based representations. Some 2D image grid-based methods
used pre-RoI pooling convolution methods and pose-sensitive feature maps for accurate
orientation and size that can be enhanced with a more advanced encoding scheme for
maintaining height information.

We reviewed 3D voxel grid-based methods that incorporate semantic information
by exploiting BEV semantic masks and depth aware head and by providing multi-class
support for 3D recognition. 3D object detection from raw and sparse point cloud data has
been far less explored to date using DL models, compared with its 2D counterpart.

3D LiDAR PC-based object detection can yield improved performance by context
information and Precise PC coordinates as well as generating feature maps through cylin-
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drical projection and combining proposal general and parameter estimation network.
However, little research has looked into encoding PC using graph neural networks (GNNs)
for highly accurate 3DOR. The joint learning of pseudo centers and direction vectors for
utilizing multi-graphs was explored with supervised graph strategies for improving the
performance. The point clouds do not well capture semantic (e.g., shape) information;
however, utilizing the hierarchical graph network (HGNet) approach effectively handles
this problem at multi-level semantics for 3DOR.

Sensor fusion methods based on camera and LiDAR for 3DOR using deep fusion
schemes have gained attention. These methods rely on combing multi-view region-wise
features, constructing sparse non-homogeneous pooling layer for feature transform be-
tween two views and allows fusion of these features, extracting point clouds using voxel
feature encoder and utilizing anchor proposals, or integrating point and voxel fusions. In
this direction, future research needs to deep multi-class detection network.

Unlike 3DOR, 3DPR task based on LiDAR and camera-LiDAR fusion methods by
leveraging the recent success of deep networks has remained as a less explored problem.
LiDAR PC based 3DPR methods depend on metric learning and inference to extract the
global descriptors from 3D PC, extraction of local structures and finding the spatial distri-
bution of local features, representation of semi-dense point clouds-based scene, utilization
of data-driven descriptor for near-by place candidates, and estimation of yaw angle for
oriented recognition. Camera-LiDAR sensors fusion methods to extract fused global de-
scriptors for 3DPR via DL approaches depends on applying a trimmed strategy on the
global feature aggregation of PC or using attention-based fusion methods to distinguish
discriminative features that can be improved by color normalization.

7. Conclusions

To conclude, the present article began by enumerating the role of social robots as
human assistants. Then, in the context of social robot capabilities, we focused on the recent
publications related to the camera and LiDAR-based 3D data representation approaches
for object and place recognition using the DL model between the years 2014 and 2021.
This is the first combined study to review both 3D object and place recognition as well as
recently developed social robots. We started by presenting the impact of social robots in
the human-centric environment as a companion to tackle the daily problems in different
(domestic, industrial, and medical) fields of life.

We described these recent robotic systems and listed their sensors, tasks, algorithms,
appearances, semantic functions, and development status. Afterward, followed by the
recognition capability of these social robots, we explored 3D data representation methods
for object and place recognition based on camera and LiDAR using DL-based approaches
with their advantages and limitations. In addition, we reviewed 3D detection datasets and
present comparisons of the existing results.

To motivate those who are interested in DL-based 3D visual recognition approaches,
the current study provides information in easy-to-understand tables, in particular, by
pointing out the limitations and future research areas. In addition, this study describes
different 3D datasets. Moreover, in this article, we analyzed and compared the existing
results in the references for different datasets. Finally, we concluded the current survey
with a discussion that suggests some promising research directions for future work.
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Abbreviations

The list of acronyms and abbreviations used in this survey is given below:
DL Deep Learning
CNN Convolutional Neural Network
3DOR 3D Object Recognition
3DPR 3D Place Recognition
RoI Region of Interest
R-CNN Region-based Convolutional Neural Network
SSD Single Shot MultiBox Detector
YOLO You Only Look Once
PC Point Cloud
AVOD Aggregate View Object Detection
PG-Net Proposal Generation network
PE-Net Parameter Estimation network (PE-Net)
KITTI Karlsruhe Institute of Technology and Toyota Technological Institute
HKUST Hong Kong University of Science and Technology
KAIST Korea Advanced Institute of Science and Technology
NYUD2 New York University Dataset version 2
NCLT The University of Michigan North Campus Long-Term Vision
DDD17 DAVIS Driving Dataset 2017
sGD Stochastic Gradient Descent
BBox Bounding Box
ADV Autonomous Driving Vehicle
GS3D 3D Guidance and using the Surface feature
SS3D Single-Stage Monocular 3D
M3DSSD Monocular 3D Single Stage object Detector
SRCNN Stereo Recurrent Convolutional Neural Network
NMS Non-Maximum Suppression
FV Front-View
BEV Bird’s-Eye View
SegVNet Segmentation-based Voxel Network
VFE Voxel Feature Encoder
LidarMTL Lidar-based multi-task learning network
IPOD Intensive Point-based Object Detector for Point Cloud
FVNet Front-View proposal generation Network
DPointNet Density-oriented Point Network
GCNN Graph Convolutional Neural Network
RGNet Relation Graph Network
HGNet Hierarchical Graph Network
S-AT GCN Spatial Attention Graph Convolution
MV3D Multi-view 3D Network
MS-CNN Multi Scale Convolutional Neural Network
S-AT Spatial-Attention
BEVLFVC Bird’s Eye View LIDAR point cloud and Front View Camera image
MVX-Net Multimodal Voxelnet for 3d object detection
NetVLAD Network for Vector of Locally Aggregated Descriptors
DGCNN Dynamic graph Convolutional Neural Network
AUC Area Under Curve
AP Average Precision
LPD-Net Large-scale Place Description
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