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Abstract: The muscle strength of the knee extension and plantarflexion plays a crucial role in
determining gait speed. Recent studies have shown that no-load angular velocity of the lower limb
joints is essential for determining gait speed. However, no reports have compared the extent to
which lower limb functions, such as knee extension strength, knee extension velocity, plantarflexion
strength, and plantarflexion velocity, impact gait speed in a single study. Therefore, this study
aimed to examine the relative importance of maximum strength and no-load angular velocity on gait
speed. Overall, 164 community-dwelling older adults (72.9 ± 5.0 years) participated in this study.
We measured the gait speed and lower limb function (the strength and velocity of knee extension
and plantarflexion). Strength was measured with a hand-held dynamometer, and velocity with a
gyroscope. A multiple regression analysis was performed with gait speed as the dependent variable
and age, sex, and lower-limb function as independent variables. Plantarflexion velocity (β = 0.25) and
plantarflexion strength (β = 0.21) were noted to be significant predictors of gait speed. These findings
indicate that no-load plantarflexion velocity is more important than the strength of plantarflexion
and knee extensions as a determinant of gait speed, suggesting that improvement in plantarflexion
velocity may increase gait speed.

Keywords: plantarflexion; knee extension; angular velocity; muscle strength; mobility

1. Introduction

Gait speed is a useful index for evaluating locomotion and is known to decline with age.
The decline in gait speed can reach 12–16% per decade starting at the age of 60 years [1–5].
A slow gait speed is a good predictor of disability, hospitalization, falls, the requirement
for a caregiver, and mortality in older adults in several epidemiological studies [1–4]. Gait
speed is affected by various factors, such as health status, muscle function, sensory and
perceptual functions, pain, motivation, cognitive status, and environment [6].

Lower limb muscle strength is a major determinant of gait speed [7–11]. Knee exten-
sion strength is strongly correlated with the gait speed of community-dwelling women, as
reported in a study by Lord et al. [7]. Bendall et al. [9] reported that plantarflexion strength
is related to gait speed in older adults. Furthermore, a decline in both knee extension
and plantarflexion strength with aging is one of the factors that causes a decrease in gait
speed [12]. Thus, knee extension and plantarflexion strength are critical determinants of
the gait speed in older adults.

Healthcare 2022, 10, 2093. https://doi.org/10.3390/healthcare10102093 https://www.mdpi.com/journal/healthcare

https://doi.org/10.3390/healthcare10102093
https://doi.org/10.3390/healthcare10102093
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/healthcare
https://www.mdpi.com
https://orcid.org/0000-0001-9150-2011
https://orcid.org/0000-0002-9645-7288
https://doi.org/10.3390/healthcare10102093
https://www.mdpi.com/journal/healthcare
https://www.mdpi.com/article/10.3390/healthcare10102093?type=check_update&version=1


Healthcare 2022, 10, 2093 2 of 10

Lower limb muscle power is also involved in determining gait speed. Bean et al. [13]
reported that muscle power is more closely associated with gait speed than muscle strength
in older adults. Both velocity and strength are relevant determinants of muscle power,
as muscle power is determined by the product of the two (power = velocity × strength).
Therefore, the concept of angular velocity has gained attention. Recent studies in older
adults have shown a relationship between gait speed and the angular velocity of the upper
limbs [14,15], lower limbs [16–18], and trunk [19–21]. Regarding the lower limb, the angular
velocity of knee extensions [16,17] and ankle plantarflexion [18] are correlated with the gait
speed in older adults. Thus, the angular velocity of knee extension and ankle plantarflexion
greatly contribute to gait speed.

As stated above, the knee and ankle joints significantly affect the gait speed of older
adults, and strength and velocity play a particularly crucial role in determining gait speed.
However, no previous reports have compared the extent to which knee extension strength,
knee extension velocity, plantarflexion strength, and plantarflexion velocity contribute
to gait speed in a single study. Thus, it remains unclear which is more important in
determining gait speed: the knee or ankle, strength or velocity. This study aimed to
comprehensively examine the importance of each of the four aforementioned lower limb
functions in order to determine the gait speed in older adults. By clarifying the relative
importance of lower-limb muscle strength and angular velocity in gait speed, this study
could provide useful information regarding the effective interventions needed to improve
gait speed in older adults.

2. Materials and Methods
2.1. Participants

In total, 164 community-dwelling older adults participated in this cross-sectional study.
All participants were recruited through local newspaper advertisements and leaflets dis-
tributed at health-related events. The inclusion criteria were as follows: (1) age ≥ 65 years,
(2) ability to walk independently without assistive devices, and (3) ability to understand
and follow instructions. This study was registered in the University Hospital Medical Infor-
mation Network Clinical Trials Registry (UMIN-CTR) under the number UMIN000041740.
All procedures were performed in accordance with the ethical principles outlined in the
Declaration of Helsinki, and the study was approved by the Human Ethics Committee of
Osaka Prefecture University (approval number: 2019–118). Informed consent was obtained
from all patients for study participation and the publication of information.

2.2. Measurements

We collected each participant’s demographic information (age, sex, height, and body
weight), gait speed, and lower limb function (knee extension and ankle plantarflexion). All
measurements were performed in a laboratory at the university by physical therapists in a
random order on the same day. The gait speed was measured on an 8 m walkway using a
photocell system (Optojump Next; Microgate, Bolzano, Italy). The initial and final 1.5 m
sections were not timed to allow for acceleration and deceleration, and the time taken to
walk 5 m in the center was measured [19]. Participants were instructed to walk as quickly
as possible. After one trial session, the measurement was performed twice.

Measurements of the lower limb function were performed unilaterally on the right
side, and the maximum value was used in the analysis for all measurements. The muscle
strength and angular velocity of knee extensions were measured based on Van Roie’s
method using an isokinetic dynamometer (Biodex system3; Biodex Medical Systems, Inc.,
Shirley, NY, USA) [16]. Participants were seated with their hips fixed at a 90◦ flexion,
and their hips and shoulders were stabilized using safety belts. The rotational axis of the
dynamometer was aligned with the transverse knee–joint axis and connected to the distal
end of the tibia with a length-adjustable rigid lever arm. Knee extension muscle strength
was evaluated by isokinetic movements at 60◦/s in the knee flexion angle range of 90◦ to 20◦.
Participants were instructed to perform knee extensions with maximal effort while sitting
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on the isokinetic dynamometer. After one practice session, the measurement was performed
twice. The strength data were normalized by body weight. Knee extension angular velocity
was evaluated using a maximal unloaded knee extension test in the absence of any external
resistance (except for the weight of the lever arm of the dynamometer) in a knee flexion
angle range from 90◦ to 20◦. Participants were instructed to perform knee extensions as
quickly as possible while sitting on the isokinetic dynamometer. After two practice sessions,
the measurement was performed in triplicate.

Ankle plantarflexion muscle strength was measured using a handheld dynamometer
(µTas-F100; ANIMA, Tokyo, Japan) (Figure 1) [22]. Participants were seated on a bed in a
long sitting position, with their arms crossed in front of their chests. The sensor pad of the
handheld dynamometer was placed at the distal end of the metatarsal bone at the sole of
the foot. Thereafter, the ankle joint was fixed in a neutral position by tightening the belt.
Participants were instructed to perform ankle plantarflexions with a maximum effort for
5 s. After one practice session, the measurement was performed twice. The strength data
were normalized by body weight.
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Figure 1. Measurement of ankle plantarflexion muscle strength. Participants sat on a bed with their
backs against the backrest. The backrest was set to tilt backward by 30◦. The hand-held dynamometer
(HHD) was attached to the sole and the ankle joint was fixed to the neutral position.

The ankle plantarflexion angular velocity was measured using a gyroscope (45 × 45 × 18 mm;
MicroStone Corporation, Nagano, Japan) (Figure 2). The gyroscope was fixed onto the
distal end of the second metatarsal bone at the dorsum of the foot so that the axis of the
sensor was aligned with the sagittal plane [18]. The data from the gyroscope were captured
at a frequency of 200 Hz. Participants were seated in a long sitting position on a bed with
both hands on the floor. During the test, the lower limb was fixed to the bed using a belt
at the knee. They were instructed to perform ankle plantarflexions as quickly as possible
with ankle angles ranging from maximum dorsiflexion to maximum plantarflexion. The
maximum velocity in the range of motion from maximum dorsiflexion to 50◦ was used in
the analysis. After two practice sessions, the measurement was performed five times. The
intra-tester reliability of the plantarflexion angular velocity was confirmed via preliminary
experiments performed on 10 older adults (77.0 ± 9.0 years, Appendix A, Table A1).
Plantarflexion velocity was measured twice after an approximately 1-week interval.
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Figure 2. Measurement of ankle plantarflexion angular velocity. Participants sat on a bed with their
backs against the backrest. The backrest tilted backward by 30◦. The gyroscope (GS) was attached to
the dorsum of the feet.

2.3. Statistical Analysis

In the preliminary study, the intra-tester reliability of the plantarflexion angular veloc-
ity using a gyroscope was used to assess the intraclass correlation coefficient (ICC 1.1).

Using G*Power 3.1, we calculated the sample size for multiple regression analysis with
a medium effect size (f2) of 0.15; the number of predictors was six, with an α of 0.05, and a
Power (1 − β) of 0.80 with reference to the method described by Cohen [23]. The minimum
required sample size was 98. Statistical analyses were performed using the SPSS statistical
software (SPSS version 25.0; IBM Corp., Armonk, NY, USA). The measurement data were
presented as mean ± standard deviation and range (minimum-maximum). Pearson’s
correlation coefficients were used to assess the relationship between gait speed and lower
limb function (knee extension strength, knee extension velocity, plantarflexion strength,
and plantarflexion velocity). Multiple linear regression analysis with forced entry was
performed with gait speed as the dependent variable and age, sex, and limb function
parameters as independent variables. We checked multicollinearity by variance inflation
factors (VIF). If the VIF was 5 or larger, multicollinearity became a problem [24]. The
statistical significance level was set at p < 0.05.

3. Results

In the preliminary study, the intraclass correlation coefficient for the test-retest re-
liability was 0.93 (p < 0.01), demonstrating the excellent reliability of the measurement
(Appendix A, Tables A2 and A3).

3.1. Basic Characteristics

Figure 3 shows a flowchart for the recruitment and exclusion of study participants.
Seven of the initially selected 164 participants did not meet the inclusion criteria and were
excluded from the study. Thus, 157 participants (41 men and 116 women) were included
in the final analysis. Table 1 shows the characteristics of the participants. The mean age
was 72.9 ± 5.0 years, height was 156.0 ± 8.0 cm, body weight was 54.8 ± 9.2 kg, and
23.1% of participants were male. Five of the 157 participants had a previous clinical history
affecting the functional status of the lower limbs (two neurological diseases and three
knee osteoarthritis).
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Table 1. Characteristics of participants (n = 157).

Mean ± SD Range

Age (years) 72.9 ± 5.0 65 – 89
Sex (M/F) 41/116

Height (cm) 156.0 ± 8.0 140.5 – 176.0
Body weight (kg) 54.8 ± 9.2 37.8 – 83.8

Maximum gait speed (m/s) 1.90 ± 0.28 1.23 – 2.97
Knee extension strength (Nm/kg) 1.60 ± 0.37 0.33 – 2.55

Knee extension velocity (◦/s) 367.7 ± 36.3 260.2 – 459.1
Ankle plantarflexion strength

(kgf/kg) 0.86 ± 0.27 0.22 – 1.72

Ankle plantarflexion velocity (◦/s) 754.8 ± 157.0 351.9 – 1261.0
SD: standard deviation, M: male, F: female.

3.2. Relationship between Gait Speed and Lower Limb Function

Table 2 shows Pearson’s correlation coefficients between the maximum gait speed and
lower limb function. The maximum gait speed was significantly and positively correlated
with all four lower limb functions (knee extension strength, r = 0.399, p < 0.01; knee
extension velocity, r = 0.409, p < 0.01; ankle plantarflexion strength, r = 0.389, p < 0.01; ankle
plantarflexion velocity, r = 0.394, p < 0.01).

Table 2. Correlation between gait speed and lower limb functions.

Knee
Strength

Knee
Velocity

Ankle
Strength

Ankle
Velocity

Maximum gait speed (m/s) 0.399 ** 0.409 ** 0.389 ** 0.394 **
Knee extension strength

(Nm/kg) − 0.644 ** 0.534 ** 0.221 **

Knee extension velocity (◦/s) − 0.386 ** 0.278 **
Ankle plantarflexion strength

(kgf/kg) − 0.261 **

Ankle plantarflexion velocity
(◦/s) −

**: p < 0.01.

Table 3 presents the results of the multiple linear regression analysis, which revealed
that the independent variables accounted for 31% of the variance in the maximum gait
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speed (adjusted R2 = 0.31, p < 0.01). The ankle plantarflexion angular velocity (standardized
β-regression coefficient = 0.25, p < 0.01), ankle plantarflexion muscle strength (standardized
β-regression coefficient = 0.21, p < 0.01), age (standardized β-regression coefficient = −0.19,
p < 0.01), and sex (standardized β-regression coefficient = −0.16, p < 0.05) were noted
as significant predictors of the maximum gait speed. The VIF values for each predictor
variable were acceptable, with all values under five.

Table 3. The results of multiple regression analysis.

Maximum Gait Speed (m/s)

Characteristic Standardized β p-Value VIF

Age (years) −0.19 0.01 1.2
Sex (M/F) −0.16 0.04 1.3

Knee extension strength (Nm/kg) 0.10 0.28 2.1
Knee extension velocity (◦/s) 0.11 0.23 1.9

Ankle plantarflexion strength (kgf/kg) 0.21 0.01 1.4
Ankle plantarflexion velocity (◦/s) 0.25 <0.01 1.2

Adjusted R2 = 0.31
β: regression coefficient, VIF: variance inflation factor, M: male, F; female.

4. Discussion

This is the first study to comprehensively examine the relationship between gait speed
and lower limb function (the muscle strength and angular velocity of the knee and ankle)
in older adults. The results of the study indicated two points: (1) the ankle function had a
greater influence on gait speed than knee function, (2) the velocity was a more significant
determinant of gait function than the strength, and (3) plantarflexion velocity was the most
crucial factor for determining gait speed.

The first point can be explained by the differences in the roles of each joint during
gait speed. Knee extension mainly provides shock absorption during the loading response
and controls the body’s stability during mid-stance [25–29]. However, ankle plantarflexion
provides a forward propulsion during push-off in the late stance [25,26,30,31], accounting
for 67% of the total joint power during the stance phase of the gait [32]. The forward
propulsion is a major factor in determining gait speed. The ankle function, which provides
most of the propulsion, has a greater impact on gait speed than knee function.

In the second point, we consider that angular velocities in various regions have a signif-
icant impact on the mobility of older adults, as suggested by previous studies [16–18,33–35].
Sayers et al. [34] demonstrated that movement velocity in the leg press exercise is a stronger
predictor of performance than muscle strength in lower-intensity tasks, such as gait. Fur-
thermore, Yamamoto et al. [35] reported that knee extension velocity is more influential
than knee extension strength as a determinant of gait speed in older adults. Our results
that angular velocity is essential for gait speed are in line with the results of these studies.

We then discuss the third point, which is the main finding of this study. The swing
speed during gait influences the control of gait speed in older adults [36]. Considering that
the plantarflexion velocity during the push-off phase is one of the factors that determines
the initial swing [37], this velocity can be regarded as a factor that affects gait speed. The
plantarflexion angular velocity increases in the late stance and peaks during the late push-
off phase (57–58% of the gait cycle) [38]. Most of the body weight is transferred to the
contralateral leg during the late push-off phase [39]; therefore, the plantarflexion movement
occurs in low-load conditions. In this study, we measured plantarflexion velocity without
any load in the sitting position. Therefore, the load conditions were similar to the late
push-off phase during gait and the velocity measurement in the present study. Therefore,
this similarity may account for the finding that plantarflexion velocity in a sitting position
is a crucial determinant of gait speed.

The plantarflexion angular velocity during heel-raising is the only method that has
been shown to be related to gait speed [18]. Heel-raising is a high-load task for older
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adults [40]. Therefore, the angular velocity at a high-load task is greatly affected by the
force component based on the force–velocity relationship [41]. Several studies [16,34] have
suggested that lower limb angular velocity under low-load conditions is more strongly
related to gait speed than under high-load conditions. We hypothesized that the plantarflex-
ion velocity under low-load conditions is more important for gait speed, and therefore,
this study measured angular velocity under no-load conditions. As a result, the no-load
plantarflexion velocity had a particularly strong relationship with gait speed in older adults.

This study has several limitations. First, the method for measuring muscle strength
differed between knee extension and ankle plantarflexion. In the measurement of knee
extension strength, the measured value was calculated as torque (Nm/kg) using an isoki-
netic dynamometer. Contrarily, in the measurement of ankle plantarflexion strength, the
measured value was calculated as force (kgf/kg) instead of torque using a handheld dy-
namometer. The differences in these measurement methods may have affected the results
of this study. Second, we did not consider the dominant leg and measured only the right
leg according to previous studies [11,16]. However, since large asymmetry (approximately
15%) has been observed in the strength of the lower limbs in older individuals [42], we
should consider the dominant limb in future research. Third, a high percentage of partic-
ipants were women (76.1%), and the age range was wide (65-89 years). Since previous
studies have shown that gender and age affect the kinematics and kinetics of walking [43],
these factors might influence the results of this study. We need to adjust for gender and
age in future studies. Fourth, this examination included knee and ankle joints but did not
evaluate the hip joint. The hip joint function might be related to gait speed. In addition,
the subtalar joint kinematics affect the function of the ankle joint [44,45] but were not
considered in this study. Therefore, further research should consider multiple joints, such
as the hip and subtalar joints, and clarify the relationship between the gait and lower limb
joint function in more detail. Finally, we did not consider the effect of the circadian rhythm
on gait function, which was best in the evening and worst in the morning, in a published
review [46]. As the data collection time points differed for the participants (between 9:00
am and 3:00 pm), the circadian rhythm may have influenced the gait-measurement results
in this study.

5. Conclusions

The relative importance of gait speed in joints and functions is shown as follows:
ankle > knee, and velocity > strength (in plantarflexion). Therefore, exercises that can
increase plantarflexion velocity, such as ankle joint quick movements with unloaded or
quick calf raises with weight-supports, may be effective for improving the gait speed of
older adults whose gait function has declined.
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Appendix A

Table A1. Characteristics of participants in the preliminary evaluation of the reliability of plantarflex-
ion angular velocity (n = 10).

Characteristic Mean ± SD Range

Age (years) 77.0 ± 9.0 60 – 90
Sex (M/F) 4/6

Height (cm) 153.3 ± 7.6 144.0 – 166.0
Body weight (kg) 57.3 ± 12.1 41.2 – 71.0

SD: standard deviation, M: male, F: female.

Table A2. Ankle plantarflexion velocity in the preliminary evaluation.

Ankle Plantarflexion Velocity (◦/s) Mean ± SD Range

Measurement 1 689.1 ± 173.7 434.0 – 973.6
Measurement 2 680.7 ± 215.2 393.0 – 1061.6

SD: standard deviation.

Table A3. The intraclass correlation coefficient for the test-retest reliability.

ICC (1, 1) 95% CI p-Value

Ankle plantarflexion
velocity (◦/s) 0.93 0.77 – 0.98 <0.01

ICC: intraclass correlation, 95% CI: the 95% confidence interval.
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