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Abstract Mycobacterium tuberculosis possesses a large number of genes of unknown or
predicted function, undermining fundamental understanding of pathogenicity and drug
susceptibility. To address this challenge, we developed a high-throughput functional genomics
approach combining inducible CRISPR-interference and image-based analyses of morphological
features and sub-cellular chromosomal localizations in the related non-pathogen, M. smegmatis.
Applying automated imaging and analysis to 263 essential gene knockdown mutants in an arrayed
library, we derive robust, quantitative descriptions of bacillary morphologies consequent on gene
silencing. Leveraging statistical-learning, we demonstrate that functionally related genes cluster by
morphotypic similarity and that this information can be used to inform investigations of gene
function. Exploiting this observation, we infer the existence of a mycobacterial restriction-
modification system, and identify filamentation as a defining mycobacterial response to histidine
starvation. Our results support the application of large-scale image-based analyses for
mycobacterial functional genomics, simultaneously establishing the utility of this approach for drug
mechanism-of-action studies.

Introduction

The acquisition of genomic data continues to exceed significantly the pace at which corresponding
functional information can be obtained (Kemble et al., 2019). This aphorism applies to Mycobacte-
rium tuberculosis, etiological agent of tuberculosis (TB) and the leading cause of death globally from
an infectious disease (WHO, 2019). Despite considerable activity (Satta et al., 2018) in the two dec-
ades subsequent to the pioneering release of the first complete mycobacterial whole-genome
sequence (Cole et al., 1998), the M. tuberculosis genome still contains a large number of genes of
unknown or hypothetical function (Mazandu and Mulder, 2012; Satta et al., 2018). Moreover, func-
tional validation is lacking even for many annotated genes, undermining fundamental understanding
of mycobacterial metabolic and cellular functions which impact pathogenicity and drug susceptibility.
There is consequently a pressing need for tractable, high-throughput approaches that can inform
mycobacterial gene function rapidly and at scale.

The most commonly applied functional genomics methods in bacteria — transposon-sequencing
(Tn-Seq) (van Opijnen and Camilli, 2013) and, increasingly, CRISPR-interference (CRISPRI)-Seq
(de Wet et al., 2018; Wang et al., 2018; Lee et al., 2019) — combine pooled mutagenesis with
next-generation sequencing, returning quantitative estimates of fitness (via relative abundance) of
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elLife digest Caused by the microorganism Mycobacterium tuberculosis, tuberculosis kills more
people around the world than any other infectious disease. M. tuberculosis is also becoming
increasingly resistant to treatments, which are particularly difficult for patients to complete. The M.
tuberculosis genome carries about four thousand genes, with several hundred being vital for
survival. Finding new ways to fight tuberculosis relies on understanding the exact role of these
essential genes, but they are difficult to study in living bacteria.

To investigate this question, de Wet et al. used the related, fast-dividing bacterial species called
M. smegmatis as a model. Microscopic imaging was combined with CRISPR-interference — a method
that temporarily disrupts expression of a specific gene — to examine how blocking an essential gene
would affect the shape of the living microorganism.

Experiments were conducted on a collection of 270 mutants, capturing single-cell data for
hundreds of thousands of live bacteria. To analyze the data, a computational pipeline was built,
which automatically clustered similar-shaped bacteria. These groups, or ‘phenoprints’, brought
together genes of known and unknown roles; this indicated that these genes participate in similar
biological networks — and, if unknown, hinted at their function.

Finally, targeting essential genes with CRISPR-interference often yielded the same shape changes
as blocking their encoded proteins with antibiotics. This suggests that phenoprints could be useful
to understand the mode of action of potential new tuberculosis treatments. When applied to M.
tuberculosis and other deadly bacteria, the approach developed by de Wet et al. might speed up
drug development.

mutants in a particular growth condition. Common to these approaches is that they report on the
capacity of the cells to produce biomass, thereby excluding other — potentially subtler — measures of
the physiological consequences of target gene disruption. To overcome this limitation, some studies
have utilized novel combinations of pooled approaches with cellular stains and sorting (Rego et al.,
2017; Baranowski et al., 2018), or with imaging and in situ sequencing (Camsund et al., 2020) to
provide alternative readouts of genetic function. However, these methods are restricted in their res-
olution and throughput.

As for many bacterial pathogens, mycobacterial functional genomics has focused primarily on the
identification of essential genes, employing Tn-based investigations under a variety of conditions
(Sassetti et al., 2003, DeJesus et al., 2017), in different strain (Carey et al., 2018) and mutant
(Kieser et al., 2015) backgrounds, and in models of infection (Sassetti and Rubin, 2003,
Rengarajan et al., 2005). The development of genetic tools for conditional knockdown mutagenesis
via targeted gene silencing (utilizing engineered hypomorphic strains carrying promoter replacement
and/or targeted protein-degradation mutations) has subsequently enabled gene-by-gene explora-
tions of essential gene function (Kim et al., 2011; Kim et al., 2013; Schnappinger and Ehrt, 2014).
However, while these approaches have ensured increasingly refined (conditional) essentiality predic-
tions (DeJesus et al., 2017), there is still an absence of whole-cell functional data for the majority of
essential genes.

Here, we couple key recent advances in mycobacterial CRISPRi (Rock et al., 2017) with quantita-
tive microscopic imaging (Ducret et al., 2016) in developing a platform enabling whole-cell charac-
terization of essential gene knockdown in the non-pathogenic model mycobacterium, M. smegmatis.
Leveraging available gene essentiality and CRISPRi guide efficacy data (de Wet et al., 2018), we
describe the construction of an arrayed collection of 276 validated CRISPRi mutants targeting essen-
tial M. smegmatis homologs of M. tuberculosis genes. Applying high-throughput quantitative imag-
ing to the arrayed library, we implement a bespoke analytic pipeline to probe essential gene
function at scale. From the ‘phenoprints’ generated via this approach, we demonstrate the potential
for preliminary assignment of gene function and illustrate the capacity to analyze metabolic and mac-
romolecular synthesis pathways using clustering analyses. Notably, these observations provide evi-
dence supporting a mycobacterial restriction-modification system, and identify filamentation as a
defining mycobacterial response to histidine starvation but not to other amino acid auxotrophies.
Finally, we demonstrate the potential utility of this approach in elucidating antimicrobial mechanism-
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of-action (MOA), supporting its potential incorporation as a complementary tool in current TB drug
discovery pipelines. Consistent with our intention to generate a community-accessible resource, all
data from the screen are made available via an interactive database (https://timdewet.shinyapps.io/
MorphotypicLanscape/).

Results

Construction of an arrayed CRISPRI library targeting essential
mycobacterial genes

We aimed to construct an arrayed library of inducible CRISPRi mutants (Figure 1A) targeting essen-
tial M. smegmatis genes (de Wet et al., 2018). To this end, we leveraged an optimized mycobacte-
rial CRISPRi system (Rock et al., 2017) and previously generated genome-wide CRISPRi-Seq data
(de Wet et al., 2018) from which we were able to identify the set of highest efficiency single-guide
(sg)RNAs targeting 294 essential M. smegmatis genes with direct M. tuberculosis homologs
(Supplementary file 1).

CRISPRi produces polar effects on downstream genes in polycistronic operons (Rock et al.,
2017). To ascertain operonic structure directly, we utilized published data on the transcriptional
landscape of wild-type M. smegmatis mc®155 during exponential growth in standard laboratory
media (Martini et al., 2019). Of our targeted set of 294 genes, 229 genes (~78%) were not located
in identified operons (Supplementary file 2). For these genes, it was expected that any knockdown
phenotype should solely reflect the impact of silencing the targeted essential gene. Of the remaining
65 genes within operons, 20 possessed downstream transcriptional start sites which would be
expected to abrogate polar effects. This left 34 genes whose genomic context was likely to compli-
cate the interpretation of any knockdown phenotype. We nevertheless considered this group of 34
genes worth pursuing given our ability to evaluate the results in the context of the corresponding
essentiality calls from Tn-Seq (Dragset et al., 2019) and in comparison to phenotypes observed for
related (or ‘shared pathway’) genes.

Following large-scale cloning, all 294 CRISPRi constructs were electroporated into an M. smegma-
tis ParB-mCherry reporter mutant (Santi and McKinney, 2015). This strain was chosen as back-
ground to enable visualization of the oriC proximate region of the chromosome during imaging
assays, thereby providing information about chromosome location dynamics and copy number as a
function of essential gene knockdown. To validate the identity and essentiality of each M. smegmatis
mutant strain, we performed Sanger sequencing of the inserted sgRNA and whole-cell spotting
assays of ATc sensitivity. Cloning was repeated for mutants which failed the validation screen. This
process yielded 276 validated CRISPRi mutants (Figure 1B, Figure 1—figure supplement 1), 93%
of the initial target set. According to a review of the literature (Supplementary file 3), approximately
90% of the strains in our library lacked whole-cell morphological characterization in either M. tuber-
culosis or M. smegmatis. Furthermore, almost 40% of the targeted genes and their protein products
had no biochemical or structural information (Supplementary file 3).

A quantitative imaging pipeline for mycobacteria

High-throughput, quantitative imaging has been productively utilized in a number of bacterial sys-
tems to rapidly characterize the impact of genetic alterations on cellular function (Peters et al.,
2016; Liu et al., 2017, Campos et al., 2018) or to determine antimicrobial MOA (Nonejuie et al.,
2013). Until very recently (Smith et al., 2020), an equivalent approach had not been described for
mycobacteria. Therefore, on initiating this study, we chose to investigate the use of imaging to phe-
notype the CRISPRi mutant library following ATc-dependent transcriptional silencing. This required
the development of tools for the extraction of large-scale quantitative data describing mycobacterial
cell morphology.

To determine the optimal duration of ATc exposure, we performed time-lapse microscopy of
knockdown mutants of three well-characterized essential genes (Videos 1 and 2) - the cell-division
mediator, ftsZ (Dziadek et al., 2003), the elongasome anchor, wag31 (Kang et al., 2008), and the
inosine monophosphate dehydrogenase, guaB2 (Singh et al., 2017; Park et al., 2017). Time-lapse
microscopy established that fully penetrant phenotypes were manifest at 18 hr post ATc exposure
for all three genes. This represents approximately 6-7 doubling times of the wild-type M. smegmatis
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Figure 1. A CRISPRI library targeting essential M. smegmatis homologs of M. tuberculosis genes. (A) An arrayed
CRISPRi library was designed to target 294 essential M. smegmatis genes. For each gene, the highest efficiency
sgRNA was identified from a previous pooled CRISPRi-Seq screen (de Wet et al., 2018) and synthesized as an
annealed oligonucleotide. Cloning was performed at scale, followed by electroporation into an M. smegmatis
ParB-mCherry reporter strain (Santi and McKinney, 2015). (B) A total of 276 sequence-verified transformants
produced a greater than twofold decrease in colony size (Kritikos et al., 2017) when spotted on 7H10 agar
containing the inducer, anhydrotetracycline (ATc) compared to the same cells spotted onto solid medium without
ATc, confirming ATc-dependent growth inhibition.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Numbers of strains used at each point of this study.

mc2155 parental strain (Logsdon et al., 2017), or a dilution factor of pre-existing protein of approxi-
mately 64 to 128 (2° - 27)-fold. For both wag31 and ftsZ mutants, lytic cell death was observable
after the 18 hr time-point. While guaB2 knockdown did not produce as distinctive a visual phenotype
as the other two genes, the formation of minicells and a decline in growth rate was evident from 18
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hr. Although this test set comprised only three

mutants, we were encouraged that, for these

essential genes with distinct cellular functions,

the 18 hr timepoint appeared suitable to ensure

sufficient knockdown and dilution of pre-existing

protein to yield a detectable phenotype while

maintaining suitable cell numbers for imaging.

— % =% We therefore proceeded to apply the same

Time (Hours) experimental conditions in phenotyping the full

library, recognizing that the pragmatic utilization

of a single, ‘terminal’ endpoint might not be opti-
mal for every mutant in the collection.

Adopting the 18 hr CRISPRi duration, we
derived a protocol for medium-throughput imag-
ing of batches of 24 strains (Figure 2A). Expo-
nential-phase cultures were treated with ATc
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Time (Hours) overnight for 18 hr prior to spotting onto 2%

agarose pads for semi-automated imaging. Phase

Video 1. Time-lapse microscopy of ftsZ and wag31 contrast and fluorescence images of ParB-
silencing by CRISPRi. mCherry localizations were captured for 263 of
https://elifesciences.org/articles/60083#video' the 276 mutant strains. Additionally, an empty

vector control strain was treated and repeatedly
imaged in the same manner. To confirm the
reproducibility of data obtained from the single-
timepoint, single-replicate imaging workflow, we selected 137 strains for re-imaging on separate
days.

Image analysis tools such as MicrobeJ (Ducret et al., 2016) or Oufti (Paintdakhi et al., 2016)
extract detailed quantitative descriptions of bacterial morphology and protein localization (Fig-
ure 2—figure supplement 1). However, automated image analysis is complicated by out-of-focus
objects, or cells that are too close together to separate adequately — a particular concern for myco-
bacteria with their proclivity to clump (Cheng et al., 2014). To overcome these complications,
machine learning-based classifiers have been utilized in E. coli for post-processing clean-up
(Campos et al., 2018).

To extract quantitative descriptions of mutant morphologies and ParB-mCherry localizations
across our imaging dataset, we utilized the ImageJ package, MicrobeJ (Ducret et al., 2016), with a
machine learning-based post-processing clean-up (Figure 2B). For this purpose, we trained an Aver-
aged Neural Network with 22,936 manually classified objects, sampled from across our imaging
dataset. Receiver Operator Characteristic (ROC) analysis of our classifier produced an Area Under
the Curve (AUC) of 0.952 when applied to a reserved test set (Figure 2C). Our curated dataset con-
tains morphological descriptions for 163559 cells across all 263 imaged mutant and empty vector
control strains, with a mean of 568 cells per mutant (ranging from a minimum of 24 to a maximum of
3861 cells). Reassuringly, when comparing the
mean cell lengths of the 137 replica-imaged
knockdown mutants following ATc induction, the
imaging and analytic pipeline showed high
reproducibility (Figure 2D, r = 0.88, Pearson’s).

An atlas of morphological changes
consequent on essential gene

silencing
There are relatively few published descriptions
T rewean of the morphological impacts of essential gene

silencing (Supplementary file 3). We aimed to
Video 2. Time-lapse microscopy of guaB2silencing by ~ Use our extracted imaging data to generate a
CRISPRi. comprehensive repository of morphological
https://elifesciences.org/articles/60083#video2 changes following CRISPRi-mediated essential
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Figure 2. A high-throughput, quantitative CRISPRi-imaging pipeline for mycobacteria. (A) Cells were exposed to ATc inducer for 18 hr before spotting
onto large-format agarose pads for semi-automated imaging. (B) Image processing in MicrobeJ (Ducret et al., 2016) was combined with a manually

trained Averaged Neural Network classifier to extract quantitative descriptions of bacterial morphologies and ParB protein localizations for 163559 cells
across 263 gene-specific CRISPRi mutants and 27 empty vector controls. (C) Classifier performance was measured by Receiver Operating Characteristic

Figure 2 continued on next page

de Wet et al. eLife 2020;9:e60083. DOI: https://doi.org/10.7554/eLife.60083

6 of 36


https://doi.org/10.7554/eLife.60083

eLife

Figure 2 continued

Genetics and Genomics | Microbiology and Infectious Disease

(ROC) Area Under the Curve (AUC), returning good performance metrics. (D) Mean cell lengths were compared for 137 strains imaged as biological
replicates on two separate occasions, and showed high reproducibility (r = 0.88, Pearson's).
The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Features extracted by MicrobelJ (Ducret et al., 2016) and utilized in downstream analysis.
Figure supplement 2. Consistency of phenotypes with varying sgRNAs.
Figure supplement 3. Comparisons of cell classifier models.

gene knockdown in M. smegmatis. For each gene, a nearest-neighbor approach was applied to
identify the representative morphotype which was in turn incorporated into an atlas of morphologi-
cal changes consequent on essential gene silencing (Figure 3).

Visual inspection of the atlas revealed distinctive alterations in morphology in a large number of
knockdown mutants. Moreover, it appeared that silencing certain cellular functions or pathways pro-
duced consistent morphological changes. In general, the responses could be broadly categorized
into either elongation — occasionally with bulging and/or branching — or shortening, with a variety of
alterations in cell width and roundness. For example, components of DNA metabolism (dna- prefix
genes), the divisome (fts- genes), and protein translation (rpl- and rps- genes) produced cellular elon-
gation. To our surprise, a filamentation response was also observed for components of the histidine
biosynthesis pathway (his- genes), but not for other amino acid biosynthesis pathways. In contrast,
components of cell-wall homeostasis - including peptidoglycan (ponA1), arabinogalactan (aftA) and
mycolic acid synthesis (inhA and mmpL3) — were associated with distinctive shortening of cells, often
in combination with bulging.

To quantitate these observations, we adapted an approach developed for E. coli (Campos et al.,
2018). Single-cell data were reduced to normalized, gene-level descriptors of morphology. For each
mutant, the mean and coefficient of variation (CV) of each morphological feature were extracted and
normalized to the distribution of empty vector control samples with a Z-score transformation (Fig-
ure 4—figure supplement 1A). For a particular mutant and feature, the Z-score reflects how many
standard deviations the mutant feature is away from the mean of the control strains. That is, it pro-
vides a measure of the extent to which transcriptional inhibition of the targeted essential gene
impacts a specific morphological characteristic. In total, 206 (78%) strains returned at least one
Z-score >3, or <-3. Certain gross changes in morphology were more frequently observed than others
(Figure 4—figure supplement 1B). For example, many mutants exhibited marked increases in mean
curvature, roundness and feret (the calliper diameter). Conversely, few mutants exhibited major
alterations in the number of ParB foci (maxima) per cell, suggesting that the number of replication
origins (oriCs) per cell — and, by implication, ploidy — was maintained even under essential gene
knockdown.

To test for associations between morphological changes and functional classes of genes, we
extracted clusters of orthologous groups (COG) annotations for all 276 essential genes before test-
ing for statistical enrichment with changes in morphology. For each morphological feature, we
tested for COG enrichment of the mutants with Z-scores > 3 or<-3. This analysis revealed that statis-
tical enrichments were largely consistent with visual inspection of the cell atlas (Figure 4—figure
supplement 2). For example, the filamentation phenotype of fts-, rpl- and dna- genes was reflected
in the enrichment of cell cycle control (D), Translation (J) and DNA replication and repair (L) COGs
with increases in length (means and CVs).

The morphotypic landscape of essential gene silencing in mycobacteria

In a complementary approach, we visualized the mean population Z-scores for key morphological
features by COG (Figure 4). Again, consistent with the cell atlas and enrichment results, specific
COGs (Supplementary file 3) produced distinct morphological signatures (or ‘phenoprints’).
Together, these results highlighted the utility of multi-parameter morphological descriptors for char-
acterizing mutants and, moreover, signaled the potential to link genes according to whole-cell phe-
notype independent of known or predicted (annotated) function. Based on prior cytological profiling
studies in eukaryotic (Caicedo et al., 2017) and prokaryotic (Nonejuie et al., 2013, Huang, 2015;
Campos et al., 2018) systems, we applied an unsupervised learning approach that combined
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Figure 3. An atlas of morphological changes consequent on essential gene silencing in M. smegmatis. Following imaging and extraction of quantitative
data on cellular morphology, an approximate nearest-neighbor approach was utilized to identify a single representative cell which was closest to the
mean values of the measured morphological features for each specific (clonal) mutant population. Representative cell contours and ParB localization
patterns were extracted from MicrobeJ and utilized to assemble the atlas of morphological changes. Cells are grouped and colored according to
downstream clustering (Figure 5).
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Figure 4. Essential gene silencing produces distinctive phenoprints of genetic function. Mean Z-scores were calculated and visualized for all genes
assigned to a particular COG, highlighting distinctive changes in morphology. The dotted line indicates a Z-score of 3. Selected features with mean
Z-scores > 3 are labeled.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. The morphological impact of essential gene silencing.
Figure supplement 2. COG enrichment identifies associations between genetic function and morphological changes.
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Figure 5. Dimensionality reduction reveals clusters of morphological change that associate with function. (A) A combination of UMAP dimensionality
reduction (Lel et al., 2018) and hdbscan clustering (Lel et al., 2017) was applied to processed morphological data. Parameters were optimized to
ensure a uniform clustering of control strains (MinPts = 12). A consistent seed was used for visualization. (B) The mean Z-Scores of each cluster
highlights the dominant features determining clustering. (C) Clusters are enriched for certain COGs. (D) Overlaid Z-score data for mean aspect ratio,

Figure 5 continued on next page
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length, maxima, and width demonstrate heterogeneity within clusters. (E) and (F) An adapted SAFE (Baryshnikova, 2016) approach demonstrates that
functionally enriched sub-clusters are present in UMAP space.
The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Distances in UMAP space can reflect relationships of biological relevance.

dimensionality reduction with clustering of our multidimensional dataset. For this, we utilized uni-
form manifold approximation and projection (UMAP) (Lel et al., 2018) and optimized hyper-parame-
ters to produce consistent visual clusters of our control strains in combination with density-based
clustering using hdbscan (Lel et al., 2017; Figure 5).

This process produced a two-dimensional UMAP space consisting of three reproducible clusters
(Figure 5A). The scale of different morphological features varied across the 2-dimensional space
with visible patterns, such as regions of decreased length, or increased width (Figure 5D). To
explore the three clusters, we tested for COG enrichment and visualized mean feature Z-scores for
each cluster (Figure 5B and C). Cluster 1, which was enriched for lipid metabolism (I) and cell-wall
metabolism (M), was associated with increases in width and curvature and decreases in area and
aspect ratio. Conversely, Cluster 3, which was associated with translation (J) and DNA replication
and repair (L), was characterized by increases in area and length. Cluster 2, which contained the con-
trol, non-targeting strains, was enriched for energy production and conversion (C) and nucleotide
metabolism (F), highlighting the comparatively small impact that silencing of these genes has on cel-
lular morphology.

To analyze further the spatial arrangements within the three large clusters, and across UMAP
space, we adapted a spatial analysis of functional enrichment (SAFE) approach (Baryshnikova, 2016;
Campos et al., 2018) to identify sub-clusters of either COG or KEGG enrichment. This yielded dis-
tinct sub-clusters that were not originally apparent (Figure 5E and F). For example, Cluster 1 con-
tained regions enriched for either lipid metabolism (I) or the cell wall (M), while cluster three could
be subdivided into a region enriched for DNA metabolism (L), ribosomal genes (K) and genes
involved in aminoacyl-tRNA biosynthesis (by KEGG enrichment). Using this approach, even cluster
two could be subdivided into functionally enriched regions despite the apparent similarity of these
strains (on visual inspection) to wild-type morphologies.

As UMAP maintains the essential topological structure of data, we wondered if biological connec-
tions would be reflected in the distances between genes in UMAP space. Given the acknowledged
propensity of CRISPRi to produce polar effects (Rock et al., 2017), we predicted that these would
be reflected in the Euclidean distance between operonic genes. Consistent with our hypothesis,
genes in verified operons (Martini et al., 2019) were located more proximally than random pairs of
genes (Figure 5—figure supplement 1). Similarly, predicted protein—protein interaction pairs
(Cong et al., 2019) were found to be non-randomly proximate (Figure 5—figure supplement 1).

To demonstrate further the utility of UMAP space for understanding the link between gene func-
tion and morphology, we performed more granular analysis of manually annotated functional group-
ings. Again, consistent clustering of many genes with similar biological functions was observed
(Figure 6), a striking finding given that the close associations in UMAP space were driven by similari-
ties in cytological characteristics (phenoprints) independent of annotated gene function.

The observation that subtle morphological changes appeared to associate with particular genetic
functions implied the potential to utilize the pipeline and mutant library to elucidate biological rela-
tionships and as an additional tool in MOA studies. Four examples are presented below which illus-
trate the application of this approach to explore (i) putative genetic function, (ii) pathway-specific
phenotypes, (iii) macromolecular biosynthetic phenotypes, and (iv) chemical-genetic approaches to
antimycobacterial MOA identification.

Exploring gene function: a possible mycobacterial restriction-
modification system

Morphological profiling has the capacity to identify mutants with unexpected phenotypes, providing
a preliminary phenotypic characterization which can guide focused downstream investigations
toward assigning gene function. An example illustrating this possibility is MSMEG_3213, which is
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Figure 6. Functionally related genes are frequently found associated in UMAP space. Genes were manually classified following a review of the

literature (Supplementary file 3) and visualized in UMAP space. Numbers represent M. smegmatis accession numbers.
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annotated as a putative DNA methylase but lacks biological validation. The M. tuberculosis homo-
log, Rv3263, has been implicated in bacillary fitness during hypoxia (Shell et al., 2013) but, unlike its
M. smegmatis homolog, is not included in the essential gene set in the pathogen (DeJesus et al.,
2017). In our imaging pipeline, MSMEG_3213 produced a marked filamentation phenotype, cluster-
ing with components of DNA replication and repair in UMAP space (Figure 7A and B). Utilizing the
ParB-mCherry marker, we noted a significant disturbance in normal cell-cycle progression, consistent
with the interpretation that knockdown of MSMEG_3213 disrupted DNA replication (Figure 7C).
Moreover, Nanopore-based RNA-Seq confirmed the specificity of MSMEG_3213 knockdown, elimi-
nating potential off-target effects on downstream or upstream genes (Figure 7D). Notably, the
whole-genome transcriptional profile on MSMEG_3213 knockdown showed marked overlap with the
well-characterized DNA damage (SOS) regulon (Davis et al., 2002; Boshoff et al., 2003) induced by
treatment with genotoxins such as the DNA crosslinking agent, mitomycin C (MMC, Miiller et al.,
2018; Figure 7E).

Based on this intriguing observation, we hypothesized that, since depletion of the methylase
appeared to trigger a DNA damage response, MSMEG_3213 might be part of a restriction-modifica-
tion (R-M) system (Loenen et al., 2014). Following an extensive bioinformatic search, this conclusion
gained further credence by the observation that REBASE (Roberts et al., 2015) lists MSMEG_3213
as putative DNA methylase of a type Il R-M system, with MSMEG_3214 the associated restriction
endonuclease (Figure 7F). We reasoned that, if MSMEG_3213-MSMEG_3214 does constitute a cryp-
tic R-M system, knockdown of MSMEG_3214 should render MSMEG_3213 non-essential. To test
this, a dual-targeting CRISPRi construct was generated to enable simultaneous silencing of both
genes. Knockdown of MSMEG_3214 alone produced no growth phenotype whereas dual silencing
of MSMEG_3213 and MSMEG_3214 alleviated the lethal impact of MSMEG_3213 depletion
(Figure 7G). Further biochemical and/or functional characterization is required before MSMEG_3213
can be definitively assigned as methylase; however, the evidence derived here from morphological
profiling, transcriptomic profiling and combinatorial CRISPRi strongly support the identification of a
predicted Type Il R-M system in M. smegmatis.

Other examples supporting the utility of morphological profiling to inform single-gene functional
analyses arose during the course of this work (Figure 7—figure supplement 1). For example, the C.
glutamicum homolog of MSMEG_0317 is required for lipomannan maturation and lipoarabino-
mannan (LM/LAM) synthesis (Cashmore et al., 2017). We observed that MSMEG_0317 clustered
closely with genes involved in arabinogalactan synthesis and localized to the cell wall (Figure 7—fig-
ure supplement 1B). It was pleasing, therefore, when a separate study emerged suggesting that
MSMEG_0317 was involved in the transport of LM/LAM (Gupta et al., 2019). In another example,
the transcriptional regulator, whiA, which is involved in sporulation in Streptomyces (Bush et al.,
2013), appears to play a key role in the mycobacterial cell cycle, clustering with other components
of cell division (Figure 7—figure supplement 1C). Furthermore, MSMEG_6276 - a putative mur
ligase — clusters closely with the peptidoglycan synthesis protein, mviN (Gee et al., 2012), and
exhibits strong homology to murT/gatD from S. pneumoniae (Morlot et al., 2018; Figure 7—figure
supplement 1D). In combination, these additional examples support the utility of image-based pro-
filing for informing or validating hypothetical or predicted gene function - particularly those involved
in cell-wall metabolism or DNA metabolism and cell-cycle regulation.

Identifying pathway-specific phenotypes: histidine auxotroph
filamentation

A feature of the library is that many metabolic pathways are represented by multiple mutants, allow-
ing for pathway-level analyses of metabolic function. M. smegmatis possesses a full complement of
genes for the biosynthesis of the essential amino acid, L-histidine (Figure 8A and B). In the absence
of histidine supplementation, the majority of the his- prefix genes are predicted to be essential, but
most have not been validated individually (Lunardi et al., 2013). Surprisingly, CRISPRi-mediated
knockdown of histidine biosynthesis genes produced a filamentation phenotype that was tightly clus-
tered in UMAP space (Figure 8C) and, among all the amino acid knockdowns, appeared unique to
histidine. The possibility existed that the operonic arrangement of some genes in the pathway (hisB,
hisC1, hisH, hisA, hisF, hisl; hisk, hisG) had confounded interpretation of the CRISPRi phenoprints as
a result of polar effects. However, our transcriptional data and those of others (Martini et al., 2019)
appeared to eliminate this possibility: hisD, hisC, hisB, hisH and hisF possess nested promoters and
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Figure 7. M. smegmatis encodes a previously undescribed restriction-modification system. (A) MSMEG_3213, a putative DNA methylase, is associated
with genes involved in DNA replication and repair in UMAP space. (B) Knockdown of MSMEG_3213 leads to cellular filamentation. The morphological
nearest neighbors are dnaE1, pyrG and dnaA. (C) Consensus heatmaps of ParB-mCherry localization demonstrate that oriC positioning is disrupted in
the MSMEG_3213 knockdown mutant. (D) Nanopore-based RNA-Seq confirmed that knockdown of MSMEG_3213 was specific to the targeted sgRNA

Figure 7 continued on next page
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position. (E) MSMEG_3213 produces a transcriptional response comparable to treatment with the DNA damaging agent, mitomycin C (MMC). (F)
MSMEG_3213 is located upstream of MSMEG_3214, a gene with weak homology, according to HHpred (Hildebrand et al., 2009), to an endonuclease
subunit (REBASE: 3098 BbvCl). (G) Lethality of MSMEG_3213 knockdown is suppressed by simultaneous CRISPRi-mediated knockdown of

MSMEG_3214.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Morphological profiling informs gene function.

are therefore likely to be impervious to CRISPRi-mediated silencing of upstream genes. Moreover,
CRISPRi knockdown of hisG and hisS, which are distally located in the M. smegmatis genome, pro-
duced the same phenotype, suggesting that filamentation might be a consistent, and previously
unreported, consequence of disruptions to histidine biosynthesis.

To test the specificity of this phenotype, we supplemented ATc-containing media with L-histidine.
The reversal of the growth inhibitory phenotype verified all his knockdowns as histidine auxotrophs,
with the notable exceptions of hisA and hisS. Previous reports indicate that hisA likely encodes a
bifunctional HisA/TrpF enzyme (Due et al., 2011). Consistent with this annotation, growth of the
hisA CRISPRi mutant was rescued in medium supplemented with tryptophan (Figure 8D). Intrigu-
ingly, for all his knockdowns other than hisS (encoding the histidine tRNA synthetase), histidine sup-
plementation reversed the filamentation phenotype (Figure 8E). This was also the case for hisA,
even when the lack of tryptophan impaired growth. Morphologically, the filaments observed under
histidine starvation differ from those which result from depletion of components of the divisome:
that is, the his mutants display minimal branching. Moreover, staining of peptidoglycan with the
D-alanine analogue, NADA (Botella et al., 2017), failed to resolve any clear septa (Figure 8—figure
supplement 1). The mechanism underlying the filamentation response to histidine deficiency
remains unclear, but likely reflects translation defects resulting from uncharged tRNAs. Further work
is required to establish this definitively, but the observations reported here nevertheless support the
potential utility of the CRISPRi-imaging pipeline to discover, and then validate, pathway-specific
phenotypes.

Validating macromolecular pathway phenotypes: morphotypic
consequences of disrupting mycolic acid biosynthesis
Mycobacteria possess a multilayered cell envelope, the outer mycolic acid layer of which is synthe-
sized via a well-characterized pathway containing a number of established and experimental drug
targets (Jankute et al., 2015; Figure 9A). CRISPRi-mediated inhibition of the components of this
pathway produced consistent changes in cellular morphology (Figure 9B and C), with the majority
of genes implicated in mycolic acid synthesis clustering tightly together in 2-dimensional UMAP
space (Figure 9B). Notably, the fact that clustering was observed despite the location of these
genes throughout the chromosome appeared to eliminate polar effects as a potential confounder.
By superimposing our imaging results and quantitative analyses of morphology on the mycolic
acid biosynthetic pathway, we noted highly analogous morphotypes irrespective of the gene tar-
geted for silencing (Figure 9C and D). It was also evident that knockdown of components involved
in early steps produced similar results to inhibition of the final step, involving the flippase, MmpL3
(Xu et al., 2017, Su et al., 2019). Given the consistency observed following genetic disruption of
mycolic acid synthesis, we wondered whether chemical inhibition would produce a comparable mor-
phological change. To test this possibility, we treated cells with isoniazid (INH), a frontline anti-TB
drug which inhibits the essential enoyl-ACP reductase, InhA (Timmins and Deretic, 2006;
Vilchéze and Jacobs, 2007). Exposure to 1X minimum inhibitory concentration (MICgo) INH trig-
gered increases in cell width and morphological alterations which were closely similar to those pro-
duced by genetic silencing of inhA (Figure 9C and D). This was an important observation since it
suggested the possibility that, by analogy with bacterial cytological profiling (Nonejuie et al., 2013;
Nonejuie et al., 2016), drug-induced morphological changes could be utilized to inform antimyco-
bacterial MOA more broadly; that is, by exploiting the CRISPRi-imaging database of correlated
genotype-phenotype connections with chemical (drug-induced) phenotype.
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Figure 8. Disrupting components of histidine biosynthesis produces a filamentation response. (A) Histidine biosynthetic genes are located throughout
the chromosome. (B) Histidine is synthesized through a multi-step pathway (KEGG). (C) Cluster analysis demonstrated a consistent filamentation
phenotype associated with genes involved in histidine synthesis. (D) Growth could be rescued with histidine supplementation (normalized to non-
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induced mutants). As HisA has an additional role in tryptophan synthesis, full rescue required simultaneous tryptophan supplementation (50 ug/ml). (E)
The addition of histidine to ATc-containing growth media rescued the filamentation phenotype in all mutants other than hisS.
The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Absence of septum formation on histidine depletion.

CRISPRi phenoprinting for antimycobacterial MOA determination

To ascertain if the CRISPRi dataset could be used to determine antimycobacterial MOA, we investi-
gated a panel of compounds from different classes that inhibit various essential mycobacterial pro-
cesses (Figure 10A). For proof-of-concept assays, the initial selection was limited to five clinically
used anti-TB drugs: the first-line agents, INH and ethambutol (EMB), which disrupt cell-wall biosyn-
thesis (Abrahams and Besra, 2018); RIF, which binds the DNA-dependent RNA polymerase subunit,
RpoB (Koch et al., 2014); the second-line fluoroquinolone, moxifloxacin (MOXI), which inhibits DNA
gyrase (Kumar et al., 2014) and bedaquiline (BDQ), an inhibitor of mycobacterial ATP biosynthesis
recently approved for the treatment of MDR-TB (Sarathy et al., 2019). Thereafter, the panel was
expanded to include an additional 12 known and experimental antimycobacterial compounds (Fig-
ure 10—figure supplements 1-3).

Morphotypes observed following drug treatment were often positioned in regions of UMAP
space consistent with their known MOAs. For example, cells exposed to BDQ at 2X and 4X MIC clus-
tered tightly with components of the mycobacterial ATP synthase and mapped to a region enriched
for genes involved in energy metabolism (Figure 10A); the nearest neighbor for both 2X and 4X
BDQ-treated cells was atpA (Figure 10B). The cell-wall targeting compounds similarly produced
closely correlating profiles: EMB-treated cells clustered tightly together, irrespective of applied con-
centration, and were positioned in lipid metabolism-enriched UMAP space. The nearest neighbor at
2X and 4X MIC was pks16, a gene involved in mycolic acid synthesis; moreover, consistent with inhi-
bition of arabinogalactan synthesis, aftA, ubiA, dprE1, gifT2 were proximal to the EMB-exposed cells
at all three applied drug concentrations. INH-treated cells were situated in lipid metabolism-
enriched space at 1X MIC but, at higher concentrations, fell in a region associated with energy pro-
duction and conversion. Notably, however, the nearest neighbor at 4X MIC was fabD, a component
of mycolic acid synthesis. In contrast, compounds targeting peptidoglycan, including vancomycin
and D-cycloserine, did not yield definitive profiles (Figure 10—figure supplements 1-3). Manual
inspection of the data indicated that this was probably due to the induction of lysis, highlighting a
limitation inherent in applying a single, 18 hr endpoint for analysis of all drug treatments.

Compounds targeting DNA replication generally produced filamentation, and clustered accord-
ingly. Notably, MOXI-treated cells did not co-localize with gyrA and gyrB knockdowns (the DNA-gyr-
ase subunits, and targets of MOXI) in UMAP space and were instead associated with DNA
metabolism, an observation common to all fluoroquinolones. In contrast, novobiocin (NVB), a gyrase
B inhibitor (Chatterji et al., 2001), did not trigger filamentation, instead positioning closely with
gyrA and gyrB genetic knockdowns. Like the fluoroquinolones, the experimental agents nargenicin
(putative DnaE1 inhibitor; Painter et al., 2015) and griselimycin (which binds to the B-clamp, DnaN;
Kling et al., 2015) were associated with DNA metabolism pathways, in this case mapping much
closer to their known or predicted targets.

While compounds disrupting DNA replication and cell envelope biogenesis were readily associ-
ated with a target class, this was not universally true for drugs with other MOAs. At 4X MIC, RIF was
associated with rpoB. However, at the two lower concentrations, RIF-treated cells were positioned
at dramatically different locations in UMAP space.

It was noticeable, too, that compounds targeting mycobacterial protein synthesis — for example,
linezolid (Leach et al., 2011), streptomycin or kanamycin (Riska et al., 2000) — similarly failed to pro-
duce responses analogous to their cognate gene knockdowns. Like RNA polymerase, the protein
translation machinery operates as a large, multi-protein complex, perhaps exposing a deficiency in
this approach when applied to the macromolecular machines responsible for transcription and trans-
lation. Overall, however, the results supported the utility of CRISPRi-enabled cytological profiling to
inform compound MOA, especially for agents targeting DNA replication, cell-wall biosynthesis, and
energy metabolism.
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Figure 9. Genetic or chemical inhibition of mycolic acid biosynthesis produces a distinctive change in bacillary morphology. (A) The multi-step pathway
of mycolic acid biosynthesis. (B) Components of mycolic acid synthesis, visualized in UMAP space, cluster closely and are morphologically similar (C)

analogous phenoprint to silencing of inhA, the validated target of INH (Vilchéze and Jacobs, 2007)

with overlapping phenoprints (D). Exposure to the frontline anti-TB drug, isoniazid (INH), at 1X MIC produces a similar morphological change and an
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Figure 10. Phenoprinting can inform antimycobacterial MOA. Cells were exposed to varying supra-MIC concentrations (1X, 2X, 4X MIC) of the selected
antimycobacterial compounds for 18 hr, imaged, and analyzed using the pipeline developed for CRISPRi-imaging. The resulting profiles were visualized
in CRISPRi-generated UMAP space (A), and the morphological nearest-neighbor identified (B). Known targets were simultaneously visualized for

comparative purposes. BDQ, bedaquiline; EMB, ethambutol; INH, isoniazid; RIF, rifampicin; MOXI, moxifloxacin.

Figure 10 continued on next page
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The online version of this article includes the following figure supplement(s) for figure 10:

Figure supplement 1. Phenoprinting can inform antimicrobial MOA.
Figure supplement 2. Phenoprinting can inform antimicrobial MOA.
Figure supplement 3. Phenoprinting can inform antimicrobial MOA.

Discussion

We have described the construction and validation of an arrayed library of CRISPRi mutants target-
ing essential M. smegmatis homologs of M. tuberculosis genes. By coupling the library with a high-
throughput imaging pipeline, we confirmed the utility of quantitative methodologies to describe
morphological changes and, moreover, established the capacity to harness morphotypic information
to construct a database of cytological phenotypes, or mycobacterial phenoprints. Then, in demon-
strating the potential utility of the resulting phenoprint atlas, we presented four examples illustrating
its use in enabling preliminary characterization of single-gene function (DNA methylase), the identifi-
cation of distinct morphotypes associated with biosynthetic (histidine) and macromolecular (mycolic
acid) pathway disruptions, and the potential to exploit CRISPRi morphotypes as a chemical-genetic
tool to illuminate antimycobacterial MOA determination.

Advances in imaging technologies (Camsund et al., 2020) and sample preparation (Shi et al.,
2017), together with the availability of software tools such as MicrobeJ (Ducret et al., 2016), have
enabled the application of imaging in bacterial systems biology (Huang, 2015). Our pipeline was
optimized for medium-throughput imaging of mycobacteria; however, increasing the throughput of
imaging, for example with the Strain Library Imaging Protocol (Shi et al., 2017), would be advanta-
geous for larger collections of mutants. To ensure completeness in our online ‘Morphotypic Land-
scape’ database, we plan in future to expand the library to include all 423 predicted essential M.
smegmatis genes from our pooled screening data (de Wet et al., 2018). There appears to be signifi-
cant value, too, in establishing an equivalent library in M. tuberculosis, a challenging undertaking but
one which would benefit from the lessons learnt from this study. In this context, we note with inter-
est key recent advances in mycobacterial cytological profiling (Smith et al., 2020) which suggest the
potential to combine these complementary approaches in applying CRISPRi-imaging to M.
tuberculosis.

In developing our analytical pipeline, we relied heavily on the pioneering work of Jacobs-Wagner
and colleagues (Campos et al., 2018). In particular, we adapted a machine learning-based cleanup
that leverages the power of MicrobeJ but adds a Mycobacterium-specific post-processing step. This
classifier should have downstream utility for future imaging studies in M. smegmatis but will require
retraining if utilized for M. tuberculosis. For analysis, we applied an unsupervised learning approach
that combined UMAP dimensionality reduction with density-based clustering of our multidimensional
dataset. UMAP is a generally applicable algorithm, but has enjoyed especially rapid uptake for the
visualization of single-cell sequencing results (Becht et al., 2018). In our pipeline, we also used
UMAP for data visualization and as a preprocessing step prior to the application of density-based
clustering approaches, analogous to the use of t-SNE by Jacobs-Wagner and colleagues
(Campos et al., 2018). While non-linear dimensionality reduction techniques must be used with cau-
tion, our extensive validation supports the utility of the approach. Additionally, our dataset should
be amenable to further analysis using alternative analytic approaches, including deep-learning
(von Chamier et al., 2019).

Using data obtained from our CRISPRi screen, we generated a quantitative atlas of morphological
changes associated with essential gene silencing in M. smegmatis. For ~90% of the strains in our
library, no prior morphological data were available at the outset of the study. Moreover, approxi-
mately 40% of the genes and their protein products had not been characterized at all, either func-
tionally (biochemically or microbiologically) or structurally. It was notable, therefore, that almost 78%
of the essential genes assayed here resulted in at least one dramatically aberrant morphological fea-
ture on CRISPRi knockdown. This number exceeds the ~60% of B. subtilis mutants that produce clear
terminal phenotypes (Peters et al., 2016) and may reflect increased sensitivity of our analytic
approach and/or the differential compositions of the respective libraries. However, given that only
20% of the non-essential E. coli Keio Collection displays significant morphological changes
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(Campos et al., 2018), it is evident that silencing of essential genes is more likely to disrupt core
processes affecting maintenance of general bacillary morphology.

A number of CRISPRi mutants produced morphological alterations that were unexpected. For
example, while filamentation is a well-described phenomenon consequent on interference in cell-
division (Dziadek et al., 2003, Campos et al., 2018, Wu et al., 2018), DNA replication
(Greendyke et al., 2002; Justice et al., 2008) and depletion of ClpP protease components
(Li et al., 2010), it is not typically associated with genes involved in protein synthesis or export. Nev-
ertheless, we recorded filamentation responses following silencing of ribosomal subunits, the Sec
translocase, and histidine biosynthesis. These phenotypes contrast with B. subtilis where filamenta-
tion is not observed on silencing of the corresponding genes (Peters et al., 2016). In Salmonella
typhimurium (Murray and Hartman, 1972) and E. coli (Frandsen and D'Ari, 1993), mutants overex-
pressing hisH and hisF are known to produce filaments, possibly through a scarcity of PBP3 sub-
strates required for cell division (Cano et al., 1998). To our knowledge, though, filamentation of
histidine auxotrophs has not been reported in any bacterial species, including mycobacteria. The
mechanism underlying the filamentation phenotype is unclear, though potentially attributable to
interference in cell division through an unknown mechanism. Moreover, the fact that this phenotype
manifests on knockdown of the L-histidine-tRNA ligase, hisS, suggests the involvement of a regula-
tory mechanism dependent on the presence of his-tRNAs (Raina and Ibba, 2014). However, further
work is required to explain this observation.

While interfering in cell envelope biogenesis might be expected to cause aberrations in morphol-
ogy, the increases in mycobacterial cell width observed on silencing essential steps in mycolic acid
synthesis have limited precedent in the literature. One example is the association of temperature-
sensitive mutants of inhA with analogous phenotypes (Vilchéze et al., 2000). The phenotypic consis-
tency across the pathway was nevertheless surprising; again, however, the precise mechanism
remains elusive. It is possible that the cell-wall synthetic machinery acts together in a spatiotempo-
rally related complex that requires the presence of all proteins for function. It might be instructive,
for example, that fluorescently-tagged versions of InhA and MabA co-localize (Vilchéze et al., 2000)
and may be present in the same specialized membrane domain (Hayashi et al., 2018). Knockdown
of individual components of the pathway might therefore impact multiple protein—protein interac-
tions, collapsing numerous components of cell-wall synthesis to produce the same phenotypic out-
come. Alternatively, it is possible that biosynthetic precursors accumulate, producing consistent
alterations in cell structure. A further possibility is that mycolic acids might play a more important
structural role in the maintenance of mycobacterial cell width — an intriguing prospect considering
the absence of the prokaryotic actin homolog, MreB, in mycobacteria (Singh et al., 2010). Further
work is needed to resolve these possibilities and should benefit from the collection of CRISPRi
mutants described here.

In general, the CRISPRi-induced morphological changes appeared consistent within pathways and
following exposure to the various anti-mycobacterial drugs. This was especially true of genes
involved in DNA replication, cell division, cell-wall metabolism, and energy metabolism - a property
which allowed us to leverage the platform to assign functional predictions for a number of genes,
and to infer antimicrobial MOA. An example is MSMEG_3213, which morphological profiling, tran-
scriptomic profiling and combinatorial CRISPRi identified as methylase of a predicted Type Il R-M
system in M. smegmatis. The biological function of this system is currently unclear; however, one
practical implication is that, if involved as expected in intrinsic phage defense, it might inadvertently
eliminate phages, which could be otherwise useful for clinically relevant mycobacteria such as M.
tuberculosis or M. abscessus (Dedrick et al., 2019). It is tempting to consider, too, if the differential
complement of R-M systems among mycobacteria might determine the apparent species-selectivity
of some mycobacteriophages — for example, DS6A (Mayer et al., 2016) — and whether the
MSMEG_3213 methylase, which is conserved in M. tuberculosis, functions in cell-cycle regulation
(Wion and Casadestis, 2006) in addition to its role in self-defense.

Cytological profiling has been extensively exploited to determine antimicrobial MOA
(Nonejuie et al., 2013; Huang, 2015; Nonejuie et al., 2016), with a very recent report providing
the first evidence of its utility in mycobacteria (Smith et al., 2020). To our knowledge, all approaches
have consistently utilized whole-cell drug treatment to create profiles of known mechanisms. In this
work, we instead applied a genetic approach, generating a database of phenoprints based on essen-
tial gene knockdown which were then compared with profiles produced by drug exposure of whole
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cells. Notwithstanding the fundamental difference between genetic (transcriptional) knockdown and
pharmacological (small molecule) inhibition, we observed strong overlap in the resulting phenotypes,
especially for compounds targeting energy metabolism (BDQ), the mycolic acid (INH) or arabinoga-
lactan (EMB) components of the cell wall, as well as DNA metabolism (fluoroquinolones and griseli-
mycin). In some cases, we noted, too, that different concentrations of compound could produce
disparate morphological profiles, suggesting a possible dependence of MOA on drug concentration
(Bernier and Surette, 2013). Furthermore, not all compounds produced defining phenotypes. For
example, compounds targeting peptidoglycan synthesis (DCS and VAN) led to rapid lysis, while ami-
noglycosides did not cluster with the majority of ribosomal knockdowns. While these exceptions
expose limitations in cytological profiling (discussed below), the approach nevertheless appears use-
ful as rapid pre-screen of compound MOA in drug discovery pipelines, prior to more in-depth inves-
tigation. Moreover, the pioneering development by Aldridge and colleagues (Smith et al., 2020) of
the MorphEUS (morphological evaluation and understanding of stress) system for mycobacterial
cytological profiling suggests the potential to replicate the CRISPRi approach described here in M.
tuberculosis, a daunting but tractable challenge.

It was notable that MOXI-treated cells did not sit closely with gyrA and gyrB knockdowns and
were instead associated with DNA metabolism, an observation common to other fluoroquinolones.
While this separation in UMAP space might be deemed surprising, two factors are salient to the
interpretation of this result: firstly, the role of mycobacterial DNA gyrase in the removal of torsional
stress and the maintenance of template topology during RNA transcription (Ahmed et al., 2017) is
consistent with the dominant effect of gyrA and gyrB knockdown manifesting as more similar to
RNA polymerase inhibition (here, the close association with rpoB in the UMAP analysis is potentially
telling); and, secondly, the filamentation observed on fluoroquinolone exposure is SOS-dependent
(Drlica et al., 2008) and involves the formation of lethal double-strand DNA breaks following drug-
mediated trapping of the DNA-gyrase complex — an effect which ATc-induced CRISPRi knockdown
does not produce. Supporting this interpretation, the gyrase B inhibitor, NVB, did not trigger fila-
mentation, and was instead closely associated with gyrA and gyrB knockdowns, a key observation
given previous work noting the lack of SOS induction in NVB-treated cells (Boshoff et al., 2004). A
question which commonly arises is how the apparently discrepant gyrA/gyrB and moxifloxacin phe-
noprints can be reconciled with recent data from a pioneering high-throughput chemical-genetic
screen which reported the identification of novel gyrase inhibitors by utilizing a library which
included gyrA and gyrB hypomorphs (Johnson et al., 2019). In addressing this dilemma, it is impor-
tant to remember that hypomorphs provide a powerful means to identify hypersusceptibilities con-
sequent on bacillary exposure to chemicals which inhibit the same (cognate) gene or pathway
targeted by the knockdown system (i.e. the genetic and antibiotic targets are identical); in contrast,
whole-cell morphotypes report on the physiological response to (or manifestation of) lethal stress
induced by essential gene silencing. Importantly, a key element distinguishing antibiotic-mediated
target inhibition or corruption from transcript depletion is time: antibiotic treatment inhibits (or cor-
rupts) active processes, triggering intracellular catastrophe (in the case of MOXI treatment, an SOS
response), whereas gene silencing is much more gradual, or ordered, avoiding the impact of instan-
taneous loss of function.

As for all large-scale assays, the approach detailed here inevitably carries inherent limitations
which must be borne in mind when analyzing and applying the data: (i) Although motivated primarily
by pragmatism, the decision to apply an 18 hr endpoint for all analyses might inadvertently have
biased the ‘strongest’ phenotypes to genes involved in DNA replication, cell division, and cell-wall
metabolism. One obvious complication pertains to the drug MOA analyses, and is evident in the
striking frequency with which the data points for 1X, 2X and 4X concentrations map differently in
UMAP space for different compounds. Intuitively, increasing drug concentration might be expected
to have two principal effects — increasing the rate of cell death while retaining the primary MOA (put
simply, cells treated at 4X MIC will be further along the ‘path to death’ at 18 hr than those treated
at 1X MIC) or increasing the likelihood of hitting secondary targets. This issue has been noted previ-
ously in transcriptional profiling of the M. tuberculosis drug-exposure response (Boshoff et al.,
2004) in which optimizing the drug concentration and exposure time were critical in avoiding con-
vergence on a common stress pathway, obscuring the informative, drug-specific transcriptional sig-
nature. Similarly, the propensity for the rate of gene-product depletion to impact qualitatively the
terminal phenotype has been elegantly demonstrated in B. subtilis (Peters et al., 2016).
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Notwithstanding the significant resources required, future work might therefore envisage the use of
time-lapse imaging of all mutants to identify optimal gene-specific knockdown durations. (ii) This
proof-of-concept study employed only aerobically grown mycobacteria cultivated at 37°C in media
comprising Middlebrook 7H9 broth base, with glycerol as primary carbon source. There is ample
precedent in the literature indicating that gene essentialities, metabolic vulnerabilities and drug sus-
ceptibilities can alter as a function of growth conditions; therefore, the phenotypes presented here
are necessarily condition-specific, and could benefit significantly from expanding these analyses to
other, ‘disease-relevant’ culture systems. By extension, there is also the potential to perform equiva-
lent analyses in different genetic backgrounds, avoiding the well-described pitfalls of ‘wild-type’ lab-
oratory strains. (iii) Morphological profiling appears to offer a rapid means of preliminary gene
function assignment or compound MOA, however, definitive validation is required - via further bio-
chemical and/or functional analysis — to ratify the functional assignments predicted using this tool.
(iv) Future iterations should also aim to resolve the large cluster (Cluster 2) of genes exhibiting mini-
mal morphological effects on knockdown into more informative sub-clusters, perhaps through the
incorporation of additional features and/or by applying alternative fluorescent reporters (possibly in
addition to the ParB reporter). Some approaches to consider include the use of sentinel genes and
transcription factors involved in different aspects of macromolecular biosynthesis and/or metabolic
remodeling (Naran et al., 2016; Boot et al., 2018). In addition to the potential for improved MOA
delineation, such refinements are necessary to address the large number of hypothetical proteins
whose functions were not significantly informed by the current morphological profiling algorithm.

In conclusion, we are hopeful that the library of M. smegmatis mutants — and the associated
online database — will offer a potentially valuable resource for the mycobacterial research commu-
nity, particularly given the utilization of the ParB-mCherry reporter background which, to our knowl-
edge, is unique in coupling whole-cell morphological information with a measure of replicative
status and ploidy. While a large collection of inducible protein-degradation mutants was recently
described in M. tuberculosis (Johnson et al., 2019), there is not yet an equivalent in the faster-grow-
ing model mycobacterium, M. smegmatis. Moreover, in addition to the validated strains, the plas-
mids used to establish our library should enable relatively simple construction of either single
mutants or mutant libraries in alternative genetic backgrounds and reporter strains.

Materials and methods

Key resources table

Reagent type Additional
(species) or resource Designation Source or reference Identifiers information

Strain, strain Dh5a
background
(Eschericia coli)

Strain, strain ParB-mCherry Santi and McKinney, 2015
background
(M. smegmatis)

Strain, strain See Supplementary file 1
background
(M. smegmatis)

Recombinant plJR962 Rock et al., 2017
DNA reagent

Recombinant See Supplementary file 1
DNA reagent

Sequence- See Supplementary file 1
based reagent

Commercial OneTag Master Mix NEB NEB M0482L
assay or kit

Commercial Esp31-FastDigest Thermo FD0454
assay or kit

Continued on next page
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Continued

Reagent type Additional
(species) or resource Designation Source or reference Identifiers information
Commercial Zyppy-96 Plasmid Zymo D4041

assay or kit Miniprep Kit

Commercial FastRNA Blue Kit MP Biomedicals MP6025050
assay or kit

Commercial DNAse NEB NEB M0303S
assay or kit

Commercial Poly(A) Polymerase NEB NEB M0276L
assay or kit

Commercial Zymo RNA Clean Zymo R1 013

assay or kit and Concentrator-5

Commercial Ribo-Zero rRNA llumina MRZMB126
assay or kit Removal Kit

Commercial Nanopore Direct Oxford Nanopore SQK-RNA002
assay or kit RNA Sequencing Kit Technologies

Commercial Nanopore Direct cDNA Oxford Nanopore SQK-DCS109
assay or kit Sequencing Kit Technologies

Commerecial NEBNext Q5 High-Fidelity NEB NEB M0543L
assay or kit Polymerase Master Mix

Commercial QlAqguick PCR Qiagen 28106

assay or kit purification kit

Commercial T4 Ligase NEB NEB M0202M
assay or kit

Commercial Sapl NEB NEB R0569S
assay or kit

Chemical See Supplementary file 1

compound, drug

Software FIJI Schindelin et al., 2012

algorithm

Software MicrobeJ Ducret et al., 2016

algorithm

Software R

algorithm

Software UMAP Lel et al., 2018

algorithm

Software hdbscan Lel et al., 2017

algorithm

Software tSNE Maaten and Hinton, 2008

algorithm

Software Minimap2 Li, 2018

algorithm

Software samtools Li et al., 2009

algorithm

Software deepTools? Ramirez et al., 2016

algorithm

Software featureCounts Liao et al., 2014

algorithm

Software DESeq? Love et al., 2014

algorithm

Software Iris Kritikos et al., 2017

algorithm
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Construction of arrayed library

We limited our initial selection to 294 genes. In addition to the 288 genes found universally essential
in both Tn-seq and CRISPRi-Seq (de Wet et al., 2018), we added six components of the ATP syn-
thase which were found to be non-essential in Tn-seq owing to gene duplication in M. smegmatis
(Dragset et al., 2019).

While CRISPRi is a reliable technology for producing knockdown, it is subject to variation in
knockdown efficacy, depending on the selected guide RNA. Moreover, when targeting a gene with
CRISPRI, the efficacy of a particular guide is not known de novo, and activity prediction algorithms
are still in their infancy, particularly for bacteria (Wang et al., 2017). As a result, it is generally best
practice to target a gene with more than one sgRNA to account for differences in activity. However,
in the case of arrayed mutant collections, this requirement becomes unwieldy; as such, previous
arrayed CRISPRi mutant collections in bacteria have utilized one predicted sgRNA per gene
(Liu et al., 2017; Wang et al., 2017). Our previous CRISPRi-Seq data (de Wet et al., 2018) allowed
us to identify essential genes that were growth-suppressed by multiple sgRNAs, but additionally
provided empirical data on sgRNA knockdown efficiency. As a result, we were able to identify the
most efficient sgRNAs for any gene.

For each of the 294 selected genes, two oligonucleotides (Supplementary file 1) were synthe-
sized at 50 nmol and annealed by LGC Biosciences. For five genes, an additional set of oligonucleo-
tides was used to validate the observed phenotypes (Figure 2—figure supplement 2).
Oligonucleotides were delivered in 96-well plates, and were resuspended in water to a final concen-
tration of 100 uM. Cloning was performed as previously described (Rock et al., 2017) but adapted
for scale. Briefly, pJR962 (Rock et al., 2017) was digested overnight with BsmBI-FastDigest (Thermo)
and gel purified. Ligations were performed in 96-well plates with 1U T4 Ligase (NEB) and incubated
at room temperate overnight. Ligation reactions were transformed into 5 pl High-Efficiency DH5a
cells (NEB) with heat-shock, rescued in TY Broth, and plated on LB agar prepared in 6-well plates.
Following overnight growth at 37°C, single colonies were picked into 800 pl of LB broth, in 2 ml
deep 96-well plates, and grown overnight at 37°C with vigorous shaking. All E. coli cultures were
supplemented with Kanamycin (Roche) at a final concentration of 50 ug/ml. Plasmids were extracted
with a Zyppy-96 Plasmid Miniprep kit (Zymo) according to manufacturer instructions and quantified
via Nanodrop.

Approximately 100 ng of plasmid was electroporated into the M. smegmatis ParB-mCherry
reporter strain (Santi and McKinney, 2015) and rescued in 7H9 broth supplemented with OADC
and 0.05% Tween 80, for 3 hr at 37°C. Electroporation reactions were plated on 7H10 agar supple-
mented with OADC and Kanamycin at 20 ug/ml, prepared in 6-well plates, and grown at 37°C until
visible colonies formed. Single colonies were picked into 400 pl 7H9 supplemented with kanamycin
(20 pg/ml) and grown with shaking until stationary phase. Glycerol stocks of all transformants were
stored at —80°C. Any failed ligations or transformations were repeated.

Sequencing validation

PCR Primers (Supplementary file 1) designed to target the sgRNA-containing region of plasmid
pJR962 were synthesized by Inqaba Biotech. PCR reactions were prepared with OneTaq Master-mix
(NEB) in 96-well plates to a final volume of 20 pl. Using pipette tips, scrapings of glycerol stocks
were taken and mixed with the PCR reaction. The PCR was performed with the settings described
(Supplementary file 4). PCR reactions were purified and sequenced by the Stellenbosch Central
Analytic Facility using the same forward primer as the PCR reaction. Sequencing results were ana-
lyzed using a custom written R script. For PCR amplification, we opted not to use a high-fidelity poly-
merase owing to the number of reactions performed. Since this risked introducing artificial
mismatches or ambiguities into the sequencing results, a sequence was considered correct if the
mutant had a high-quality alignment with its expected sequence. We accepted ambiguities in the
sequencing trace if the strain functionally validated in downstream growth analysis. PCR reactions
that did not produce sequencing results were repeated; ultimately, sequence-validation was
obtained for 238 mutants from the initial cloning workflow, a success rate of 83%. Of the invalidated
mutants, 15 wells contained plasmid backbone, 15 were cross-contaminants which occurred at some
point during the cloning process, and the remaining 20 failed to sequence. We maintained the plas-
mid-backbone strains in our library and downstream workflow as these represented useful empty

de Wet et al. eLife 2020;9:€60083. DOI: https://doi.org/10.7554/eLife.60083 25 of 36


https://doi.org/10.7554/eLife.60083

eLife

Genetics and Genomics | Microbiology and Infectious Disease

vector sequences, so that control strains were nested within the arrayed library. Cloning was
repeated for invalidated mutants.

Growth validations

Square plates containing standard Middlebrook 7H10 OADC agar were prepared and supplemented
with kanamycin (Roche,20ug/ml), with or without anhydrotetracycline (ATc, Sigma, 100 ng/ml). Fresh
cultures were inoculated from glycerol freezer stocks into 400 pl Middlebrook 7H9 liquid medium
supplemented with kanamycin (Roche, 20 ug/ml) in deep 96-well plates. Cultures were grown with
shaking until saturated. Stationary-phase cultures were diluted 1:10 000 into fresh 7H9 before spot-
ting onto prepared 7H10 plates using a 96-well replicator pin (Sigma). All spotting was performed in
triplicate. Plates were grown until colonies formed and photographed using a lightbox. Colony sizes
were quantified using Iris (Kritikos et al., 2017).

Image sample preparation

Fresh cultures were inoculated from glycerol stocks into 400 pl 7H9 with kanamycin (Roche, 20 ug/
ml) and grown until saturated. Saturated cultures were diluted 1:800 into fresh 7H9 with kanamycin
(Roche, 20 ug/ml) and grown for 24 hr until exponential phase. Exponential-phase cultures were
inoculated 1:40 into 7H9 supplemented with kanamycin (Roche, 20 ug/ml) and ATc (Sigma 100 ng/
ml) and grown for 18 hr, with shaking. Large-format agarose pads were prepared with water to a
final concentration of 2%. Briefly, 2 ml of molten low-melt agarose was sandwiched between two
rectangular coverslips (No. 1.5, 24 x 60 mm). The bottom coverslip was marked using a laser-cut
stencil to indicate sample placement. Agarose pads were left to dry, and 1 pl of induced culture
spotted onto the pads, using a multichannel pipette. Each pad contained eight samples. Twenty-
four strains were imaged per day, and replicate imaging was performed for 137 samples to validate
the reproducibility of the imaging workflow.

Microscopy

Large-format agarose pads were imaged using a Zeiss Axio Observer Z1 and ZEN 2 (blue edition)
software, with the ZEN Tiles and Positions and ZEN Autofocus Modules installed. Images were cap-
tured using a Zeiss Axiocam 503 with 3X analogue gain. Using a low magnification 10X objective,
each sample was localized on the pad. Approximately 24 fields-of-view were selected with a 100X
Phase Contrast Objective (1.4NA), before capturing images using bright-field and fluorescent imag-
ing. Fluorescence was excited using a Colibri Green LED (555/30 nm) and filtered at 590-650 nm.
Exposure times were maintained across imaging sessions for Brightfield Images, and for fluorescent
images. A software autofocus regimen was used before each field-of-view was captured. In the case
of low-density samples, fields-of-view were manually chosen and increased in number. Raw images
were saved as CZ| files prior to processing and data extraction.

Time-lapse imaging was performed on 1.5% agarose pads embedded with 7H9 OADC medium
containing ATc (Sigma, 100 ng/ml) and kanamycin (Roche, 20 pug/ml), in glass-bottomed dishes
(NEST Biotechnology). Cells were maintained in an incubated chamber at 37°C and imaged every 15
min with a software autofocus regimen implemented between each frame.

Image processing and data extraction
All image processing was performed in FIJI (Schindelin et al., 2012). CZI Images were converted to
TIFF images and were manually inspected and out-of-focus fields removed. To enhance foci in the
fluorescent channel, a Gaussian blur filter was applied to the fluorescent channel and subtracted
from the original image. Furthermore, overall intensity of each fluorescent channel was normalized
throughout the imaging dataset, to a mean pixel intensity of 15. ImageJ processing scripts are avail-
able at https://osf.io/pdcw?2/. Pre-processed images were analyzed using MicrobeJ (Ducret et al.,
2016) with limited constraints on cell and foci detection. Microbed output (cell contours, shape
descriptions and fluorescent localization — see Figure 2—figure supplement 1) was exported as
CSV files.

Quantitation of microcolony growth rates was performed in ImageJ and R with a custom script.
Briefly, images were thresholded in ImageJ and the microcolony area extracted per frame. Time-
lapse plots were produced in R using a combination of ggplot2 (Wickham, 2016) and gganimate.
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Dataset curation

To curate the output of Microbed, a classifier was built in R. Two fields-of-view were sampled from
each mutant and replica dataset and processed and analyzed as described above. All detected
objects were initially exported. To create a reference of correctly identified cells, cells were
inspected with the interface built into Microbed, and misidentified cells removed from the dataset.
Thus, two datasets were exported: the full dataset of all identified objects, and the dataset of classi-
fied cells. In total, approximately 22,000 objects were manually classified. The classified data were
imported into R and utilized to build a classification model. Briefly, 20% of the dataset was reserved
as a test sample, and the remaining 80% was used to train a variety of models, using the Caret pack-
age (Kuhn, 2008). For model training, fivefold cross-validation was used, and resampling performed
across the default tuning parameters. ROC was used to select the optimal tuning parameters for
each model. A selection of models was tested and compared based on ROC AUC. An Averaged
Neural Network was empirically chosen as the best-performing model (Figure 2—figure supple-
ment 3). The trained classifier was used to classify the entire dataset and remove misidentified
objects. Data were input through the curation pipeline and labeled based on sequencing results and
growth validations. Reproducibility of the imaging workflow was tested by comparing length of the
replica image sets. The scripts used to develop and test the models, and all input data, are available
at https://osf.io/pdcw?2/.

Representative cell generation

For each imaged mutant strain, we derived the mean values for a selection of 13 morphological fea-
tures — Angularity, Area, Aspect Ratio, Circularity, Curvature, Feret, Length, Perimeter, Sinuosity,
Solidity, Roundness, Width and Width Variation — and counts of ParB maxima. We utilized the
approximate nearest neighbor approach in the R package, RANN, to identify a single cell that best
approximated the mean values of the mutant. The cell contour, derived from Microbel, was plotted
using ggplot, and maxima identified by MicrobeJ were superimposed on the plotted contour. Visual-
izing scripts are available at https://osf.io/pdcw?2/.

Data input and processing

For data processing, we adapted a previously described approach (Campos et al., 2018). For each
mutant, we calculated the mean of each measured feature, and the CV (mean/standard deviation).
We transformed each feature into a Z-score, relative to the distribution of means derived from the
empty vector strains utilizing the equation:

Z = (F;—mean(F!")) /sd(F!'")

The normalized Z-Score therefore represents the number of standard deviations away from the
mean of the wild-type distribution (Figure 4—figure supplement 1). All subsequent analyses utilized
Z-Score adjusted data, unless otherwise described.

Cluster of Orthologous Groups (COG) Annotations

Each gene in our dataset was assigned to a Cluster of Orthologous Groups using annotations
obtained from eggNOG (Huerta-Cepas et al., 2016). We utilized both M. smegmatis and M. tuber-
culosis annotations to assign COGs to as many genes as possible. In addition, we manually anno-
tated a number of genes with recently identified function (Wu et al., 2018).

Phenoprint visualization

For phenoprint visualization, variables were chosen for their interpretability and potential biological
relevance. Variables included angularity, area, circularity, curvature, length, sinuosity, roundness,
width, width variation and number of ParB foci (maxima). For visualization, the mean and CV Z-scores
for each variable were displayed in a circular coordinate system. Where visualizations represented
groups of mutants (for example COGs) means of the mutant Z-scores were used for visualization.
Phenoprint visualization code is available at https://osf.io/pdcw?2/.
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COG enrichment analysis

For each feature, we utilized a cut-off of 3 standard deviations above or below the mean of the con-
trol distribution, and tested for enrichment of each COG category utilizing Fisher's Exact Test. We
corrected for multiple testing using the Benjamini-Hochberg Procedure and utilized a significance
cut-off of p<0.05. For display of data, we opted to replicate prior work (Campos et al., 2018) in dis-
playing all genes found above or below the threshold. COG categories that were enriched for a par-
ticular feature were highlighted to differentiate them from the background. We only displayed plots
where at least one COG was found to be statistically enriched (Figure 4—figure supplement 2)
Scripts are available at https://osf.io/pdcw?2/.

Dimensionality reduction and analysis

Dimensionality reduction allows visualization of multidimensional data in two-dimensional space. Uti-
lizing our normalized Z-score data, we performed dimensionality reduction in R. We tested a number
of approaches for dimensionality reduction, including a Principle Component Analysis (PCA), t-SNE
(Maaten and Hinton, 2008) and UMAP (Maaten and Hinton, 2008) algorithms. We superimposed
these dimensionality reduction techniques with a hierarchical density-based spatial clustering of
applications with noise (hdbscan) (Lel et al., 2017). For each technique, we tested a variety of opti-
mization parameters to produce distinct clusters of points, while still maintaining a consistent cluster
of wild-type samples. On comparison, UMAP produced the best separated clusters, while maintain-
ing a relatively uniform wild-type cluster. UMAP is characterized by a degree of stochasticity during
initialization (Lel et al., 2017); therefore, we generated 100 maps which were each clustered with
hdbscan (minPts = 12). Consistently present clusters across initializations were determined with hier-
archical clustering.

To explain the features that assigned points to particular clusters, we superimposed a color-gradi-
ent based on the mutant Z-Scores for a chosen set of features. Additionally, we generated heatmaps
describing mean Z-scores of chosen features, for each cluster. We performed COG enrichment on
each cluster, utilizing Fisher's Exact Test, and adjusted for multiple testing using the Benjamini-Hoch-
berg Procedure. For visualizing sub-clusters within the UMAP, we adapted an approach inspired by
the previously described spatial analysis of functional enrichment (SAFE) approach (Baryshni-
kova, 2016; Campos et al., 2018), to identify regions of the UMAP output that were enriched for
particular functions. Briefly, for each point on our 2-dimensional UMAP projection, we examined sur-
rounding points, within a predefined radius (the 10th percentile of the distribution of pairwise distan-
ces between all points) and tested for enrichment of either COG or KEGG ontologies using a
hypergeometric test. We combined enrichment testing with a k-nearest neighbor interpolation
approach to identify spatial regions of our UMAP manifold that were enriched for particular
functions.

Antimicrobial profiling

For each drug, twofold serial dilutions were prepared in 400 pul of 7H9-OADC medium in deep 96-
well plates. Exponential-phase M. smegmatis ParB-mCherry cells were inoculated into prepared
media at a 1:40 dilution and cultured with shaking for 18 hr. Prior to imaging, ODs were measured
and a dose-response curve fitted to the results with the DRC package in R (Ritz et al., 2015). The
MICyo was derived from the fitted curve and defined as 1X MIC. We validated that the MICyy was
consistent with results from a fluorescent resazurin based assay. To this end, 10 ul of resazurin
(Sigma) was added to 50 pl of cell culture, incubated for one hour at 37°C and color change deter-
mined visually. For imaging, cultures were spotted on agarose pads, and imaged and analyzed as
previously described.

Cell cycle heatmaps

A population of cells at a single-timepoint contains a degree of temporal information, as the popula-
tion contains cells at different stages of the cell cycle (Campos et al., 2018). To visualize movement
of ParB through the cell cycle, we utilized extracted maxima-localization data and cell length from
MicrobeJ and processed the data further utilizing a bespoke R script. For each mutant, we arranged
cells by length, and produced consensus heatmaps of ParB localization relative to cell length using
ggplot2. Scripts are available at https://osf.io/pdcw?/.
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Nanopore RNA-seq library preparation

Cultures of M. smegmatis were grown, with shaking, to exponential phase (ODggo ~0.9-1.0) in 15 ml
of 7H9 OADC at 37°C prior to RNA extraction. For CRISPRi knockdowns, the strain of interest was
inoculated from an exponential-phase culture into 15 ml of 7H9-OADC supplemented with kanamy-
cin (Roche, 20 ug/ml) and ATc (Sigma, 100 ng/ml) and cultured for 18 hr at 37°C with shaking. RNA
was extracted using a FastRNA Blue Kit (MP Biomedicals) and ethanol-precipitated, according to
manufacturer instructions. Extracted RNA was quantified by Nanodrop. Ten ng of RNA was treated
with 2U DNase (NEB) at 37°C for 10 min, prior to cleanup with a Zymo RNA Clean and Concentra-
tor-5 kit (Zymo Research) according to manufacturer instructions. The purified DNAse-treated RNA
was poly-A tailed using E. coli Poly(A) Polymerase (NEB), according to manufacturer instructions,
prior to clean-up with a Zymo RNA Clean and Concentrator-5 kit (Zymo Research). Ribosomal RNA
was depleted with a Bacterial Ribo-Zero rRNA Removal Kit (lllumina) according to manufacturer
instructions, prior to clean-up with a Zymo RNA Clean and Concentrator-5 kit (Zymo Research).
Library preparation for Nanopore sequencing was performed using either a Nanopore Direct RNA
Sequencing Kit (SQK-RNA0O1, Oxford Nanopore Technologies) or Nanopore Direct cDNA (SQK-
DCS109, Oxford Nanopore Technologies) according to manufacturer protocols, and sequenced on
MinlON sequencers (Oxford Nanopore Technologies). Base-calling was performed by MinKNOW
software (Oxford Nanopore Technologies), and data stored as FASTQ files for downstream analysis.

RNA-Seq data analysis

Reads were aligned to the M. smegmatis mc?155 genome (NC_008596) with Minimap2 (Li, 2018),
utilizing the map-ont command. Produced SAM files were sorted and indexed with samtools
(Li et al., 2009). For visualization, coverage was calculated using the bamCoverage command of
deepTools2 (Ramirez et al., 2016) with normalization by Reads Per Kilobase per Million mapped
reads (RPKM). featureCounts (Liao et al., 2014) was utilized for assigning read counts to genes, and
DESeq?2 (Love et al., 2014) was used for comparisons of upregulated transcripts. All visualizations
were produced in R, using ggplot2.

Dual CRISPRi Knockdown

sgRNAs were chosen to target MSMEG_3214 and cloned into pJR962 as previously described
(Love et al., 2014). Golden Gate (Supplementary file 3) primers were designed to amplify the pro-
moter-sgRNA-terminator region of the plasmid, with Sapl restriction sites included at the 5’ region
of the primers, and synthesized by Inqaba Biotech. The PCR reaction was performed with Q5 high-
fidelity polymerase master mix (NEB) and the product column purified with a QlAquick PCR purifica-
tion kit (Qiagen) and quantified by Nanodrop. PCR primers and reaction settings are available in
Supplementary file 4. Golden Gate cloning was performed utilizing the purified MSMEG_3213-tar-
geting plasmid cloned during establishing the library as a backbone. Briefly, a single-pot reaction
was set up containing T4 ligase (10 000U) and buffer (NEB), Sapl (NEB, 10Units), 75 ng of backbone,
and purified PCR product at a molar ratio of 2:1. The reaction was incubated at 37°C for one hour,
and at 55°C for 5 min, prior to transformation into E. coli DH50. (NEB). Colonies were screened by
PCR using the sequencing primers, plJR962_Seq_F and plJR962_Seq_R, and OneTaq polymerase
(NEB), as described previously, and positive clones sequenced by the Stellenbosch Central Analytic
Facility utilizing plJR962_Seq_F to confirm the insertion. The sequence-verified plasmid was electro-
porated into M. smegmatis mc?155 and tested for growth rescue by spotting assays.
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Data availability

All scripts and underlying data are available via the Open Science Framework at https://osf.io/
pdcw?/. All phenotypic data are made available via an interactive database at https://timdewet.shi-
nyapps.io/MorphotypicLanscape/.

The following dataset was generated:

Database and

Author(s) Year Dataset title Dataset URL Identifier
de Wet TJ _2020_Arrayed CRISPRi and Quantitative _https://osf.io/pdCWZ/ _Open Science
Imaging Describe the Morphotypic Framework, pdcw?

Landscape of Essential
Mycobacterial Genes
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