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ABSTRACT

Despite great increase of the amount of data
from genome-wide association studies (GWAS) and
whole-genome sequencing (WGS), the genetic back-
ground of a partially heritable Alzheimer’s disease
(AD) is not fully understood yet. Machine learning
methods are expected to help researchers in the anal-
ysis of the large number of SNPs possibly associated
with the disease onset. To date, a number of such ap-
proaches were applied to genotype-based classifica-
tion of AD patients and healthy controls using GWAS
data and reported accuracy of 0.65–0.975. However,
since the estimated influence of genotype on spo-
radic AD occurrence is lower than that, these very
high classification accuracies may potentially be a
result of overfitting. We have explored the possibil-
ities of applying feature selection and classification
using random forests to WGS and GWAS data from
two datasets. Our results suggest that this approach
is prone to overfitting if feature selection is per-
formed before division of data into the training and
testing set. Therefore, we recommend avoiding se-
lection of features used to build the model based on
data included in the testing set. We suggest that for
currently available dataset sizes the expected classi-
fier performance is between 0.55 and 0.7 (AUC) and
higher accuracies reported in literature are likely a
result of overfitting.

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder
for which both genetic background and environmental fac-

tors have been shown to influence risk. Some forms of the
disease are caused by rare mutations in amyloid precur-
sor protein (APP), presenilin 1 (PSEN1) and presenilin 2
(PSEN2) genes and inherited in an autosomal dominant
manner. However, this heritable (familial) form of AD con-
stitute only around 5% of all cases and only 5–10% of its
occurrences can be explained by the presence of known mu-
tations in APP, PSEN1 and PSEN2 genes (1). The great
majority of AD occurrences represent the so called spo-
radic AD. The genetic background of the sporadic AD is
no longer monogenic and its estimated contribution to the
disease risk ranges from 58% to 79% (2). For many years
the only known gene associated with AD risk was APOE.
The APOE ε4 allele increases the disease risk and modifies
the onset age (3,4). Until now around 30 different loci asso-
ciated with AD risk have been identified, mainly by the use
of genome-wide association studies (GWAS) (5–7).

Several machine learning approaches have been already
applied to the problem of genotype-based classification of
AD patients and healthy controls and reported classifica-
tion accuracies range from 0.65 to 0.975 (8–13). However,
since the influence of genotype on sporadic AD occurrence
estimated in a twin study does not exceed 90% (2), higher
accuracy of disease status prediction (classification of sub-
jects into cases and controls) solely based on genetic data
is not expected. There is, therefore, a possibility that very
high accuracy of classification results from overfitting of the
machine learning model. One possible reason for overfit-
ting may be the presence of data used for model testing in
the training set. We have observed that the highest AUC re-
sults are reported for studies in which initial pre-screening
of SNPs was performed to preferentially include those that
would be expected to correlate with the outcome. For ex-
ample Briones and Dinu (9) apply logistic regression to the
complete AD GWAS data set (prior to division into train-
ing and testing set) to pre-select SNPs associated with the
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disease. A random forest classifier built based on these pre-
selected SNPs reaches an average 10-fold cross-validation
(CV) error of around 10%. In the approach by Nguyen
et al. (11) random forest-based feature selection algorithm
was applied in combination with random forest classifier
also to an AD GWAS dataset. Similarly to the previous
approach, the informative SNPs used to build the classifier
were chosen from the complete dataset. The maximal AUC
estimated from 5-fold CV was 0.975. Finally, application of
allelic, genomic and regression tests to pre-select disease as-
sociated SNPs again based on complete GWAS data set and
multifactor dimensionality reduction in 10-fold CV resulted
in classification accuracy of 0.78 (12).

On the other hand Bayesian-network based models ap-
plied to AD GWAS dataset in 5-fold CV but with mod-
els build on training data only reach AUC around 0.7 (10).
In a different approach genes known to be associated with
AD based on meta-analysis results provided by the AlzGene
database were used to pre-select SNPs from ADNI GWAS
data set (8). In this case selected features were known to cor-
relate with the outcome but not in the same data set as the
one used for model building. The random forests for con-
trols versus AD classification built on selected SNPs were
characterized by out-of-bag error of around 0.42 to 0.52.
Finally, when label propagation method was used to rank
SNPs from a training subset of AD GWAS data set the max-
imal AUC of a k-nearest neighbor classification in 5-fold
CV was around 0.75 (13).

It should be noted that the problem of patient classifica-
tion based on genotype data is widely studied in literature,
not only in the context of AD. In most of these contexts,
some feature selection needs to be performed, as the number
of features is usually much greater than the number of pa-
tients, which is an issue known in statistical machine learn-
ing as p>>n. Since the methods of feature selection meant
for dealing with this problem are relatively new and com-
plex, they require care in application to avoid overfitting.

We have thus decided to explore the possibilities of ap-
plying machine-learning classification algorithms to single-
nucleotide polymorphisms (SNPs) from whole-genome se-
quencing (WGS) data that provide approximately 40 times
more features (sites of genomic variation) per sample. We
applied Boruta feature selection algorithm (14) and ran-
dom forest classifiers to two WGS and one GWAS datasets
obtained from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database (adni.loni.usc.edu) and the Re-
ligious Orders Study and the Rush Memory and Aging
Project (ROSMAP, www.radc.rush.edu) (15,16) and inves-
tigated the influence of machine learning study design and
structure of analyzed sample on classification results.

MATERIALS AND METHODS

Datasets

Whole genome sequencing (WGS) data were obtained from
two resources: the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database (adni.loni.usc.edu) and the Re-
ligious Orders Study and the Rush Memory and Ag-
ing Project (ROSMAP, www.radc.rush.edu) (15,16). The
ADNI was launched in 2003 as a public-private partner-

ship, led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission to-
mography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to mea-
sure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD). For up-to-date infor-
mation, see www.adni-info.org. SNP genotyping (GWAS)
data were also obtained from ADNI.

The ADNI-WGS dataset includes results of whole-
genome sequencing and variant calling for 808 patients
(251 healthy, 235 AD and 322 with mild cognitive impair-
ment, MCI). The ADNI-GWAS dataset includes SNP
genotyping results for 793 patients (266 healthy, 219 AD
and 308 MCI). MCI patients were not included in the
analysis. The diagnosis for each patient was established
based on ‘DXSUM PDXCONV ADNIALL.csv’ file that
provides summary of diagnostic information for ADNI pa-
tients. Reference genome for ADNI dataset is hg19 (UCSC
Genome Browser standard). The ROSMAP dataset con-
sists three sub-datasets (Mayo, MSBB and Rosmap), which
in total include results of whole-genome sequencing and
variant calling for 1894 patients (503 healthy, 530 AD, 861
others). Only healthy and AD patients were included in
the analysis. Diagnoses for participants from Mayo dataset
were obtained from the ‘MayoRNAseq RNAseq Genome-
Wide Genotypes Covariates.csv’ file, diag-
noses for MSBB dataset were obtained from
‘MSBB RNAseq.WES.WGS sample QC info.csv’ and
‘MSBB clinical.csv’ files and diagnoses for Rosmap dataset
were obtained from ‘AMP-AD rosmap WGS id key.csv’
and ‘ROSMAP clinical.csv’ files. Reference genome
for ROSMAP dataset is GRCh37 (Genome Reference
Consortium standard).

The following WGS data curation steps were performed
prior to the analysis: (i) SNPs were selected from vcf files
using the SelectVariants method from GATK toolkit (ver-
sion 4.0.11.0) (17), (ii) patients genotypes were encoded as
0 (homozygous reference), 1 or 2 or 3 (heterozygous or ho-
mozygous alternative, for different possible alternative alle-
les: 1 for first alternative allele, 2 for second and 3 for third)
or -1 (missing data). No filtering based on the minor al-
lele frequency was performed. SNPs common for ADNI-
WGS and ROSMAP datasets were identified based on ge-
nomic positions. Population structure for ADNI-WGS and
ROSMAP dataset was analyzed by PCA conducted with
PLINK 1.9 software (18) using 1000 genomes data (19) as
reference. Plots for the first four principal components are
available as Supplementary Figure S1.

GWAS data were downloaded in the binary plink for-
mat. After its decompression using the PLINK 1.9 soft-
ware (18) MAP file with information about SNPs and PED
file with patients genotypes were obtained. Next, reference
allele for each SNP was retrieved from the dbSNP b152
database (20). Then based on the PED files and reference
allele values patients genotypes were encoded in the same
way as for WGS data. No filtering based on missing data
amount has been performed, leading to the following per-
centages of SNPs having > 5% of missing data in the ana-
lyzed datasets: ADNI GWAS – 7.5%, ADNI WGS – 26.7%,
ROSMAP WGS – 24%.
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Figure 1. Analysis summary. (A) Feature (SNPs) selection before division of the data into training and test sets. (B) Feature selection after division of the
data into training and test sets. (C) Datasets included in the study.

Feature selection

The python implementation of the Boruta feature se-
lection algorithm (https://github.com/scikit-learn-contrib/
boruta py) was used to select a subset of SNPs expected
to be relevant predictors of the disease status. Boruta al-
gorithm (14) evaluates features importance using random
forests and shadow features (copies of the real features with
values shuffled across objects). During each iteration the al-
gorithm calculates importance for every feature (the real
and the shadow ones) and using a binomial test assesses
which of the real features have significantly higher predictive
value in the classification result than some chosen percent-
age of shadow features (90% in this analysis). Due to mem-
ory requirements feature selection was performed in batches
containing 5000 consecutive SNPs. There were 7700 batches
in the ADNI WGS and 11 695 batches in the ROSMAP
dataset. Computation time for each batch was 3.61 min for
ADNI and 3.86 min for ROSMAP. Relevant features se-
lected from each batch were merged to generate the final set
of selected features. Feature selection performed in batches
required 1.9GB RAM for ADNI WGS and 5GB RAM for
ROSMAP.

The feature selection step was performed either on the
complete dataset (before division of data into training and
test set, Figure 1A) or on the training set only (Figure 1B).

Classification

For classification and evaluation of classifier performance
we used the scikit-learn package, version 0.20.1 (21). Clas-
sification was conducted with the random forest algo-
rithm (sklearn.ensemble.RandomForestClassifier). In the
first part of the analysis, where feature selection was con-
ducted before division of the data into training and test
sets (Figure 1A), we conducted 10-fold cross validation
(sklearn.model selection.Kfold). In the second part of the
analysis, in which feature selection was conducted after di-
vision of the data into training and test sets (Figure 1B), the
scores were estimated from the mean of results from three
iterations of the whole algorithm in which the datasets were
randomly split into training (90% of data) and test (10%
of data) sets. The area under the ROC curve (AUC) calcu-
lated for the test data only was used as the evaluation metric
(sklearn.metrics.roc auc score).

Code used to perform the presented analysis is available
at https://github.com/regulomics/alzheimer classification.

Selection of patients subsets based on genetic similarity

Each patient’s genotype was expressed as a vector of 0,
1, 2, 3 and -1 values (as described in the Datasets sec-
tion). Then the Hamming distance for each pair of pa-

https://github.com/scikit-learn-contrib/boruta_py
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Table 1. Numbers of selected features and classifiers performance for
analysis with feature selection before test/train division. Mean values and
standard deviations from a 10-fold CV are given

ADNI WGS ROSMAP ADNI GWAS

AUC
#selected

SNPs AUC
#selected

SNPs AUC
#selected

SNPs

0.99 ± 0.02 341 690 0.99 ± 0.01 369 012 0.98 ± 0.03 24 998

tients was computed (the difference between patients for
each variant site was clipped to 0–1 range using numpy.clip
method). Based on these distances UPGMA clustering
was conducted using SciPy package, version 1.1.0 (func-
tion scipy.cluster.hierarchy.linkage with parameter method
= ‘average’) and the largest cluster was selected (at dist
> 0.1055 for ADNI-WGS and 0.096 for ROSMAP) and
samples with almost identical genotypes (most likely fam-
ily members at dist < 0.097 for ADNI-WGS and 0.093 for
ROSMAP) were removed from it.

Functional annotation of relevant SNPs

Relevant SNPs common for ADNI-WGS and ROSMAP-
WGS datasets were chosen using intersect tool from the
BedTools toolkit (22). Selected SNPs were assigned to genes
using Variant Effect Predictor via online interface (23) and
gene list was submitted to the PANTHER Overrepresen-
tation Test (Released 20190417, Annotation Version and
Release Date: PANTHER version 14.1 Released 12 March
2019) (24). Overrepresentation of GO-Slim Biological Pro-
cess terms was calculated with Fisher’s Exact test.

RESULTS

Feature selection before division into training and testing set
results in severe overfitting

Using feature selection can lead to surprisingly high rates
of prediction accuracy. By performing feature selection on
the complete ADNI-WGS, ADNI-GWAS and ROSMAP
datasets we have selected approximately 350 thousand rel-
evant SNPs for each WGS dataset and 25 thousand for
GWAS dataset (Table 1). These selected SNPs have been
used to build random forest classifiers within a 10-fold
cross-validation procedure (Figure 1A). The classifiers per-
formance expressed as the area under the ROC curve (AUC)
was around 0.98 for all three datasets (Table 1). That high
classification accuracy is unexpected since there is a non-
negligible environmental influence on the onset of AD even
when identical twins are considered.

Models trained with globally selected features show no ap-
parent utility between patient cohorts. Next, we performed
an analysis where we used random forest models built on
one data set to classify patients from the second dataset.
Since ADNI-WGS and ROSMAP data are characterized
by a substantial difference in the total number of SNPs
(Figure 1C), we have conducted this analysis only on SNPs
shared between ADNI-WGS and ROSMAP datasets. Fea-
ture selection in these experiments was again performed
on complete data sets, with the starting SNPs positions

Table 2. Numbers of selected features and classifiers performance for
analysis with feature selection before test/train division on SNPs shared
between ADNI-WGS and ROSMAP-WGS datasets. Mean values and
standard deviations from a 10-fold CV are given

Test set ADNI WGS ROSMAP

Training set AUC
#selected

SNPs AUC
#selected

SNPs

ADNI WGS 0.99 ± 0.01 257 634 0.50 ± 0.02 257 634
ROSMAP 0.50 ± 0.04 185 252 0.99 ± 0.01 185 252

set restricted to SNPs shared between ADNI-WGS and
ROSMAP. The classification performance in this setup was
significantly lower than when the analysis was performed
on one dataset (Table 2). This result suggests that the mod-
els were overfitted to the datasets from which the features
have been selected and carry little information about global
associations between SNPs and disease status.

Using proper precautions in feature selection leads to models
with lower performance, but much more reproducible between
datasets. Subsequently, we have investigated if performing
feature selection on the complete dataset (before division of
data into training and test set) could have influenced the
performance of classifiers built on selected SNPs. To do so
we have built classifiers on features selected from the train-
ing set only (Figure 1B). AUC for these classifiers ranged
from 0.56 ± 0.02 for ADNI-WGS to 0.67 ± 0.06 for ADNI-
GWAS (Table 3). This suggests that performing feature se-
lection on the complete dataset may result in overfitting of
the classifier due to inclusion of test set data in the feature
selection procedure.

The performances of classifiers obtained for SNPs shared
between ADNI-WGS and ROSMAP datasets were com-
parable to the results obtained for complete datasets (Ta-
ble 3) suggesting that these values are not particularly de-
pendent on patient population and that for other datasets
with comparable sample and SNP number (500–1000 sam-
ples and ∼20 million of SNP) we would expect similar re-
sults. On the other hand, classifier performance on ADNI-
GWAS dataset, which contains approximately 40 times
fewer SNPs than ADNI-WGS, was significantly better than
performance of any of the classifiers built based on WGS
data (Table 3), suggesting that indeed pre-selection of SNPs
to a smaller group of variants seems to be helpful in clas-
sification. It is difficult to verify whether this is simply due
to the lower number of variables, or indeed there were some
selection criteria in the design of the SNP arrays that are
helping in the classification accuracy.

Population structure influences classification results

We have analyzed the genetic similarity between patients
from the ADNI-WGS and ROSMAP datasets and found
that some individuals are either closely related (high pair-
wise similarity) or originate from a distinct population (low
similarity). We have thus repeated the analysis on the sub-
set of patients which are neither too closely nor too dis-
tantly related (for the detailed description of selection cri-
teria see the Materials and Methods section): 444 for the
ADNI-WGS dataset (222 cases and 222 controls) and 809
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Table 3. Numbers of selected features and classifiers performance for analysis with feature selection after test/train division. Mean values and standard
deviations from three repetitions are given

ADNI WGS ROSMAP ADNI GWAS

SNPs set AUC #selected SNPs AUC #selected SNPs AUC #selected SNPs

All from each dataset 0.56 ± 0.02 334 886 ± 15 762 0.58 ± 0.02 358 181 ± 4640 0.67 ± 0.06 24 610 ± 667
Common for ADNI WGS
and ROSMAP WGS

0.51 ± 0.09 258 758 ± 13 288 0.54 ± 0.04 182 348 ± 5622 - -

Table 4. Numbers of selected features and classifiers performance for
analysis with feature selection after test/train division performed on
ROSMAP and ADNI-WGS subsets of patients chosen based on genetic
similarity. Mean values and standard deviations were calculated from two
and four repetitions for ADNI-WGS and ROSMAP, respectively

ADNI WGS ROSMAP

AUC #selected SNPs AUC #selected SNPs

0.63 ± 0.03 201 484 0.55 ± 0.09 160 992 ± 211

for the ROSMAP dataset (426 cases and 383 controls). This
resulted in a small increase of the classifiers performance
(Table 4).

Model built for the classification of one dataset carries infor-
mation relevant for the second dataset

To assess whether information used to classify one dataset
can be successfully used for classification of a completely
different patient set, we have conducted two types of analy-
ses. First, we have performed feature selection and random
forest building on the training set selected from the first
dataset (e.g. 90% of patients from ADNI-WGS) and used
the resulting random forest to classify the patients from the
other dataset (e.g. ROSMAP). In the second approach, we
have again selected relevant features based on the training
subset of the first dataset and then used the locations of
the chosen SNPs to build a new random forest model on
the data on SNP variants and diagnose labels from patients
from the second dataset. In both cases, we assessed the per-
formance of the resulting classifier on the patients from the
second dataset that were not used in training of the tested
classifier. The AUC values for both approaches dropped
down slightly compared to the results on one dataset but
they were still well above 0.5 suggesting that all the mod-
els carry some universal information about genetic differ-
ences between AD cases and controls that did not depend
on the patient sub-population of the ROSMAP and ADNI
cohorts. The results are presented in Table 5.

Selected relevant SNPs reflect known aspects of AD biology

We have identified 10 176 relevant SNPs common to ADNI-
WGS and ROSMAP by intersecting feature selection results
for these two datasets for one of the three repetitions of the
analysis. These SNPs were assigned to 5075 genes for which
the PANTHER Overrepresentation Test for GO-Slim Bio-
logical Process terms was calculated. Significantly overrep-
resented terms (FDR < 0.05) are listed in Table 6. They
show that identified SNPs represent functional terms re-
lated with synapse formation and function. Synaptic loss

Table 5. Cross classification based on features chosen and/or random for-
est built on different dataset, after train/test division (mean values and
standard deviations from two repetitions)

Analysis type Training set Test set AUC
#selected

SNPs

SNPs selected
and random
forest built on
training set

ADNI-WGS ROSMAP 0.55 ± 0.01 243 799

ROSMAP ADNI-WGS 0.53 ± 0.04 183 528
SNPs selected on
training set,
random forest
built on test set

ADNI-WGS ROSMAP 0.55 ± 0.03 243 799

ROSMAP ADNI-WGS 0.57 ± 0.01 183 528

is one of the major features of AD and is believed to be
correlated with cognitive impairment (25,26). Several terms
related with formation of cell–cell junctions, including ad-
herens junctions, are also overrepresented. Since this type
of cell junctions is expected to be present between endothe-
lial cells forming the blood–brain barrier this finding is in
agreement with known blood-brain barrier dysfunctions in
neurodegenerative disorders (reviewed in (27)).

DISCUSSION

We have studied the potential of applying random forest
classifiers with Boruta feature selection for building predic-
tive models for identifying patients likely to develop AD
based on their genotype. This has been done before, on dif-
ferent datasets and with varying level of accuracy. Impor-
tantly, some studies have reported prediction accuracy sig-
nificantly exceeding the expected level of possible accuracy
given the fact that even among identical twins, there should
be a non-negligible environmental contribution to the on-
set of AD. Since most of the previously published methods
used some form of feature pre-selection, usually based on
overall SNP association with the class variable, we expected
that this might be the underlying reason behind the proba-
ble overfitted models.

Using two different strategies to apply feature selection,
we were able to reproduce the overfitting effect on two
well-known datasets provided by the ADNI and ROSMAP
projects. In both cases we were able to create classifiers giv-
ing seemingly perfect prediction scores, even though they
were properly cross-validated (except the feature selection
stage). The culprit is in the fact that the feature selection was
done on the whole dataset, and only selected features that
we verified to perform well on the whole sample set, giving
the classifier an artificially easy task. The fact that the clas-
sifiers were overfitted is corroborated by the results of the
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Table 6. Gene Ontology terms overrepresentation for SNPs selected from ADNI-WGS and ROSMAP-WGS

PANTHER GO-Slim Biological Process
# in Homo sapiens -
REFLIST (20996) # expected

Fold
Enrichment raw P value FDR

Cell–cell adhesion via plasma-membrane adhesion
molecules (GO:0098742)

52 29 7.24 4.01 3.77E-08 7.53E-06

Modulation of chemical synaptic transmission
(GO:0050804)

75 32 10.44 3.07 8.79E-07 1.13E-04

Adherens junction organization (GO:0034332) 23 16 3.2 5 5.55E-06 4.99E-04
Cell–cell junction assembly (GO:0007043) 28 17 3.9 4.36 1.07E-05 8.35E-04
Synaptic transmission, glutamatergic (GO:0035249) 44 19 6.12 3.1 1.24E-04 5.85E-03
Actin cytoskeleton organization (GO:0030036) 179 47 24.91 1.89 2.16E-04 9.45E-03
Cellular calcium ion homeostasis (GO:0006874) 151 41 21.01 1.95 3.39E-04 1.45E-02
Cell morphogenesis involved in neuron
differentiation (GO:0048667)

110 32 15.31 2.09 6.83E-04 2.51E-02

Second-messenger-mediated signaling (GO:0019932) 191 47 26.58 1.77 9.26E-04 3.08E-02
Synapse assembly (GO:0007416) 15 9 2.09 4.31 1.40E-03 4.11E-02

attempt of predicting AD in patients from one study based
on the seemingly perfect classifier trained on the other one.
This approach led to a drastic reduction in predictive power
(AUC 0.99 lowered to AUC ∼0.5).

When we repeated the training experiments with the same
feature selection methodology, but now performed only on
the training set, we saw a dramatically different picture. In
this case, we were able to predict the patients outcome on
a much lower level (AUC ∼0.6), but the prediction accu-
racy remained relatively unchanged when we switched to
the other patients’ set. These results indicate that indeed,
combining the random forest classifier with Boruta feature
selection can lead to learning valuable information about
genetic causes of AD, regardless of patient subpopulation.
We were also very impressed by the fact that the functional
annotation of genes carrying mutations used by the trained
classifiers to predict AD cases, were significantly enriched in
many functional categories (such as neuronal development)
lending further confidence in our results.

Given that the overall prediction quality on the SNP data
is rather low, and we do not expect it to increase in other
datasets of comparable size, we have experimented with se-
lecting sub-populations from our datasets, to train classi-
fiers tuned to more genetically homogenous populations.
This approach seems to be promising, as the results on the
sub-samples of patients were slightly higher than on the
whole.

The main conclusions of this work should not depend on
the choice of the specific classification algorithm or quality-
control filtering of the input dataset. Based on our experi-
ence other modern classical machine learning methods, for
example logistic regression and linear discriminant analysis,
are expected to give similar results as random forests. We
also verified that removal of variants and samples with very
low call rates and variants with extreme departures from
Hardy–Weinberg equilibrium from the input datasets does
not change the results significantly (data not shown).

For late-onset diseases, such as AD, the signal for associ-
ation of genetic factors with the diagnosis can be quenched
by wrong assignment of disease status to some of the con-
trol subjects who can convert to cases at a later point. To
account for this phenomenon the controls should be at least
age-matched or even older than cases. The use of centenari-
ans as ‘extreme controls’ can strengthen the association sig-
nals as it was shown for AD and type II diabetes (28,29).

For diseases with complex, polygenic genetic background
such as AD, polygenic risk score (PRS) analysis is widely
used for assessment of genetic risk for an individual taking
effects of many genetic markers into account (reviewed in
(30)). The reported prediction accuracies of logistic regres-
sion models based on PRS for sporadic forms of AD are
typically described by AUC ∼0.6–0.65 (31–33) and are thus
similar to prediction accuracies reported in this study. The
most prominent difference between our approach and PRS
analysis is in the number of selected markers, ranging from
∼20 to ∼200 000 in the PRS analysis and from 10 000 to 350
000 in feature selection with the Boruta algorithm, depend-
ing on significance thresholds used. Specific comparison of
prediction accuracies obtained for ADNI WGS in our study
and by Leonenko et al. (33) suggests that our approach does
not lead to higher prediction accuracies than PRS analysis.
However, as pointed by Escott-Price et al. (34), PRS analy-
sis exhibits similar susceptibility to overfitting effects when
test data are used during the selection of markers as we de-
scribe here for random forest based models. This shows that
our main conclusions have broad significance for the field of
genotype-based prediction of phenotypes regardless of the
type of statistical model used.

CONCLUSION

We have showed that overfitting the data due to premature
feature selection is likely the reason behind surprisingly high
performance of some published attempts at classification of
AD patients based on their genotype. Any approach using
full dataset for feature selection is giving an unfair advan-
tage to the training process and artificially inflating the es-
timate of accuracy based on cross-validation that is done
after feature selection. We also show that there is a way to
combine random forest classification with feature selection
that avoids this problem and allows us to obtain classifiers
with comparable performance on unrelated patients sub-
sets. The prediction accuracy we obtain using this scheme
is relatively low (AUC ∼0.6 for WGS SNP data and AUC
∼0.7 for GWAS SNP data); however, it is likely to be the
limit possible to obtain on the datasets with the currently
typical sizes of ∼1000 patients and controls. We expect these
limits to increase as the number of patient samples is sig-
nificantly increased (35,36) (at least to tens of thousands);
however, we do not expect this to reach 0.9, based on the
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estimates of limited contribution of the genetic background
to the AD risk and non-negligible role of environmental fac-
tors. However, we see some promise in training specialized
classifiers for curated sub-populations of patients, where
maybe even for smaller numbers of samples we can get
the increased accuracy. Overall, we expect that with all the
large-scale genomic sequencing efforts underway in many
developed countries, the cohort sizes will increase to tens or
hundreds of thousands of patients allowing for the model
prediction accuracy to reach the levels of expected heritabil-
ity of AD. Additionally, as the sequencing efforts are now
collecting more and more of the environmental metadata,
we might be constructing next-generation models that ex-
ceed the quality of classifiers based solely on the genomic
information.
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