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’ INTRODUCTION

Over the past two decades, docking has advanced from an
academic exercise to a useful tool to help develop new leads in the
pharmaceutical industry. Structure-based drug discovery
(SBDD) methods are very successful in enriching hit rates, but
it is possible that current software programs are really more
effective at eliminating bad leads than identifying good ones.1

While the ultimate goal is to properly predict tight binders,
removing poor choices is valuable and focuses experiments into
more fruitful chemical space.

A study by Warren et al.2 summarizes many of the current
strengths and limitations of SBDD. Many docking and scoring
routines did well at binding mode prediction, reproducing ligand
poses within 2 Å. Some were successful at virtual screening and
yielded enrichments appropriate for lead identification, but none
could rank order ligands by affinity. In general, inhibitors with
nM-level affinity cannot be consistently ranked over those with
μM-level binding. It is not possible to identify “activity cliffs,”
small changes that result in significant increases or decreases in
affinity.

Overall, there is a clear consensus that docking and scoring is a
useful technique with potential to be even better, and the need
for better training data is commonly identified as a limitation
facing the field.1 The aim of the Community Structure-Activity
Resource (CSAR) is to gather data to help scientists improve
their methods. To learn what features are most important to
address first, we devised our 2010 benchmark exercise. Our
exercise is intended to bring people together to compare different
methods and improvements for scoring functions based on
crystal structures of protein�ligand complexes (no docking
was required in order to remove any limitations or biases arising
from the use of different search algorithms). Our data set
contains hundreds of diverse proteins and ligands of the highest
quality that can be used to identify which systems are influenced
by different approaches. For a detailed description of how the

Special Issue: CSAR 2010 Scoring Exercise

Received: June 14, 2011

ABSTRACT: As part of the Community Structure-Activity
Resource (CSAR) center, a set of 343 high-quality, protein�
ligand crystal structures were assembled with experimentally
determined Kd or Ki information from the literature. We
encouraged the community to score the crystallographic poses
of the complexes by any method of their choice. The goal of the
exercise was to (1) evaluate the current ability of the field to
predict activity from structure and (2) investigate the properties
of the complexes and methods that appear to hinder scoring. A
total of 19 different methods were submitted with numerous
parameter variations for a total of 64 sets of scores from 16 participating groups. Linear regression and nonparametric tests were used
to correlate scores to the experimental values. Correlation to experiment for the various methods ranged R2 = 0.58�0.12, Spearman
F = 0.74�0.37, Kendall τ= 0.55�0.25, andmedian unsigned error = 1.00�1.68 pKd units. All types of scoring functions—force field
based, knowledge based, and empirical—had examples with high and low correlation, showing no bias/advantage for any particular
approach. The data across all the participants were combined to identify 63 complexes that were poorly scored across the majority of
the scoring methods and 123 complexes that were scored well across the majority. The two sets were compared using a Wilcoxon
rank-sum test to assess any significant difference in the distributions of >400 physicochemical properties of the ligands and the
proteins. Poorly scored complexes were found to have ligands that were the same size as those in well-scored complexes, but
hydrogen bonding and torsional strain were significantly different. These comparisons point to a need for CSAR to develop data sets
of congeneric series with a range of hydrogen-bonding and hydrophobic characteristics and a range of rotatable bonds.



2116 dx.doi.org/10.1021/ci200269q |J. Chem. Inf. Model. 2011, 51, 2115–2131

Journal of Chemical Information and Modeling ARTICLE

data set was curated and prepared for the exercise, the reader is
directed to our data set paper in this same issue.3 Most evalua-
tions in the literature are based on a handful of targets at most,
and that limited scope prevents us from properly identifying
which features of targets and ligands are most difficult to treat
computationally. Furthermore, it does not point toward how to
improve our methods.

Here, we present an evaluation across all participants, parti-
cularly noting which protein�ligand systems are the most
difficult to score and which are scored well. Our hypothesis is
that sound statistical methods can be used to identify weaknesses
in current scoring functions. Targets that are poorly scored across
many, diverse methods point to common deficiencies in SBDD.
These are the systems that call for improved approaches,
departures from the status quo. For CSAR, the differences in
physicochemical properties of the “universally well scored”
complexes (GOODs) vs “universally poorly scored” (BADs)
help to direct the kinds of data sets we curate. In this analysis, we
are particularly interested in the complexes that are consistently
scored well versus those that consistently scored poorly. GOOD
complexes score within 1.1 pKd of the experimental binding
affinity for at least 12 of the 17 scoring functions described below,
and BADmust be outliers for 12 ormore of the scoring functions,
see Figure 1. The BAD complexes fall into two groups: OVERs
are weak binders that are consistently overscored, and UNDERs
are tight binders that are consistently underscored. Differences
in the physicochemical properties of GOODs versus BADs help
to identify strengths and weaknesses of current approaches.
Below, we show that OVERs tend to have hydrophilic ligands
and binding sites, while UNDERs are typically hydrophobic.
This highlights the need for efforts like CSAR to develop data
sets based on congeneric series with ranging log P and hydrogen-
bonding features. This is further supported by the results of three
participants in the exercise who found that removing hydrogen-
bonding terms and/or Coulombic energies resulted in no change
in the agreement between scores and experimental affinities. In
fact, the correlations significantly improved for one participant
(see the papers of this special issue).

The most important aspect of this analysis is the means we use
to combine the scoring functions. Improvement is regularly
found by combining scores, and it is typically independent of
which scoring functions are combined.4 Research involving belief
theory5�7 and consensus scoring4,8�24 has focused on ways to
combine data to identify potential positive outcomes, such as
enrichment of hit rates. Here, we use consensus to determine
which complexes are not scored well. It is very important to
design the methods for combining results so that the statistical
treatment makes it extremely unlikely for these choices to result
from random chance or noise in the data. The equally important,
subsequent task focuses on determining why these complexes are
outliers.
Statistics. The methods used are straightforward and well-

defined, based on linear regression. The most common assess-
ment for a scoring function is its correlation to experimental
binding data.When using a simple, least-squares linear regression
to fit data points, the fit line must intersect the point (x, y), and
the slope is defined to minimize the distance in the y direction
between the data points and the line.25 An underlying assump-
tion is that the data has a normal distribution along the y axis.
Indeed, the distribution of the 343 affinities in the CSAR-NRC
set3 is normally distributed about its average affinity (average
pKd/i = 6.15, median = 6.19, max = 13, min = �0.15) with the

skew and kurtosis near 0 (skew = 0.06, kurtosis = �0.04).
Therefore, the distribution of the residuals (errors in the y
direction off any fit line) is normally distributed and centered
at zero, see Figure 1. The standard deviation (σ) of the residuals
is directly related to the goodness of fit of the line (smaller σ as R2

approaches 1).R2 is the square of the Pearson correlation coefficient
which is the percentage of the total variation that can be fit by the
linear relationship.
If we define an outlier as any point with an absolute errorg1σ,

then the probability of that occurrence is well-defined: 15.8%
for each tail in the distribution of the residuals. This is true
regardless of the R2, so all fits—tighter and weaker—have the

Figure 1. Example of comparing a set of scores, pKd (calculated), to
their corresponding experimentally determined affinities. (Top) When
fitting a line (black) using least-squares linear regression, the distance in
the y direction between each data point and the line is its residual.
(Bottom) The residuals for all the data points have a normal distribution
around zero. The characteristics are well-defined, including the defini-
tion of standard deviation (σ in red, which happens to be 1.4 pKd in this
example) and the number of data points with residuals outside ( σ
(15.8% in each tail). Higher correlations lead to larger R2 and smaller σ;
weaker correlations lead to lower R2 and larger σ, but the distributions
remain Gaussian in shape.
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same probability of a complex having its residual in the tail
regions. Below, we combine 17 scoring functions to identify
common outliers or BAD complexes that are poorly scored over
most methods. If a complex was poorly scored in all 17 scoring
functions, then the probability of it being a random occurrence is
2� (0.158)17 = 4.77� 10�14, where the factor of 2 accounts for
the fact that an outlier can be either consistently above 1σ or
consistently below �1σ to be a common outlier by our defini-
tion. The probability of a complex being a common outlier for
16 of 17 scores is 2� (0.158)16� (0.842)� 17= 4.32� 10�12,
where the factor of 17 accounts for the number of ways that one
scoring function can have an error <1σ. Following this enumera-
tion, we can show that the probability of a complex being
a common outlier for 12 or more of the 17 scoring functions
due entirely to random occurrence is 1.27 � 10�6. We would
need a data set of 787 400 complexes (1/probability) to have
one common outlier from random chance. That is 3 orders of
magnitude larger than the CSAR-NRC data set, making it
basically impossible for any of the common outliers to be due
to random chance.
Our definition of g12 of 17 scores (at least 70% of the

methods) ensures that common outliers do not occur randomly.
Therefore, if a complex is a common outlier, there has to be an
underlying cause. It has to represent some type of molecular
recognition that most methods treat insufficiently. In order to
identify the physicochemical properties that may frustrate com-
putational methods, we compared the distribution of those
properties between the BAD complexes and the set of GOOD
complexes. The set of GOOD complexes was defined as
those which scored within 1.1 pKd of their experimental value
(|residuals| e 1.5 kcal/mol) for g12 of 17 scoring functions.
Once these two sets were identified, two-tailed Wilcoxon rank-
sum tests were used to assess statistical significance of differences
in their distributions of physicochemical properties. Of course,
we cannot completely rule out experimental error as a cause for
an outlier. Our preparation of the data set removed all common
complications, such as crystal contacts or poor electron density
for the ligand, but the inherent weaknesses of using crystal
structures are still there. We are not accounting for protein
flexibility nor are we correcting for any differences in ions or pH
between the binding assay and the crystallization conditions.
There could be errors in the affinity data, particularly for very
weak or very strong affinity where measurements are pushed to
their limits. For all outliers, we searched the literature for updated
affinity data, but none was found.
Contributors. Most of the scores were calculated by authors

featured in this special issue, some by the CSAR team, and a few
by participants who spoke at the ACS symposium26 but were
unable to submit papers due to various time constraints. Parti-
cipants were promised anonymity to encourage submission of
scores, even those with poor agreement with experiment, but
attendees of the ACS symposium felt that hiding the identity of
the scoring functions made it impossible to assess the results and
know what inherent weaknesses might underlie the analysis. For
that reason, the scoring functions are listed in the Methods
Section below.
However, we stress that the list of scoring functions is ordered

alphabetically, and it is not related to the ordering used in the Results
and Discussion Section. In the discussions below, each scoring
function is denoted with the generic term “code X”, where X =
1�17. We have chosen not to link the identity of the scoring
functions with their performance to avoid trivializing this work

into “winners vs losers.”This benchmark exercise is not a contest,
and ranking current scoring functions was not our mission. Our
goal is to combine the data across all participants and identify the
most important and universal deficiencies in scoring pro-
tein�ligand binding. Only by knowing where the most signifi-
cant pitfalls lie can we prioritize which data are needed most to
help the community develop their new methodologies. This
information has helped direct the focus of CSAR’s future
data sets.

’METHODS

The CSAR-NRC data set3 is 343 protein�ligand complexes
with binding affinity data (Kd or Ki which we abbreviate as pKd/i)
from Binding MOAD27,28 and PDBbind.29,30 The challenge to
participants was to calculate absolute free energies of binding
over a very diverse set of proteins and small molecule ligands.
The set was originally divided into two subsets so that partici-
pants could examine training and testing on related sets if they
wished, but for this analysis, we are examining scoring across the
full set of data.

We wanted an equivalent comparison across all the methods.
To remove bias/error from different docking search routines, we
asked participants to simply score poses from the crystal struc-
tures of the complex. The electron densities for ligands in the
CSAR-NRC set are exceptional (RSCC g 0.9 for the ligands),3

so using poses from the crystals should be an unbiased treatment
for all methods. However, we found that force field (FF)-based
methods required minimization of the complexes. Small over-
laps, within the error of the coordinates, were enough to create
very large van der Waals (vdW) penalties. Therefore, a set of
minimized structures were made available in addition to the set
of crystallographic complexes. All FF methods used the same
minimized structures for consistency. Though we could have
asked for each FFmethod to use structures minimized in that FF,
it would have removed the emphasis of an even comparison. The
minimizations were simply meant to remove the vdW overlaps
that undermined their performance. While this is not ideal, it
aims to create an even basis for comparison. Participants were
welcome to minimize the structures in their own FF, score again
as part of their analysis, and report the results in their papers.
They were also able to use crystallographic water if they chose,
but none were used in the core scores below.

Sixteen groups participated in the benchmark exercise: 11
academic and 5 from the private sector, both software vendors
and pharma groups. The submissions for the CSAR-NRC set
included 64 variations on 19 scoring functions. Most participants
submitted more than one set of scores, varying different para-
metric choices to determine their influence upon scoring. Two
of the methods were only trained on the CSAR-NRC set and
could not be included in this analysis. For each of the other 17
methods submitted, an optimal “core” score was chosen for our
combined analysis across all participants. Only standard ap-
proaches were considered (only pre-existing functional choices,
not functions fit to the CSAR-NRC data set). The option most
appropriate to avoid artifacts was chosen. For example, FF scores
require minimization of the complexes to remove the artifact
of high vdW energies. Minimization was usually unnecessary
for soft potentials or knowledge-based potentials, and use of
the minimized structures often showed decreased agreement
with experimental values. If more than one standard approach
was submitted, then the option with better root-mean-square
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error (RMSE) or R2 to the experimental data was chosen. At
times, this resulted in minimized structures being used with
knowledge-based or soft scoring functions. As noted above, the
order below is alphabetical, but the tables, figures, and various
performance metrics are ordered by correlation to the experi-
mental values.
AutoDock 4.2.331. This is a FF-based function, so scores for

the minimized complexes were chosen. We also chose the scores
calculated using the default charges (Gasteiger charges from
AutodockTools 1.5.4.2) over using AM1-BCC charges provided
with the data set because AutoDock is parametrized to use
Gasteiger charges.
AutoDock Vina 1.1.1.132. Standard, default scoring options

were chosen, and the protein and ligand were prepared with
AutodockTools 1.5.4.2. Scores calculated with the unminimized
complexes were chosen because this is a knowledge-based
potential.
DOCK 4.0.133. This scoring function is based on the AMBER

FF, so scores for the minimized complexes were chosen. Scores
were submitted using both the full DOCK scoring function and
the function with only the vdW terms included. The score chosen
for the core set used the full scoring function.
DrugScore 1.134. The default scoring parameters were used.

Even though this is a knowledge-based function, scores for the
minimized complexes were chosen because they had slightly
better correlation with experimental affinities.
eHiTS35. The scores chosen for the core set were calculated

with the default scoring options using the minimized set of
structures. A second set of scores was also submitted with the
function tuned on the entire data set. The standard score
provided by eHiTS was chosen over the scores calculated from
the function trained on the data set. However, the scores fit to the
CSAR-NRC set were used as a type of benchmark because the
large number of parameters allowed for a very tight correlation
to experimental values. This was taken as a limiting case for the
maximal performance possible when fitting to the data set.
FRED 2.2.5 (Chemgauss3)36. Standard, default scoring was

chosen, calculated with the unminimized complexes because this
is a soft, shape-based scoring method. The AM1-BCC charges
provided with the data set were used. Scores were calculated
using Shapegauss, Chemgauss3, Chemscore, OEChemscore
1.4.2, Screenscore, and PLP scoring functions with a box cutoff
of 4 Å larger than the ligand. Both the minimized and unmini-
mized structures were tested. The Chemgauss3 function using
the unminimized structures was chosen because it achieved the
highest R2 in linear fit to experiment for the CSAR-NRC data set.
Glide 5.5 (SP)37. The minimized set of complexes was used

because Glide is based upon the optimized potentials for liquid
simulations (OPLS) FF for atom typing and charges. The grid
was centered at the average ligand coordinate and the box
extended 25 Å. The standard precision (SP) and the extra
precision (XP) scores were calculated. SP was chosen over XP
because it was able to score more of systems in the CSAR-NRC
data set. Also, SP had a higher R2 in linear fit to experiment for the
CSAR-NRC data set.
GOLD 4.0.1 (ChemScore)38,39. The scores of the minimized

structures were chosen for the core set, since the performance
based on R2 was better. ChemScore was chosen over GoldScore
and ASP because it had the best correlation with experiment. The
binding site was defined as the region within 12 Å of the ligand’s
center of mass. Non-natural amino acids and water molecules
are not considered in the rescoring. GOLD used primarily

knowledge-based scoring functions (or statistical potential
functions), which relied only on atom typing of the ligands, so
the charge information of the ligands was not used in the scoring.
ITScore 2.040. Standard scoring was chosen over the new form

that includes a correction for rotatable bonds in the ligand. Scores
calculated for the unminimized complexes were chosen because
this is a knowledge-based potential. ITScore was trained on 1152
protein�ligand complexes from PDBbind29,30 (excluding those
in the CSAR data set), to develop the pairwise statistical
potentials for the scoring function.
Lead Finder41. Scores were based on two preparation proto-

cols. The first used the structures provided in the CSAR-NRC set
of minimized complexes. In the second, the structures were
prepared using MolTech’s software Model Builder, which calcu-
lates the pKas of the ligand to suggest proper ionization states.

42

Though the second preparation showed a slightly improved
correlation to the experimental values, the scores from the first
preparation were chosen for the core set for consistency with
other methods.
MedusaScore43. The participant provided two scores based

onMedusaScore and a QSARmodel. MedusaScore is a FF based
function, but the vdW repulsion terms are removed in order to
avoid sensitivity to possible atomic clashes in the structures.
MedusaScore was chosen over the QSAR approach because the
latter was based on descriptors determined from the CSAR-NRC
data set.
MOE2010.10 (ASE andAffinityDG)44.Two scoring functions

from MOE were chosen as core scores because they used
fundamentally different and independent approaches. All MOE
scoring functions (ASE,45 Alpha HB, London dG, and Affinity
dG) were used with their default settings and were computed on
both the crystal structures and minimized structures provided.
Both ASE and Alpha HB are shape-based methods, and ASE was
chosen because of its better correlation with the experimental
affinities. Both LondonDG and AffinityDG functions attempt
to estimate the free energy of binding. Affinity DG had a lower
RMSE and was chosen for the core set. The chosen core scores
were calculated using theminimized data set, as it provided better
agreement with experiment in both cases.
M-Score46. The default scoring parameters were used for this

knowledge-based scoring function. The minimized structures
resulted in scores with slightly better correlation to experiment
and were chosen for the core set.
S247. The S2 function is a linear interaction energy function

based on the number of interacting types of pairs, with the
weights calculated using linear regression fit to the LPDB data
set. Scores for the minimized structures were chosen. The S2
function was chosen over the S1 function because the S1 function
only accounts for the size of the molecule.
SIE48. Solvated interaction energy (SIE) scores use a FF-based

method, so the minimized complexes were used. Parameters
were assigned using AMBER/GAFF, but AM1-BCC charges
were used for the ligand, cofactor, and any other modified
residues. Two parameters of the SIE function (R and C) are fit
to experimental binding free energies. The standard approach
used 99 protein�ligand complexes. The R and C values were
also refit using the CSAR-NRC data set. The standard scores
provided from the SIE scoring function were chosen over the
scores fit to our data set, to remove any bias and maintain
consistent treatment across all core scores.
X-Score 2.049. No special preparation was performed, and

the default scoring parameters were used. X-Score reports three
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scores (HPScore, HMScore, and HSScore) and the average
of all three. We chose the average score for the core set, based
on the minimized set of structures. X-Score was developed from
the PDBbind data set which has significant overlap with the
CSAR-NRC set.
Caveats.Of the 17 core methods above, 12 were able to score

all 343 complexes. Two methods left one complex unscored, and
the other three were unable to score two, four, and five
complexes, respectively. Any complex left unscored was counted
as an outlier for that method. On very rare occasion, we needed
to drop an individual complex from a method’s set of scores
(a single complex was removed from three methods, and three
complexes were removed from one method). In these cases, the
complexes’ scores were well off from the rest of the set, and the
residuals were greater than 3.5σ (very unlikely in a set this size).
These were very likely errors in the calculation, and they greatly
skewed the linear regression analysis outlined below. Of course,
any removed complex was treated the same as an unscored
complex.
Correlation between Scores and Experimental Binding

Affinities. The statistical package “R”50 was used to calculate
Pearson’s R, Spearman F, and Kendall τ values. Fisher transfor-
mations coupled with standard deviations were used to deter-
mine 95% confidence intervals.51 Every method was normalized
so that the scaled scores ranged from 0 to 1 (i.e., scores were
converted by first making all scores positive numbers and then
scaling by [(scorei � scoremin)/(scoremax � scoremin)]). This
simply shifts the values and scales them. It does not change the
value of R2, but it does change any Person’s R, Spearman F, or
Kendall τ with a negative value to its absolute value. This
treatment makes it easier to compare across the methods because
R, F, or τ of 1.0 always indicates perfect correlation and rank
ordering, regardless of whether the original scores were given in
positive or negative numbers.
Selecting BAD and GOOD Complexes by Linear Regres-

sion. Each method’s scores were compared to the experimental
pKd/i through least-squares linear regression analysis in JMP.52

As noted in Figure 1, the residuals are normally distributed with σ
proportional to the goodness of fit. JMP52 was used to compare
the residuals across all the fits and determine the list of BAD
complexes. These BAD complexes fell into two groups. The
UNDER set consisted of those complexes with residuals g1σ
(under scored) in at least 12 of 17 functions, and the OVER set
were those with residuals e�1σ (over scored) in at least 12 of
the 17 functions. Before progressing to the comparison of BAD
and GOOD complexes, we searched the literature to identify
whether any subsequent research on those targets had identified
any errors in the processing or disagreements in affinity measure-
ments. No errors in set up or changes to affinity data were found.
When identifying the GOOD structures, we wanted to remove

any bias in the linear regression arising from trying to fit the BAD
complexes. Therefore, the BAD structures were removed, and
then the remaining complexes were fit again in JMP.52 The set of
GOOD complexes was defined as those with an absolute value of
its residual less than 1.1 pKd/i (<1.5 kcal/mol) in at least 12 of the
17 core scoring functions.
Comparison between the Physical Properties of BAD

and GOOD Sets. We calculated over 400 physicochemical
properties for each complex based on the ligand, the protein,
and the interactions between the two. For the ligand, all two- and
three-dimensional (2D and 3D) properties available in MOE44

were calculated, except for those requiring semiempirical

quantum mechanics. Energy descriptors were calculated with
the MMFF94x force field in MOE. This provided 319 ligand
descriptors.
The proteins, binding sites, and the protein�ligand interac-

tions were examined in many ways. Properties describing the
quality of the crystal structure included clash scores calculated by
MolProbity,53 all Z scores calculated by WhatIf,54 DPI,55 and the
Rfree and resolution reported in the original publication for each
complex. The chemical interactions between the ligand and the
protein were determined by the prolig_Calculate function avail-
able in MOE,44 which yielded hydrogen-bonding, ionic, arene,
and metal interactions within the binding sites. The buried and
exposed molecular surface area (SA) of the binding pocket
was calculated with GoCav.56 The hydrophobic buried SA was
estimated by determining which nonhydrogen atom of the
protein was closest to the buried surface grid point determined
by GoCav. If a carbon atom of the protein or the sulfur atom of a
methionine residue was closest, then the point was considered
hydrophobic. All other buried SA points were considered
hydrophilic. Bridging water molecules were required to be less
than 50% solvent exposed and to be within 4 Å of a nonhydrogen
atom of both the ligand and the protein. Any natural amino acid,
modified residue, and metal atom with a nonhydrogen atom
within 4 Å of the ligand’s nonhydrogen atoms were considered
part of the protein’s binding site. These contacts were deter-
mined and tallied using in-house code written in Perl. Each
binding site was then described by its %amino-acid content
(number of each of the 20 amino acids in the binding site divided
by the total number in the binding site, where metals and
modified residues were counted as a 21st residue called “other”).
Then averages and standard deviations for the amino acid
content of the binding sites were determined by bootstrapping
for 1000 iterations, randomly combining two-thirds of the data
set each time. GOOD, OVER, and UNDER complexes were
each bootstrapped as separate sets.
For every physicochemical property, JMP52 was used to

compare the distribution of values for the GOOD complexes
to the distribution of values for the BAD complexes. UNDER and
OVER complexes were compared separately to the GOOD
complexes. A nonparametric, two-tailed, Wilcoxon rank-sum test
was performed to calculate the likelihood that distributions of
physicochemical properties were the same. Only properties with
p values e0.05 were considered relevant.

’RESULTS AND DISCUSSION

Factor Xa (FXa) Complexes Were Removed Early in the
Analysis. The initial set of identified outliers contained several
FXa structures. Each had ligands with sub-nM-level affinities,
but the pockets were well exposed and the complementarity
appeared poor. All FXa structures are missing an N-terminal
domain, and its effect on ligand binding is unclear. In vivo,
the domain is required for calcium activation of FXa, and the
anticoagulant warfarin works by inhibiting the modification of
this domain’s key residues that chelate calcium.57 Therefore, we
removed all 11 FXa structures from the analysis of BAD and
GOOD structures.
The subsequent analysis below is based on the 332 remaining

structures in the CSAR-NRC set. Note that after dropping these
complexes, the characteristics of the set are basically unchanged.
The maximum and minimum affinities are the same. The average
and median affinities of the 332 set are 6.07 and 6.115 pKd/i,
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respectively. The standard deviation is 2.20 pKd/i, and the
median unsigned error (Med |Err|) is 1.47 pKd/i. The distribu-
tion is still Gaussian with near-zero skew and kurtosis of 0.09 and
0.04, respectively.
However, FXa has been a platform for successful structure-

based design58 and testing of modeling techniques.59,60 There is a
wealth of additional data on FXa in the pharmaceutical
industry61�69 that would help the field overcome its limitations.
In fact, we are currently negotiating with two companies for FXa
data. There are strong electronic influences and π�π stacking
effects that can shift ligand affinities over 4 orders of magnitude.

Structure 2p3t67 (set 1, complex no. 141) is a good example of
the difficulty in modeling some high-affinity inhibitors of FXa.
It has a binding affinity of 5 pM but appears to have poor
complementarity and is largely solvent exposed, see Figure 2.
The effects of halogenation and π�π stacking provide a strong
driving force for the association. Below, we show that hydro-
phobic interactions in tight-binding complexes are underesti-
mated by the majority of methods examined in the benchmark
exercise.
It should be noted that several structures of HIV-1 protease

were in the BAD set. At the same time, there were twice as many
in the GOOD set, and the complete protein is present in the
crystal structures. Therefore, we chose not to eliminate those
complexes from the analysis. A table in the Supporting Informa-
tion lists the proteins that have an appropriate ligand series in the
data set, including FXa. Proteins were clustered at 100% se-
quence identity to avoid data on mutants muddling the analysis
of affinities. Sixteen proteins (listed with PDB ids in the data
set paper)3 had three ligands or more, but only 10 had ligand
affinities that ranged more than 1 order of magnitude. No limit
was placed on chemical similarity across the ligands to define
somemeasure of congeneric series, though some clearly are. Each
code’s relative ranking of the ligand series for each of the 10
proteins is also provided in the table in the Supporting Informa-
tion. A list of all protein families and their complexes has been
included in the download of the data set since the project was
initiated (www.CSARdock.org, accessed July 25, 2011).
Correlation between Experimental Affinities and the 17

Core Methods. Table 1 presents both parametric and nonpara-
metric assessments of the correlation between the submitted
scores and the experimental binding affinities of the 332 entries

Figure 2. Crystal structure of FXa bound with a 5 pM ligand (PDB id
2p3t). The ligand is very exposed with few hydrogen bonds to the
protein.

Table 1. Parametric and Nonparametric Measures of Correlation Between the Scores and Experimental Binding Affinitiesa

method Pearson R Spearman F Kendall τ R2 σb RMSEb Med |Err|b

code 1 0.76 (0.80�0.71) 0.74 (0.79�0.68) 0.55 (0.60�0.50) 0.58 (0.64�0.50) 1.43 1.51 1.00

code 2 0.72 (0.77�0.66) 0.73 (0.78�0.67) 0.54 (0.59�0.49) 0.52 (0.59�0.44) 1.53

code 3 0.67 (0.72�0.60) 0.68 (0.74�0.61) 0.49 (0.54�0.43) 0.45 (0.52�0.37) 1.64 1.65 1.05

code 4 0.64 (0.70�0.58) 0.64 (0.70�0.56) 0.46 (0.52�0.40) 0.42 (0.49�0.33) 1.68 2.09 1.5

code 5 0.63 (0.69�0.56) 0.64 (0.71�0.57) 0.46 (0.52�0.40) 0.40 (0.48�0.32) 1.71

code 6 0.62 (0.68�0.55) 0.61 (0.68�0.53) 0.43 (0.49�0.38) 0.39 (0.47�0.30) 1.72 1.81 1.26

code 7 0.62 (0.68�0.55) 0.61 (0.68�0.53) 0.43 (0.49�0.37) 0.38 (0.46�0.30) 1.72

code 8 0.61 (0.67�0.54) 0.59 (0.66�0.51) 0.42 (0.48�0.36) 0.37 (0.45�0.29) 1.75

code 9 0.61 (0.67�0.53) 0.60 (0.67�0.52) 0.43 (0.49�0.37) 0.37 (0.45�0.28) 1.75

code 10 0.60 (0.66�0.52) 0.60 (0.67�0.52) 0.43 (0.48�0.37) 0.36 (0.44�0.27) 1.77 2.99 1.67

code 11 0.59 (0.66�0.52) 0.57 (0.64�0.49) 0.40 (0.46�0.34) 0.35 (0.43�0.27) 1.77 1.92 1.36

code 12 0.57 (0.63�0.49) 0.57 (0.65�0.49) 0.41 (0.47�0.35) 0.32 (0.40�0.24) 1.82 2.18 1.28

code 13 0.56 (0.63�0.48) 0.60 (0.67�0.52) 0.42 (0.48�0.36) 0.32 (0.40�0.24) 1.82 2.52 1.68

code 14 0.56 (0.63�0.48) 0.54 (0.62�0.45) 0.38 (0.44�0.31) 0.32 (0.40�0.23) 1.82

code 15 0.56 (0.63�0.48) 0.56 (0.63�0.47) 0.39 (0.45�0.33) 0.31 (0.39�0.23) 1.83

code 16 0.53 (0.60�0.45) 0.53 (0.61�0.44) 0.37 (0.43�0.31) 0.28 (0.36�0.20) 1.87 1.90 1.23

code 17 0.35 (0.44�0.25) 0.37 (0.46�0.27) 0.25 (0.32�0.18) 0.12 (0.20�0.06) 2.07

Yardsticks (Maximum and “Null” Correlations)

trained on 343 setc 0.93 (0.94�0.91) 0.93 (0.94�0.90) 0.77 (0.80�0.74) 0.86 (0.89�0.83) 0.82 0.95 0.48

heavy atoms 0.51 (0.58�0.42) 0.49 (0.57�0.40) 0.35 (0.41�0.28) 0.26 (0.34�0.18) 1.90

Slog P 0.46 (0.54�0.38) 0.50 (0.58�0.41) 0.34 (0.40�0.28) 0.22 (0.30�0.14) 1.95
aValues obtained through analysis of the set of 332 complexes (FXa structures removed from the CSAR-NRC set). 95% confidence interval in
parentheses, units of pKd for σ, RMSE, and Med |Err|. bMetrics appropriate for the methods that estimated absolute binding affinities, rather than
relative ranking; units are pKd.

cOne of the 17methods above, fit with many adjustable parameters specifically to reproduce the 343 complexes of the full
CSAR-NRC set.
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used. For methods that estimated affinities, the Med |Err| was
1.00�1.68 pKd/i (1.4�2.3 kcal/mol), and the RMSE ranged
from 1.51 to 2.99 pKd/i (2.1�4.1 kcal/mol). Across all 17 core
scores, the σ values for the residuals from the linear regression
were 1.43�2.07 pKd/i (1.9�2.9 kcal/mol). For FF-based, knowl-
edge-based, and empirical scoring functions, all had examples
with high and low correlation. There was no obvious advantage
to choosing one type over another.
Modest correlations were expected because of the difficulty in

predicting absolute free energies of binding, but the correlations
are just as good as those for the easier problem of relative ranking
to a single protein target.2 Spearman F and Kendall τ are
nonparametric and reflect the relative ranking across the com-
plexes, with F nearly equaling the Pearson R values (0.76�0.35),
while τ is less.
The R2 range is 0.58�0.12 with the bulk of the methods falling

between 0.4 and 0.3. Caution must be used in making a
statistically significant evaluation across the codes. Though a
95% confidence interval of R2 can be analytically determined,51

the difference in the 95% confidence intervals is not the same
as a 95% confidence in the difference. It is most appropriate to
evaluate the statistical significance between the R2 values by
examining the residuals that underlie the correlation. As shown
in Figure 1, residuals for all fits are normally distributed around
zero, so a rank-sum test is not appropriate. Instead, the difference
in the spread of the distribution can be evaluated using Levene’s
F-test for the equality of variance (calculated using the “R”
statistical package).50 This is more stringent than simply compar-
ing the confidence intervals. Codes 1 and 3 have a small overlap
in their 95% confidence intervals of R2, but the F-test of their
residuals provides a p value of 0.015, meaning that they are
statistically significant in their difference. (Levene’s tests for code
3 show it to be statistically comparable to codes 2 and 4�11, but
it is a method parametrized on the PDBbind data set,29,30 which
has a great deal of overlap with the CSAR-NRC set. A “perfor-
mance” comparison to other methods is not particularly mean-
ingful.) Levene’s test for the residuals of codes 1 and 2 gives p =
0.23; therefore, the performance of codes 1 and 2 are comparable.
F-test comparisons of codes 4�16 have p > 0.05, making them
equivalent. The very low R2 for code 17 is statistically significant
in its difference to the other core methods.
Yardsticks for Linear Regression. The equivalence of the

overwhelming majority of methods further underscores why
the benchmark exercise is not a contest. More importantly, only
codes 1�6 are statistically significant in their difference to
common “null cases.” Perhaps the most appropriate null case
for scoring functions is the correlation between affinity and the
number of nonhydrogen atoms in the ligand,70,71 which is R2 =
0.26 for this set with a 95% confidence interval of 0.34�0.18.
This is a particularly useful counter example because the additive,
pairwise potentials used in most scoring functions lead to ever
increasing scores as more atoms are added to the ligand.70�72

Another null case to consider is the correlation between the affinity
and the hydrophobicity of a ligand. It is well-known that adding
hydrophobic moieties to a ligand will increase its affinity.73�75

This is a bit of a “cheat” because one is simply disfavoring the
unbound state.We have used SlogP values76 calculated withMOE
to provide this null case (R2 = 0.22 with a 95% confidence interval
of 0.30�0.14).We should caution the reader that, unlike the count
of nonhydrogen atoms, predictions of hydrophobicity are para-
metrizedmethods just like scoring functions, except that the values
are independent of the protein target.

We should note that the highest correlation to experiment was
obtained when the method with the most adjustable parameters
was refit using the 343 CSAR-NRC complexes: R2 = 0.86, R =
0.93, F = 0.93, and τ = 0.77. This is provided in Table 1 as an
example of maximum performance possible with the data set. As
our paper on the data set noted, the experimental uncertainty
should limit the correlation to an R2 of∼0.83 when fitting to this
data without overparameterizing.3 Of the 64 total submissions, 4
others also fit to the whole data set, obtaining R2 of 0.54�0.42, R
of 0.73�0.64, F of 0.71�0.64, and τ of 0.52�0.46.
Identification of 63 BAD and 123 GOOD Complexes

by Linear Regression and σ. A complete list of the BAD and
GOOD complexes is given in the Supporting Information.
Figure 3 compares the 17 core scoring functions to the experi-
mental affinities. The red lines highlight complexes with residuals
within and outside (1σ, where any point outside is an outlier
for that individual method. The BAD complexes, defined by
having residuals outside(1σ for at least 12 of 17 methods, were
composed of 34 OVER (weak binders scored too high) and 29
UNDER (strong binders scored too low). Figure 3 shows that
everymethodmay score a few BAD complexes well (red and blue
data points between the red lines).
From the linear regression of the 332 complexes, 116 had

residuals within (1.1 pKd/i (1.5 kcal/mol) for g12 of 17
methods. However, it is best to keep the BAD structures from
influencing the linear regression and subsequent identification of
GOOD systems. Therefore, we removed the 63 BAD complexes
and refit the remaining 269 complexes for eachmethod. Based on
theg12 of 17 requirement, the number of systems with residuals
within(1.1 pKd/i increased to 123. The Supporting Information
outlines the procedure in a figure and provides a discussion of our
metrics for identifying the GOOD complexes.
Methods that Estimate Absolute Binding Affinities. Nine

of the core methods estimated binding affinities, rather than
providing simple rank scores. TheMed |Err| ranged from 1.00 to
1.68 pKd/i, and the RMSE was 1.51�2.99 pKd/i, see Table 1. The
agreement with experiment ranked the codes in the order (1, 3) >
(16, 6) > (11, 12, 4) > (13, 10). For this ranking, greater
importance was given toMed |Err| because RMSE heavily weighs
the farthest outliers. For estimates of affinities, having less error
for more complexes is more important than having outliers that
are closer but still quite far off.
A suggested null case is to calculate the RMSE and Med |Err|

while setting every score to the average experimental value
(6.07 pKd/i). For RMSE, that simply gives the standard deviation
of the data set, 2.2 pKd/i, and the Med |Err| is 1.47 pKd/i. Five of
the 9 methods have RMSE and Med |Err| less than the null case
(codes 1, 3, 16, 6, and 11). Two methods have errors less than
one null metric but nearly equal to the other (codes 12 and 4).
Twomethods have errors in excess of the null case (codes 13 and
10). Of course, all of the methods have RMSE larger than their
standard deviation from the linear regression, but it is most
pronounced for codes 10 and 13 which seem to be biased to
overscore and underscore, respectively, across the full range of
complexes (see Figure 4). Codes 3 and 16 rank very well and
have low errors, but they appear to have some bias that limits the
scoring range to roughly 4�10 pKd.
Figure 4 compares the estimated affinities with the experi-

mental values for these nine core methods, where any estimated
free energies were converted to pKd. We have identified universal
outliers much as we did through linear regression. Using RMSE
for a cutoff would parallel the previous analysis, but as stated
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Figure 3. Least-squares linear regression of the 17 core scoring functions. Black lines are the linear regression fit. Red lines indicate +σ and �σ, the
standard deviation of the residuals. Blue points are UNDER complexes which were underscored ing12 of the 17 functions. The red points are OVER
complexes which were overscored in g12 of the 17 functions.
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above, low Med |Err| is more important in this type of scoring.
OVER complexes had errors (pKd/i

experiment � pKd
score) less

than�1�Med |Err| in at least 7 of the 9 functions (78% of the
methods, a larger percentage than the 12 of 17 requirement for
the sets defined by linear regression). UNDER complexes were
determined by the errors greater than 1�Med |Err| forg7 of 9
methods. Again, structures were determined to be well scored if
their error was <1.1 pKd. This cutoff was maintained even if the
Med |Err| was less than 1.1. This lead to 36 OVER, 28 UNDER,
and 34 GOOD complexes based on Med |Err|. Unfortunately,
there is no way to estimate the statistical significance of the sets
determined in this manner, but the overwhelming majority of
complexes are also in the sets determined by linear regression.
The complexes are listed in the Supporting Information.
Comparison of the GOOD versus BAD Complexes. The

comparison of GOOD and BAD complexes below focuses only
on the sets determined through linear regression because of the
solid statistics outlined in the Introduction Section. We next
applied the concept of a null hypothesis to this portion of the
analysis and developed a null set of complexes (NULL) to
characterize a type of signal-to-noise metric. The first graph in

Figure 5 shows the distribution of affinities for the GOOD,
OVER, and UNDER sets. There is a large bias for OVER
complexes to have low affinities, UNDER complexes to have
high affinities, and GOOD complexes to lie in between. There-
fore, we defined the NULL cases based on affinities and
compared the characteristics of the signal to the inherent back-
ground. Within this framework, the signal is the comparison of
GOOD to OVER and UNDER complexes, and the NULL sets
simply compare complexes with midlevel affinity to weak binders
and tight binders, respectively. First, we divided the 332 com-
plexes into three subsets, using cutoffs ofe50 nM andg50 μM,
as shown in gray shading in Figure 5. We then removed any
UNDER complexes from the high-affinity subset, any GOOD
complexes from the midrange subset, and any OVER complexes
from the low-affinity subset. The NULL set contained 179
complexes: 65 high-, 69 mid-, 45 low-affinity complexes. We
would like to ensure that the differences in physical properties are
not simply a reflection of affinity. Obviously, those properties are
important in scoring and will be represented across the sets, but
the use of a NULL set helps us identify potential bias arising from
the definition of a difficult-to-score system.

Figure 4. Comparison of experimental and calculated values from the nine functions which predicted absolute binding affinity, listed roughly in order of
increasing Med |Err| and RMSE. Black lines represent perfect agreement. The red lines indicate +Med |Err| and �Med |Err| from the black line. The
blue circles denote complexes for whichg7 of the 9 methods have consistently underestimated the affinity by at least Med |Err|, while the red circles are
those where the affinity was overestimated.
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Our goal in this analysis is to identify the physical character-
istics of the proteins and the ligands that are most difficult to
model. However, we cannot base this determination solely on the
properties of the BAD complexes; they must be compared to the
GOOD complexes. Any properties common to both sets cannot
be the root of the problem. We need to identify characteristics of
difficult systems that are significantly different from the easy
ones. For instance, there are studies in the literature indicating
that metalloenzymes are difficult to model,77�79 and if many of
the BADs containedmetals in their binding sites, then it would be
tempting to conclude that metals are a major stumbling block for
our field. However, that would not be true if many metallo-
enzymes were also in the GOOD set. We can easily calculate

p values for differences in the distributions of various system
properties in GOOD vsOVER andGOODvsUNDER sets. This
allows us to identify statistically significant differences between
the sets. In fact, we found that there is no difference between
GOOD, OVER, or UNDER complexes with respect to metals
in the binding sites (medians of 0 for all three sets; means of
0.32 for GOOD, 0.24 for OVER, and 0.24 for UNDER; p values
of 0.85 for OVER vs GOOD and 0.79 for UNDER vs GOOD).
Of course, this does not mean that metalloenzymes are easy to
model; that would require a bias for metals in GOOD only. It was
interesting to find that there was a statistically significant bias for
metals in the binding sites of low-affinity complexes in the NULL
sets (mean of 0.62 for midrange and 1.11 for low with p = 0.03).
Having a bias in the NULL set that is not found in the OVER vs
GOOD comparison further supports the finding that metals are
not a strong influence on BAD complexes. It should be empha-
sized that this finding is for a general analysis over manymethods,
and it is still possible that an individual scoring technique could
find metals to be its greatest limitation (this was the finding of
one participating group that was unable to submit a paper to this
special issue).
Table 2 lists the most relevant physicochemical properties

of the ligands and pockets of the GOOD, UNDER, OVER, and
NULL sets. Medians and p values for each property are provided.
Physicochemical Properties of GOOD versus UNDER

Complexes. Very few statistically significant differences were
observed between properties of the GOOD and UNDER sets.
Their ligands are roughly the same size, which is in stark disagree-
ment with the NULL case. Many physicochemical properties are
proportional to size, so the fact that UNDER and GOOD ligands
are similar in size makes our key comparisons between the sets
more straightforward. However, comparisons to the NULL case
must be done cautiously because high-affinity NULLs are much
larger. Therefore, all properties were examined by the raw values
and values corrected for size by dividing by the number of ligand
heavy atoms (HA).
A striking difference between GOOD and UNDER ligands is

the fact that both have roughly the same number of rotatable
bonds (Nrot and Nrot/HA), but UNDERs have much lower
torsional energies (Etor). There is less torsional strain in the
UNDER ligands. Even when corrected for size (Etor/Nrot),
UNDERs are less strained than the high-affinity ligands in the
NULL case.
Lipinski80 and Oprea81 described various counts of calculated

properties that aid in indentifying compounds with good oral
absorption (Lipinski) and drug-like compounds (Oprea). A
count of the number of ligands in each set that violate these
empirical rules shows that UNDER ligands are more drug-like
than the GOOD ligands and the high-affinity set in the NULL
case. UNDERs are more lipophilic than GOODs (higher SlogP
and lower log S), but the difference is more pronounced in the
NULL case. The counts of hydrophobic and hydrogen-bonding
atoms are not significantly different between UNDER and
GOOD ligands, unlike the NULL case. What is most striking is
that—despite the ligands being roughly the same size with the
same number of hydrogen-bonding features—there are signifi-
cantly fewer hydrogen bonds between the protein and the ligand
in UNDER complexes. The pockets of UNDER complexes
contain fewer water molecules as well. Many of the trends for
hydrogen bonding indicate a more hydrophobic environment for
the UNDER pockets but just miss the arbitrary cutoff of p = 0.05.
There is significantly less hydrophilic buried surface area (BSA)

Figure 5. Distribution of binding affinities in the GOOD and BAD
complexes (left) are compared to those of the NULL case (right). The
NULL case is generated by the sets of all complexes with affinities
e50 nM (high), 50 nM�50 μM (middle), and g50 μM (low). This
midrange of affinities is highlighted with a wide, gray bar on both figures.
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in the UNDER pockets, which shifts the %hydrophilic and %
hydrophobic BSA. It is unclear if these trends in the pocket BSA
are a reflection of the NULL case because the GOOD and
UNDER ligands are very similar, whereas the mid- and high-
affinity sets are starkly different. In the same vein, the hydro-
phobic vdW surface per HA of the ligand is larger for UNDERs,
but it is also similar to the value obtained for the high-affinity
complexes in the NULL set.
Physicochemical Properties of GOOD versus OVER Com-

plexes. Like the UNDERs, OVER ligands are roughly the same
size as the GOOD ligands. There is a large size difference in the
NULL case, but with low-affinity ligands being much smaller
than the midrange, so again, comparisons to the NULL must be
made cautiously.
OVER complexes have two patterns in opposition to the

UNDER complexes. OVER ligands have higher Etor/Nrot,
making them more strained. Also, OVER ligands are much more
hydrophilic and soluble than GOOD (or UNDER) complexes.
While the UNDER ligands had no differences in the count of
hydrophobic and hydrophilic atoms, the OVER ligands are very
different from the GOOD. There are fewer hydrophobic atoms
and notably more oxygen atoms. On a per HA basis, there are
more protein�ligand hydrogen bonds and more bridging water.
The ligands have less hydrophobic vdW SA/HA and more polar
vdW SA/HA. For the pockets, the hydrophilic BSA increases
roughly the same degree as the UNDER complexes decrease, but
the p value is just shy of the 0.05 cutoff.
In the NULL case of mid- vs low-affinity complexes, there are

many SA properties that are significantly different, but many are
due to the large size difference in the NULL case that is not seen
in OVER vs GOOD complexes. There is one interesting trend in
the pockets of the NULL case. The low-affinity complexes have
more exposed ligands (ESA/HA). Though the OVER complexes
are more exposed than the GOOD, it is not statistically sig-
nificant nor is it as extreme as the trend in the NULLs.
Comparison of Amino Acids in the Binding Sites. Figure 6

shows the distribution of amino acids in the binding sites of
GOOD, UNDER, OVER, and NULL sets. The comparison of
UNDER to GOOD binding sites shows that the increase in
hydrophobic character of the pockets comes from a marked
increase in the aliphatic residues Val, Ile, and Leu and not a
change in the aromatic amino acids. However, large contribu-
tions from Ile and Leu are also seen in high-affinity NULLs. The
decrease in hydrogen-bonding interactions and hydrophilic BSA
for UNDER complexes comes from significant decreases in Lys,
Arg, and Ser. It is very interesting that there is a decrease in the
positively charged residues but not the presence of the acidic
amino acids. While there is a decrease in Asn and Gln, this is also
seen in the NULL set.
The comparison between physicochemical properties of

OVER and GOOD complexes revealed more hydrophilic ligands
and pockets for the OVERs. However, the only significant
difference in the composition of the binding sites is more Ser
in theOVER pockets. There are decreases inGly and Ile, but they
are in good agreement with the content of low-affinity NULL
pockets. It is possible that the similarity in the amino-acid
composition may explain why the OVERs score too well. The
ligands are the same size as GOOD ligands, not small like the
low-affinity NULL ligands, and the pockets are more similar to
GOODs than to the NULLs.
Impact on CSAR’s Future Data Sets. CSAR’s goal is to

provide better, more complete data to the computationalT
ab
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community, a widely available resource that scientists can use to
improve their docking and scoring methods. This analysis across
all participants in the first benchmark exercise is intended to shed
light on the most pressing needs of the field as a whole. It is clear

that hydrogen-bonding features should be our immediate focus,
followed by rotatable bonds.
Our comparison of GOOD and BAD complexes shows

that the field is underestimating the impact of hydrophobic

Figure 6. Distribution of amino acids in the binding sites of the GOOD and BAD complexes meeting theg12 of 17 definition (left) are compared to
those of the NULL case (right). The graph in the lower left provides the distribution of all amino acids in the full protein sequences to show that the
important trends do not result from inherent differences in composition of the proteins (the same is true of the NULLs, data not shown). Metals and
modified residues are denoted as other, “OTH”. Averages and error bars for the amino acid content were determined by bootstrapping.
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interactions and overestimating the contribution of hydrogen
bonding. This was supported by the contributions of three
participants who showed that the correlation to affinity was
unchanged or improved when hydrogen-bonding/Coulombic
interactions were removed from their chosen scoring functions
(data not shown). Scoring is usually based only on the bound
complex, but binding is an equilibrium between bound and
unbound states. A hydroxyl group can be added to a ligand to
improve its interaction with a binding site, but experiment often
shows little change in affinity.82 The added hydrogen bonding
also favors the interaction with water in the unbound state, and it
is very difficult for a binding site to provide better hydrogen
bonding thanwater. The electrostatic interactions inmost scoring
functions provide very favorable contributions to the estimated
affinity because desolvation penalties are often overlooked.
Desolvation is also an important driving force for hydrophobic
association, providing a boost that simple vdW energies cannot
model.
It is important that we provide data for many different protein

targets. The affinities of the ligands must range at least 3 orders of
magnitude so that experimental error will not limit the develop-
ment of statistically meaningful models.83 For each protein, we
want to provide data on at least three congeneric series of ligands
which provide the widest range of hydrogen-bonding features
possible for the target. This should have a higher impact
than varying size of the ligands. Of course, the data needed to
tackle rotatable bonds will likely require ligand series with a range
of sizes.
Our in-house efforts to enhance available data include iso-

thermal titration calorimetry (ITC) and the determination of
binding kinetics (www.CSARdock.org). These complementary
techniques are independent means of determining exact binding
constants, as opposed to inhibition constants or IC50s. They each
provide valuable insights into the contributions to binding:
entropy and enthalpy for calorimetry and kon and koff for kinetics.
These data are particularly important for understanding the
hydrophobic effects and hydrogen bonding implicated here.
Furthermore, ITC can be used to determine changes in proton-
ation states upon ligand binding.84 This complication is a factor
for a few of the BAD complexes. For instance, the crystal
structure 1tok85 (set 2, complex no. 96) is aspartate transferase
binding maleic acid (HOOC�HCdCH�COOH). In the bind-
ing site, both ends of the diacid are complemented by bidentate
hydrogen bonding from Arg side chains, indicating that the
ligand is doubly deprotonated. However, maleic acid can be
singly deprotonated in solution, depending on the conditions
(second pKa of maleic acid is ∼6.3).86

’CONCLUSION

The most common test to evaluate docking and scoring
involves relatively ranking compounds against a single target
because pharma tackles this practical challenge every day. How-
ever, the findings of those exercises are often system-dependent
and cannot necessarily be extrapolated. Tackling absolute free
energies of binding across diverse proteins is difficult, but we have
the potential to learn something new by posing unique chal-
lenges. We have outlined a means for statistically evaluating our
data set across multiple methods, emphasizing the insights
possible by combining the results of many participants.

These insights help us prioritize the design of new data sets
to address specific shortcomings of our methods. If the answer

could be found by conducting individual, single-target studies,
then the solutions would have been found long ago. It is
important to keep an eye on the big picture—the global land-
scape of docking and scoring—to understand what model
systems are most needed to improve the field.

Future benchmarks from CSAR will involve blind rankings of
chosen model systems, sets of data designed to address the
shortcomings we identify as a community. As always, we will
strive to provide as many systems as possible to avoid system-
dependent insights. Confirmed data on inactive compounds will
be provided. We greatly appreciate the efforts of all of our
colleagues in the pharmaceutical industry for the donation of
data for these future benchmark exercises.

’ASSOCIATED CONTENT

bS Supporting Information. Table of 10 proteins with
ligand series and the performance of each of the 17 core codes
on relative ranking, a discussion of methods and metrics for
identifying the GOOD complexes, and a complete listing of
GOOD and BAD complexes. This material is available free of
charge via the Internet at http://pubs.acs.org.
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’NOTE ADDED IN PROOF

We thank Yu Zhou of the National Institute of Biological
Sciences, Beijing for informing us that the ligand in 1x8d (set 2,
no. 121) was incorrectly protonated. It is a sugar, and one of the
hydroxyl groups was misinterpreted to be a ketone. As onemight
expect, it was indeed one of the BAD structures, improperly
scored across most methods. A corrected version is available for
download on the CSAR website (www.CSARdock.org, accessed
August 24, 2011).


