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Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder of the human
motor system, first described in the 19th Century. The etiology of ALS appears to be multifactorial, with
a complex interaction of genetic, epigenetic, and environmental factors underlying the onset of disease.
Importantly, there are no known naturally occurring animal models, and transgenic mouse models fail to
faithfully reproduce ALS as it manifests in patients. Debate as to the site of onset of ALS remain, with
three competing theories proposed, including (i) the dying-forward hypothesis, whereby motor neuron
degeneration is mediated by hyperexcitable corticomotoneurons via an anterograde transsynaptic exci-
totoxic mechanism, (ii) dying-back hypothesis, proposing the ALS begins in the peripheral nervous system
with a toxic factor(s) retrogradely transported into the central nervous system and mediating upper
motor neuron dysfunction, and (iii) independent hypothesis, suggesting that upper and lower motor neu-
ron degenerated independently. Transcranial magnetic stimulation studies, along with pathological and
genetic findings have supported the dying forward hypothesis theory, although the science is yet to be
settled. The review provides a historical overview of ALS, discusses phenotypes and likely pathogenic
mechanisms.
� 2023 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Brief historical perspective

The historical description of ALS is closely associated with the
founders of neurology, including Bell, Aran, Charcot, Duchenne,
Erb, Gowers, Lockhart Clarke, and Brain (Gordon, 2006, Katz
et al., 2015, Mitsumoto et al., 1998, Rose, 1999, Turner et al.,
2010). These icons of neurology established ALS as an independent
disease, although they disagreed on nosology, the definition of the
disorder, and site of pathology. Jean-Martin Charcot (1825–1893)
is generally credited for first describing ALS, but there were earlier
descriptions (Charcot, 1880). During his Tuesday Lectures begin-
ning in the late 1860s (Charcot and Charcot, 1987), Charcot was
able to link the disease to its pathology (Charcot, 1880, Goetz,
2000, 2010, Turner et al., 2010). Others laid the path along with,
or before Charcot. Progressive muscular weakness accompanied
by muscle wasting was clearly recognized by the mid-19th cen-
tury. In 1848, François Aran, published a description of a new syn-
drome of progressive muscle weakness correctly suspecting a
neurogenic cause. He subsequently published 11 such patients
and suggested they had a new syndrome, progressive muscular
atrophy (PMA). These patients were also seen by Amand Duchenne
(de Boulogne) for galvanic electric therapy. Duchenne had worked
in closely with Charcot at the Salpêtrière (Duchenne and Poore,
1883), and subsequently Charcot referred to PMA as the Aran-
Duchenne type of progressive muscular weakness (Charcot, 1895).

Duchenne considered PMA as myogenic, and this view persisted
until Cruveilhier in 1853 studied the same case. Because of changes
in the spinal cord, he concluded the cause to be neurogenic. There
were also reports of PMA associated with bulbar dysfunction, and
these were probably ALS (Mitsumoto et al., 1998). In 1860, Bernard
Luys, who described the corpus Luysii, reported ventral horn cell
degeneration in PMA. The same year, Duchenne described progres-
sive bulbar palsy (PBP) and distinguished it from PMA by the
degree and rapidity of bulbar involvement.

Jean Martin Charcot was the first professor of neurology at the
Salpêtrière, and together with Joffroy described two cases of PMA
with lesions in the posterolateral spinal cord. They did not name
this new syndrome ALS but determined its essential characteristics
emphasizing that pathological changes in the posterior portions of
the lateral columns and in the anterior horns of the spinal cord fre-
quently occurred together. It was in his 1874 lecture series that
Charcot established ALS as a distinct syndrome (Katz et al.,
2015). Goldblatt expressed best Charcot’s contribution: ‘‘Charcot
did not give the first description of ALS, nor did Shakespeare orig-
inate the plots of his plays; the elements of the story were known,
but it remained for the master to produce a masterpiece.” His
description of ALS was based on 20 patients and five autopsy stud-
ies; most of the patients were women because Salpêtrière was a
women’s hospital. He set out the clinical and pathological charac-
teristics of ALS that has since been modified very little (Duyckaerts
et al., 2021, Rowland, 2001).
2. Introductory background

Amyotrophic lateral sclerosis (ALS/MND) is a uniquely human
neurodegenerative complex disease having a variety of pheno-
types, including frontotemporal dementia (Goutman et al., 2022,
Hardiman et al., 2011, Kiernan et al., 2011). ALS phenotypes (age
of onset, site of initial clinical presentation, disease duration,
amongst others) are predicated by genetic, environmental, lifestyle
and epigenetic influences (Grad et al., 2017). There are no known
naturally occurring animal models, and induced animal models
whilst usefully mimicking anterior horn cell death, and to a lesser
extent loss of upper motor neurons (Marques et al., 2021), cannot
truly recapitulate all aspects of the disorder as seen in humans
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(Bonifacino et al., 2021, Turner and Transgenics, 2008). The failure
of ALS animal model mimics is probably multifactorial and
includes, important anatomical differences, as related to the corti-
comotoneuronal system. But, differences in aging and longevity,
lifestyle and the long and varied environmental exposures to
which humans are subjected have to play a role.

Induced pluripotent stem cells (iPSC) are derived from skin or
blood cells that have been reprogrammed back into an
embryonic-like pluripotent state. This enables the development
of an unlimited source of any type of human cell that can then
be directed to therapeutic or investigative purposes. For example,
iPSC can be prodded into becoming beta islet cells to treat diabetes,
blood cells to create new blood free of cancer cells for leukemia, or
neurons to investigate and treat neurological disorders. ALS is now
increasingly studied using patient-derived iPSCs (Chen et al., 2014,
Hawrot et al., 2020, Mazzini and De Marchi, 2023, Vasques et al.,
2020), in which candidate risk factors with variable penetrance
can be modelled and more recently manipulated using CRISPR
gene editing (Kruminis-Kaszkiel et al., 2018, Pickles and
Petrucelli, 2018, Vasques et al., 2020, Yun and Ha, 2020). These
methodologies also have the potential advantage of investigating
early stages of ALS. Akin to other neurodegenerative disorders,
ALS has a preclinical period, probably of variable length, but likely
extending years and possibly decades predating the onset of its
classical clinical features (Eisen et al., 2014). By the time clinical
features are apparent, the cellular cascades associated with neu-
ronal death in ALS are likely irreversible and significant numbers
of neurons have already degenerated (Fig. 1).

If so, biomarkers may yet become evident throughout the pre-
clinical and presymptomatic stages, thereby enabling the future
development of protective or preventive therapeutics such as mod-
ifying epigenetic effects. The term ‘presymptomatic’ refers to the
period when there are no clinical correlates, while investigations
such as neuroimaging, electrophysiology or cognitive assessment
may be abnormal. ‘Preclinical’ refers to the much longer period
when presently there are no identified markers of disease in spo-
radic ALS.

In sporadic ALS, interactive risk factors include genetic, environ-
mental and lifestyle (Al-Chalabi and Hardiman, 2013). Since 1993,
large scale genetic studies have identified more than 60 genes that
are associated with ALS (Willemse and van Es, 2023). C9ORF72,
SOD1, FUS, and TARDBP are the most common causative genes,
accounting for more than 50 % of familial ALS (FALS) but also
approximately 7.5 % of sporadic ALS (Duan et al., 2023). However,
most genes that have been associated with ALS are considered risk
genes. See Table 1 in Wang et al. (2023). The number of novel vari-
ants, particularly missense variants, associated with ALS are
increasing but their clinical significance is unknown (Dilliott
et al., 2023). Several mutations have been found to cluster within
and across other major neurodegenerative diseases (Koretsky
et al., 2023), underscoring the converging genetic and mechanistic
pathways shared by these disorders (Gan et al., 2018, Wainberg
et al., 2023). With technological and methodological advances
some of the risk genes are likely to become considered causative,
further blurring a firm separation of sporadic ALS from FALS.

Identification of lifestyle, environmental and occupational risk
factors for ALS is important but difficult. Numerous non-genetic
risk factors for ALS have been considered over many decades, but
few have met the rigors required by epidemiologists, and replica-
ble definitive non-genetic risk factors of ALS have not been identi-
fied (Duan et al., 2023). Head trauma, physical activity, electric
shock, military service, pesticides, and lead, amongst others, are
considered potential risk factors for ALS onset and progression
(Andrew et al., 2021, Beaudin et al., 2022, Zhu et al., 2023). But,
older age and male sex so far remain the only definitive non-
genetic risks for ALS (Longinetti and Fang, 2019).



Fig. 1. The seeds for the development of amyotrophic lateral sclerosis (ALS) may be sown shortly after conception. Motor neurons and supporting glia are susceptible to many
potential insults, such as neuroinflammation, excitotoxicity, mitochondrial dysfunction, excessive oxidative stress and environmental risk factors. Epigenetic influences may
further determine individual sensitivity and susceptibility. Environmental risk factors continue to exert their influence throughout life. In combination, these factors cause
protein dysfunction and aggregation. Motor neurons and surrounding astrocytes are metabolically stressed, progressively losing function (MN ‘sickness’). After years or
decades, cytosolic compensatory mechanisms begin to fail and a clinically identifiable pre-symptomatic stage starts in which electrophysiological and imaging abnormalities
become detectable at a macroscopic level. Finally, the motor system fails, and ALS becomes symptomatic and relentlessly progressive (Eisen et al., 2014).
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Even in early clinical phases, classic Charcot ALS is readily diag-
nosed by ALS physician specialists. A cognitively normal, 55-year-
Fig. 2. Classic Charcot ALS, characterized by mixed upper and lower motor neuron
deficits can predominate as upper motor neuron (PLS) or lower motor neuron (SMA)
and a small percentage of cases have a recognized causative gene (C9ORF72, SOD1,
FUS, and TARDBP), but in most cases gene influences are risk factors not directly
causative. Depending on the sophistication of testing up to 50 % of ALS may have
cognitive impairment and some of these have definitive frontotemporal dementia.
In >95 % of ALS, independent of phenotype, and 50 % of FTD have the hallmark TDP-
43 inclusions.

3

old patient with multi-myotomal muscle weakness and wasting
associated with diffuse and profuse fasciculations, including the
tongue, brisk reflexes in the weak, wasted limbs, but normal sensa-
tion and intact sphincter function is almost always diagnosed with
ALS. Charcot (Charcot, 1874, Charcot, 1865), describing these char-
acteristics over 150 years ago, was unaware of the extended ALS
phenotypes and the multisystem nature of the disease as now
accepted. He was adamant that ALS was not hereditary and made
no mention of overlap with frontotemporal dementia (FTD)
(Rowland, 2001, Veltema, 1975), but his clinical description of
ALS cannot be bettered.

The question is often posed, and debate continues, as to
whether ALS is one disease with a common fundamental patho-
genic mechanism or multiple diseases with different mechanisms,
having a shared final pathway. The answer may lie somewhere in
between (Grad et al., 2017, Ravits and La Spada, 2009). In different
patients, there is a striking dissimilarity in the degree of involve-
ment of the upper motor neurons (UMNs) and the lower motor
neurons (LMNs), the body regions affected, the degrees of involve-
ment of other systems, especially cognition and behavior, and the
progression rates among clinical phenotypes (Fig. 2).
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These phenotypes sometimes appear so distinctive suggesting
differing underlying biology. However, the known neuropathology,
in particular extra-nuclear aggregation of TDP-43, the consistent
hallmark of ALS does not clearly correlate with the different phe-
notypic subtypes of disease. The mechanism underlying TDP-43
cytoplasmic mislocalization and subsequent aggregation remains
unclear. But TDP-43 dimerization/multimerization is impaired in
the postmortem brains and spinal cords of patients with sporadic
ALS and may be a critical determinant inducing TDP-43 pathology
in ALS (Oiwa et al., 2023). Further, clinical phenotypes tell us noth-
ing about lengthy pre-clinical events in ALS (Eisen et al., 2014). Our
current view is that ALS is indeed one disease and the clinical phe-
notypes are a reflection of exposure to differing susceptibility
genes, epigenetics, lifestyle and varying environmental exposures
(Al-Chalabi and Hardiman, 2013).

3. Site of ALS onset – competing theories

Determining and understanding the site(s) of origin if ALS is
more than just of academic interest. In common with other neu-
rodegenerations, spread of toxic proteinaceous material, such as
TDP43, appears key to disease progression. For example, mis-
localized TDP-43 can induce layer V excitatory neurons in the
rodent motor cortex to become hyperexcitable after 20 days of
expression (Reale et al., 2023). Spread of pathogenic changes
through the corticomotor system was observed and by 30 days
there was a significant decrease in the number of motor neurons
in the spinal cord. Cortical pathology increased excitatory inputs
to the spinal cord to which local circuitry compensated with an
upregulation of inhibition, indicating how TDP-43 mediated
pathology spreads corticofugally in ALS (Reale et al., 2023). Patho-
genic TDP-43may spread in a prion-like propagation (Tamaki et al.,
2023), but this is controversial and others suggest that ALS corti-
cofugal propagation is likely not mediated by prion-like mecha-
nisms, but relies on cortical hyperexcitability (Scekic-Zahirovic
et al., 2021).

Charcot considered PMA as ‘‘protopathic” (meaning primary or
essential), whereas ALS with both atrophic and spastic features
was ‘‘deuteropathic” implying a corticofugal propagation of the
Fig. 3. The CM system makes a key contribution to complex movements underlying hum
primarily reflect a failure of skilled movements involving muscle synergies (Eisen and L
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lesion from white to gray matter. Sir William Gowers did not think
Charcot’s introduction of the term ‘‘ALS” to be very helpful and felt
that he gave a new name to describe an old disease. Gowers con-
sidered PMA, PBP, and ALS were essentially one disease (Gowers,
1893, 1896). Clinical manifestations were determined by the tim-
ing, extent, and severity of the degeneration in the upper and lower
segments of the motor pathway. Brain in 1933 introduced the term
‘‘motor neuron disease” so that all these apparently different con-
ditions could be brought together in a single general category and
used the terms ‘‘motor neuron disease” and ‘‘ALS” interchangeably
(Brain, 1962). These controversies lay dormant for many decades.

Specific to ALS, is dysfunction of the expanded human cortico-
motoneuronal system (Lemon and Griffiths, 2005). This system is
the anatomical infrastructure of many early clinical features of
ALS, a singularly human disorder (Eisen and Lemon, 2021). Early
deficits include loss of vocalization requiring the integration of a
complex respiratory system, impaired fractionation of digits and
thumb opposability, responsible for manipulative agility, and diffi-
culty with upright walking, especially the ability to navigate
uneven and tricky surfaces (Fig. 3).

These initial symptoms reflect dysfunction of the corticomo-
toneuronal system (Lemon, 2008). In addition is the association
of frontotemporal dementia (FTD), causing language impairment,
failing executive function, and deteriorating socialization
(Snowden et al., 2013, Woolley and Strong, 2015).

These observations led Eisen et al. (Eisen et al., 1992) to develop
the ‘‘the corticomotoneuronal hypothesis”, which postulates in
essence that ALS is a brain disease and that demise of the spinal
anterior horn cells occurs through a dying forward process
(Fig. 4). There are clearly opposing views and debate continues,
as it should, but a growing literature has come to support the dying
forward concept (Baker, 2014, Braak et al., 2013, Eisen, 2021, Eisen
et al., 2017, Ludolph et al., 2020, Vucic et al., 2021). Of interest, in
1988, Hudson and Kiernan (Hudson and Kiernan, 1988), in a rarely
appreciated letter to The Lancet ‘‘Preservation of certain voluntary
muscles in motorneurone disease”, proposed ‘‘that the extraocular
muscle nuclei and pelvic sphincter neurons are spared in ALS because
they are the only lower motor neurons that do not receive direct affer-
ents from the cerebral cortex. Therefore, they would not be trans-
an skilled motor repertoire, examples of which are shown. The motor deficits of ALS
emon, 2021).



Fig. 4. The idea of a cortical origin of ALS dates back to Charcot but lay largely dormant until 1988. Physiological studies commenced in 1992 (Eisen et al., 1992), and
enhanced using threshold tracking techniques (Vucic and Kiernan, 2006, Vucic et al., 2021), strongly support a cortical origin of ALS. TDP-43 sequestered out of the cytoplasm
possibly associated with cortical hyperexcitability and this is largely restricted to corticofugal fibers (Braak et al., 2017).
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synaptically affected by degeneration of the corticospinal tracts”. So,
they hypothesized that the cortical neurons normally provide
trophic support for the anterior horn cells and motor nuclei of
the cranial nerves with which they make contact. Therefore, the
primary pathology of ALS might be sought in the cortex rather than
the spinal cord.

The identification of TAR DNA-binding protein 43 (TDP-43) pos-
itive ubiquitinated cytoplasmic inclusions in almost all patients
with ALS and more than half of patients with frontotemporal
dementia (FTD) has placed ALS on the so-called ‘‘ALS-FTD contin-
uum,” highlighting the considerable clinical, pathophysiological,
and neuroimaging overlap between the two neurodegenerative
conditions (Neumann et al., 2006). TDP-43 proteinaceous buildup
is largely restricted to corticofugal projecting neurons (‘‘dying for-
ward”) (Eisen et al., 2017). Evidence indicates that spinal motoneu-
rons lose normal nuclear TDP-43 expression with subsequent
formation of phosphorylated TDP-43 aggregates within their cyto-
plasm, but in Betz cells (and other pyramidal corticofugal neurons),
by contrast, loss of nuclear TDP-43 expression is largely unassoci-
ated with the development of cytoplasmic aggregations (Braak
et al., 2017). As a result, soluble and probably toxic cytoplasmic
TDP-43 could then enter the axoplasm of Betz cells and other pyra-
midal neurons, with transmission by axonal transport to the corre-
sponding spinal motoneurons in the lower brainstem and spinal
cord, with dysregulation of normal nuclear protein. TDP-43
induced in the corticospinal neurons in a rodent model, was trans-
ported along the axons anterogradely and transferred to the oligo-
dendrocytes along the corticospinal tract, coinciding with axon
degeneration. In contrast, TDP-43 introduced in the spinal motor
neurons in the same model, did not spread retrogradely to the cor-
tical or spinal neurons (Tsuboguchi et al., 2023). Further, sophisti-
cated MRI imaging and threshold tracking using transcranial
magnetic stimulation (TMS), convincingly point to a cortical origin
of ALS (Vucic and Kiernan, 2006, 2013, Vucic et al., 2021, Vucic
et al., 2013).

There is strong evidence for cortical hyperexcitability in ALS,
derived from human electrophysiological studies as well as ALS
animal models. There is a clear link between it and subsequent
downstream degeneration and loss of anterior horn cells.
5

(Kiernan and Park, 2023), Cortical hyperexcitability is a combined
consequence of increased excitatory inputs to the upper motor
neuron (UMN), paralleled by decreased inhibition, mediated
through dysfunction of GABAergic interneurons fundamental to
proper brain neural network functioning. The resulting imbalance
in excitation/inhibition (E/I balance) is a feature shared by other
neurodegenerative diseases (Gunes et al., 2022, Gunes et al.,
2020). Threshold tracking TMS studies have established a combi-
nation of cortical disinhibition and increased facilitation, as her-
alded by reduction in short interval intracortical inhibition and
increase of short interval intracortical facilitation respectively, in
ALS and this E/I imbalance correlates with functional decline
(Van den Bos et al., 2018).

In the developing nervous system, GABA is one of the earliest,
and most highly evolutionary conserved neurotransmitters
(Ramamoorthi and Lin, 2011). Unlike in the mature brain, during
development, GABA is ‘‘excitatory” and embryonic GABA signaling
is the main excitatory drive for developing cortical networks, and
for corticogenesis (Kilb, 2012). The ability of embryonic GABA to
depolarize primitive neurons is due to their high intracellular chlo-
ride concentration. The switch to inhibitory GABAergic neurons is
completed during the first postnatal year and depends on the
activity of the chloride transporters: potassium-chloride trans-
porter member 5 (KCC2) and Na-K-Cl cotransporter 1 (NKCC1).
Impaired GABA switch interferes with E/I balance which can likely
have lasting effects (Kilb, 2012).

As indicated in Fig. 4, there are alternatives to dying forward.
There are those that would favor a dying back mechanism and
others as originally proposed by Gowers, who argue that the
demise of upper and lower motor neurons occurs independently.

Further, it has been suggested that muscle degeneration is not
just a passive bystander of motor neuron death but is part of an
active process (Shefner et al., 2023). As recently reviewed
(Shefner et al., 2023), while motor neuron degeneration clearly
causes muscle weakness and atrophy, evidence also supports the
hypothesis of a more active role of skeletal muscle in disease pro-
gression. Muscle fibers are precociously affected in ALS disease
independently of motor neuron influence or denervation. For
example, myoblasts from patients carrying ALS mutations show
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autonomous metabolic defects which affect muscle differentiation
and muscle energy metabolism leading to decrease in muscle
strength (Anakor et al., 2022, Peggion et al., 2022).

There is also evidence to support very early dysfunction of the
neuromuscular junction (NMJ), in that functional deficits may
appear at least 6 weeks before motor symptoms in vivo, while
structural deficits occur 4 weeks later, and predominantly within
NMJs (Lynch et al., 2021, McIntosh et al., 2023).

4. Split phenotypes

Early upper motor neuron deficits in ALS can be elusive and dif-
ficult to identify (Swash, 2012), although remain important for
early diagnosis and admission into therapeutic drug trials
(Hannaford et al., 2021). Split phenotypes are characterized by dis-
sociated muscle weakness and wasting, where some muscles are
affected whilst others having a shared peripheral nerve and spinal
nerve root innervation are spared. This phenomenon which is
probably unique to ALS has been recognized for several decades
(Wilbourn, 2000).

The anatomical distribution of split phenotypes is reflective of
corticomotoneuronal pathology (Eisen and Bede, 2021). TMS and
cortical threshold tracking have been used to confirm this aspect
of split phenotypes (Bae et al., 2014, Menon et al., 2014, Weber
et al., 2000). F-wave persistence has been used as a surrogate for
upper motor neuron dysfunction in split phenotypes (Wang
et al., 2019a, 2019c). This is a useful measure of spinal motoneuron
excitability relating to upper motor neuron dysfunction, in partic-
ular loss of cortical inhibition. But it lacks the specificity, and F-
wave persistence occurs in other diseases associated with upper
motor neuron dysfunction (Drory et al., 1993, Nakazumi and
Watanabe, 1992).
Fig. 5. Split phenotypes appear to predominantly involve muscles that have the strong
2021). (For interpretation of the references to colour in this figure legend, the reader is
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Several split phenotypes have been reported: the split hand
(Eisen and Kuwabara, 2012), the split hand plus (Menon et al.,
2013), the split leg in two versions (leg and foot) (Min et al.,
2020, Simon et al., 2015, Wang et al., 2019b), and the split elbow
(Khalaf et al., 2019). For the split hand there is preferential thenar
weakness/wasting compared to the hypothenar hand (Eisen and
Kuwabara, 2012), the split hand plus also involves selective weak-
ness/wasting of the flexor pollicis longus (Menon et al., 2013). A
recently described split elbow is characterized by preferential
involvement of the biceps muscle as compared to the triceps mus-
cle (Khalaf et al., 2019, Thakore et al., 2021). In the split leg there is
preferential plantar-flexion weakness/wasting compared to dorsi-
flexion (Simon et al., 2015), but in contradistinction, in the split
foot the extensor digitorum brevis (EDB) is preferentially involved
compared to the abductor hallucis (AH) (Min et al., 2020, Wang
et al., 2019b).

Ludolph et al. (Ludolph et al., 2020), have compared the
strength of upper and lower limb muscle pairs in ALS. The weaker
of the pair was the one with a stronger corticomotoneuronal (CM)
drive, more monosynaptic connections. This too is true of the
weak/wasted muscles of split phenotypes (Eisen and Bede, 2021)
See Fig. 5. Preliminary data also indicate that for the upper limb
it is the muscles with stronger CM connectivity that become weak
before other muscles, independent of onset site (Thakore et al.,
2021).
5. Extra motor pathology

Pathology beyond the motor system is well appreciated and is
the basis of considering ALS a multisystem disorder. Extra motor
pathology is not the same as non-motor symptoms, for which there
est corticomotoneuronal drive (red patches in the human figure) (Eisen and Bede,
referred to the web version of this article.)
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can be difficult isolating as a true non-motor impairment and
recently reviewed (Shojaie et al., 2023).

5.1. Frontotemporal dementia

Over the last two decades a growing appreciation that ALS is a
multisystem disorder has expanded (Grossman, 2019, Silani et al.,
2017). Neuropathological studies have shown the accumulation of
misfolded protein aggregates in multiple cortical and subcortical
areas of the CNS, including the corpus callosum (Brettschneider
et al., 2013). The best recognized extra motor feature of ALS is fron-
totemporal dementia (Burrell et al., 2016, Burrell et al., 2011,
Hudson, 1981, Kiernan, 2012, Lillo and Hodges, 2009, Snowden
et al., 2013). Hexanucleotide repeat expansions in C9ORF72 gene
are often associated with ALS-FTD (Renton et al., 2011), and aggre-
gation of TDP-43 occurs in about 50 % of FTD cases (Bigio et al.,
2013, Neumann et al., 2006). Neuropsychological deficits in ALS
range from mild to severe and debilitating, and depending on the
sophistication of testing, as many as 65 % of ALS patients exhibit
some extent of cognitive or behavioral impairment (Goldstein
and Abrahams, 2013). Many different neuropsychological deficits
have been recorded in ALS, see Table 1 in Christidi et al. (2018).

5.2. Corpus callosum

Most axonal tracts, such as the anterior commissure, have
evolved by the modified use of preexisting substrate pathways
and very few entirely new axon tracts have arisen during evolu-
tion. The corpus callosum (CC), which is found only in placental
mammals, is a truly new axon tract (Katz et al., 1983). Involvement
of the CC as intricate to ALS has been recognized for many years
(Chapman et al., 2012, Filippini et al., 2010). Mirror movements,
which reflects interhemispheric disruption within the CC between
the motor hemispheres during a motor task, may occur as an early
manifestation of ALS (Wittstock et al., 2007).

The fibers of the corpus callosum arise from cortical pyramidal
cells that are largely glutamatergic, affecting an excitatory role,
although they are also known to act through GABA-mediated inhi-
bitory neurons. In normal subjects, transcranial stimulation of one
motor cortex elicits transcallosal inhibition of the other motor cor-
tex, an approach shown to be of diagnostic value for studying cal-
losal conduction and intracortical inhibitory mechanisms (Meyer
et al., 1995). Using TMS, to measure the ipsilateral silent period,
it has been shown that loss of callosal inhibition is a sensitive
and early marker of disease activity in ALS (Hübers et al., 2021).
CC hyperexcitability in early stages of disease might explain how
TDP-43 aggregation spreads from one hemisphere to another
(Hübers et al., 2021, Timmins et al., 2023). A reduction of transcal-
losal inhibition is associated with features indicative of cortical
hyperexcitability, including reduction of short interval intracortical
inhibition and increased in short interval intracortical facilitation.
Reduction in transcallosal inhibition is also correlated with the rate
of disease progression (Timmins et al., 2023, van den Bos et al.,
2021).

5.3. Basal ganglia and parkinsonism

The ALS neuropathological staging system (Brettschneider et al.,
2013), based on the distribution of TDP-43, indicates the large neu-
rons of the thalamic nuclei that project to layer IV of the cerebral
cortex develop TDP-43 aggregates in stage 2, while pTDP-43
pathology extends to caudate, putamen, and especially the ventral
striatum in stage 3 of the disease. MRI studies in ALS patients show
structural alterations of the basal ganglia and altered connections
between the basal ganglia and frontal regions (Bede et al., 2013,
Castelnovo et al., 2023). ALS is characterized by considerable
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degeneration in the basal ganglia, but surprisingly not associated
with extrapyramidal signs (Rowland and Shneider, 2001). Basal
ganglia degeneration has been shown to occur particularly in spo-
radic ALS-FTD-phenotype associated with cognitive decline
(Masuda et al., 2016).

5.4. Hypothalamus

Atrophy of the hypothalamus is well recognized in ALS and can
be visualized on MRI (Ye et al., 2021). Further, TDP-43 pathology,
the pathological hallmark of ALS, has been reported in hypothala-
mic orexin neurons, and is associated with reduced body mass
index (Cykowski et al., 2014). Gabery et al. (2021) have performed
serial section microscopy to assess the degree of hypothalamic
pathology (presence of TDP-43 inclusions, degree of atrophy and
peptidergic neuronal loss) in ALS. Selective loss of orexin-
producing neurons in the lateral hypothalamus was observed and
considered to be progressive predating clinically overt disease
which would result in sleep impairment.

Orexins A and B (hypocretins 1 and 2) and their two receptors
(OX1R and OX2R) were discovered in 1998 (Hoyer and Jacobson,
2013). Orexin A and B are derived from the differential processing
of a common precursor, the prepro-orexin peptide. The neuropep-
tides are expressed in a few thousand cells located in the lateral
hypothalamus, but their projections and receptor distribution are
widespread throughout the brain. The orexin system is involved
in the regulation of sleep/wakefulness, feeding behavior, energy
homeostasis, reward systems, cognition and mood (Azeez et al.,
2021). Dysfunction of the orexin system has been implicated in
sleep abnormalities and other issues associated with neurodegen-
erations (Al-Kuraishy et al., 2020). Given the substantial relation-
ship between the glymphatic system, sleep and neurological
disorders, there is likely a common key factor, and the orexin sys-
tem is a good candidate (Christensen et al., 2021). Orexins are
important in supressing REM sleep, whilst maintaining slow wave
sleep, during which glymphatic clearance activity is highest (see
section below).
6. Two lifestyle issues

Many non-genetic lifestyle factors have been considered to be
associated with ALS. Examples include diet, alcohol use, stress,
obesity, physical activity, and these and other environmental fac-
tors are considered elsewhere in this volume. Here we draw atten-
tion to two specific lifestyle issues that have now been shown to
interact mechanistically with fundamental biological processes
that could be causative in ALS and also underlie preclinical
progression.

6.1. The glymphatic system, ALS, and sleep

Over the last decade there has been a growing interest in the
glymphatic system, a term coined by the Danish neuroscientist
Maiken Nedergaard to reflect its key components of glia cells and
lymph (Hablitz and Nedergaard, 2021a, 2021b, Jessen et al., 2015,
Mestre et al., 2020, Ng Kee Kwong et al., 2020, Plog and
Nedergaard, 2018, Rasmussen et al., 2018). Sleep is critically
related to the glymphatic system which is an essential mechanism
for clearance of protein aggregates, metabolic waste, and other
toxic material from the brain (Anzai and Minoshima, 2021), replac-
ing more classical cellular protein degradation pathways, autop-
hagy and ubiquitination (Nedergaard and Goldman, 2020).
Morphological and functional remodelling of astrocytes, with
reduction and repositioning in aquaporin 4 (AQP4) channels in
astrocyte end-feet, occurs in ALS. As a result, there is decline in



Fig. 6. Neurodegeneration in ALS and neuronal demise involves a complex array of genetic, molecular, functional and pathological pathways. Genetic risk may exert
influences across the lifespan, including ageing and lifestyle factors, particularly sleep. Dysfunction of the glymphatic system contributes to altered brain and neuronal
function. Separately, glutamate excitotoxicity generates free radicals which further contribute to the process of neurodegeneration, with oxidative stress, mitochondrial
dysfunction, intracellular aggregates that adversely affect transport processes, with imbalance of excitatory and inhibitory brain function promoting the emergence of
hyperexcitability as a key factor linked to neurodegeneration in ALS.
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the glymphatic clearance abilities, which includes TDP-43 aggre-
gates and glutamate clearance (Verkhratsky et al., 2021), both
mechanistically causative in ALS progression (see Fig. 6).

Nightly sleep is critical for a wide array of brain functions
(Lewis, 2021). Missing just a single night’s sleep results in memory,
mood, and attentional impairments the next day and disrupted
sleep across the lifespan is linked to neurodegeneration (Krause
et al., 2017, Sabia et al., 2021). A variety of sleep disturbances have
been described in Alzheimer’s and Parkinson’s diseases (Calderon-
Garciduenas et al., 2023, Pillai and Leverenz, 2017, Stefani and
Hogl, 2021). The sleep abnormalities are typically identified years
or even decades prior to the diseases becoming clinically overt,
and as such are potentially important early biomarkers of disease.
In contrast, in ALS even though sleep abnormalities are common
and have been well documented as coincident with the clinical dis-
ease (Lucia et al., 2021), impaired sleep in the preclinical setting, or
as a possible risk factor for ALS, has not been reported.
6.2. What we eat – The gut microbiome

The microbiome refers to genes belonging to the myriad differ-
ent microorganisms that live within and upon us, collectively
known as the microbiota. Most of these microbes are found in
the intestines, where they play important roles in digestion and
generation of key metabolites including neurotransmitters
(Boddy et al., 2021). In recent years, there has been increasing
interest in the gut-brain neuroaxis and the gut microbiome, which
modulates immune and metabolic health. In so doing it relates
intricately with inflammation and bioenergetics, two major ele-
ments in the pathogenesis of ALS (Sun et al., 2021).

It is of interest that the diversity of the microbiome has changed
significantly when compared to our hunter-gatherer ancestors
(Carter et al., 2023). More than 100 gut-resident species have van-
ished with the advent of industrialized times, and this might be
one reason why ALS, and other neurodegenerative disorders were
not apparent until the mid- to late 19th century. Lifestyle aspects
that have contributed to reduced diversity of the gut microbiome
include consumption of highly processed foods, high rates of
antibiotic administration, birth via cesarean section and use of
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baby formula, sanitation of the living environment, and reduced
physical contact with animals and soil (Sonnenburg and
Sonnenburg, 2019).

Martin et al. (2022) have reviewed data suggesting the novel
roles of intestinal dysfunction and microbiota in ALS etiology and
progression. ALS patients exhibit differences in their gut microbial
communities compared with spouse controls, and modifying the
gut microbiome, may have translational value for ALS treatment
(Hertzberg et al., 2022, Kargbo, 2023).
7. Senescence and energy metabolism homeostasis

A relatively recent and rapid increase in longevity, largely deter-
mined by adequate shelter, good nutrition, medical advances, and
reduced mortality in early life (Olshansky, 2022). This predicates
an increasing incidence in neurodegenerations (Morris, 2013). As
humans age, neocortical neurons are particularly vulnerable to
the effects of senescence, which includes impaired energy metabo-
lism homeostasis. This results in functional cellular failure and ulti-
mately clinical disease (Kay et al., 1988).

Frontal and prefrontal cortical areas are preferentially involved
early in ALS and FTD. An important component of frontal lobe
development was the discrete modifications in local circuitry and
interconnectivity of selected parts of the brain associated with
scaling of the number and distribution of neurons. As the need
for cognitive and motor skills increased, evolutionary pressures
demanded greater cerebral energy metabolism of neurons with
many synaptic connections and high synaptic activity that was
very energy demanding (Cunnane et al., 1993, Wang et al., 2014).
Intrinsic to ageing is a slowing of cerebral metabolism with disrup-
tion of neuronal homeostasis, mainly due to deficient energy meta-
bolism (Ances et al., 2009, Villa et al., 2013). Although senescent
neurons may remain metabolically active and can function within
the neuronal network, their reduced metabolic efficiency will
impact overall network integrity and performance.

The cascade of events that determine cellular senescence are
poorly defined, but amongst other factors, a failing response to cel-
lular energy demands ranks highly (Henderson et al., 2022). Over
time there is metabolic exhaustion of energy-demanding neocorti-



Fig. 7. Neurons display high energy consumption with metabolic consumption of the brain representing 20% of the whole-body oxygen uptake. With increased evolutionary
pressures as human cognitive and motor skills were fine-tunes neuronal energy demands increased. Energy deficiency induces mitochondrial dysfunction with failure of ATP
production. Aging and senescence impair energy balance in homeostasis. At a cellular level this increases the tendency to protein degradation, aggregation and mis-
localization with subsequent development of neurodegeneration (Henderson et al., 2022).
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cal neurons (Fig. 7). A possible mechanism for the protein aggrega-
tion lies in the energy costs of misfolded protein turnover, but
other possibilities exist. Protein aggregation, the hallmark of neu-
rodegenerations (FTP-43 in ALS and FTD), occurs as the increasing
metabolic burden develops.

8. Concluding comments

It was not the intent to cover all aspects of ALS in this review.
Many clinical aspects are well recognized and other important
aspects such as new investigative methods and therapeutic
approaches are considered elsewhere in this volume. Our intent
was to draw attention to some controversial and unsettled issues.
We appreciate that some of our views may be considered biased.
Presently, our summary view is that ALS is a primary brain degen-
eration manifesting prominently as dysfunction of the CM system
but that clearly the brain pathology is widespread and non-
neuronal cells play an important role. Excitotoxicity is a prominent
and early pathogenic mechanism, but how it and other pathogenic
considerations interact continues to be an enigma. We accept this
in the knowledge that the many aspects of ALS that are unresolved
will continue to be modified through progressive scientific rigor.
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