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In silico predictive software allows assessing the effect of amino acid substitutions on the structure or function of a protein
without conducting functional studies. The accuracy of in silico pathogenicity prediction tools has not been previously assessed
for variants associated with autosomal recessive deafness 1A (DFNB1A). Here, we identify in silico tools with the most accurate
clinical significance predictions for missense variants of theGJB2 (Cx26),GJB6 (Cx30), andGJB3 (Cx31) connexin genes associated
with DFNB1A. To evaluate accuracy of selected in silico tools (SIFT, FATHMM, MutationAssessor, PolyPhen-2, CONDEL,
MutationTaster, MutPred, Align GVGD, and PROVEAN), we tested nine missense variants with previously confirmed clinical
significance in a large cohort of deaf patients and control groups from the Sakha Republic (Eastern Siberia, Russia):bI26: p.Val27Ile,
p.Met34Thr, p.Val37Ile, p.Leu90Pro, p.Glu114Gly, p.Thr123Asn, and p.Val153Ile; Cx30: p.Glu101Lys; Cx31: p.Ala194Thr.We compared
the performance of the in silico tools (accuracy, sensitivity, and specificity) by using the missense variants in GJB2 (Cx26), GJB6
(Cx30), andGJB3 (Cx31) genes associatedwithDFNB1A.The correlation coefficient (r) and coefficient of the area under theReceiver
Operating Characteristic (ROC) curve as alternative quality indicators of the tested programs were used.The resulting ROC curves
demonstrated that the largest coefficient of the area under the curve was provided by three programs: SIFT (AUC = 0.833, p =
0.046), PROVEAN (AUC = 0.833, p = 0.046), and MutationAssessor (AUC = 0.833, p = 0.002). The most accurate predictions
were given by two tested programs: SIFT and PROVEAN (Ac = 89%, Se = 67%, Sp = 100%, r = 0.75, AUC = 0.833). The results of
this study may be applicable for analysis of novel missense variants of the GJB2 (Cx26), GJB6 (Cx30), and GJB3 (Cx31) connexin
genes.
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1. Introduction

The most common form of hereditary nonsyndromic hear-
ing loss is autosomal recessive deafness 1A (DFNB1A,
MIM#220290) caused by pathogenic variants in the GJB2,
GJB6, and GJB3 genes encoding connexin 26 (Cx26), con-
nexin 30 (Cx30), and connexin 31 (Cx31) proteins, respec-
tively. The estimated prevalence of DFNB1A among gen-
eral human population is 14:100 000, and the main cause
of DFNB1A is biallelic recessive pathogenic variants in
the GJB2 gene (MIM#121011) (http://www.ncbi.nlm.nih.gov/
books/NBK1272/, 2018). Currently, about 400 different
pathogenic variations of GJB2 sequence (more than 70%
are missense or nonsense amino acid substitutions) are
presented in the Human Gene Mutation Database (HGMD,
http://www.hgmd.cf.ac.uk/ac/ all.php), and this list is regu-
larly updated by novel yet unclassified variants. The majority
of nonsense variants are pathogenic since they lead to a
premature termination of translation and protein synthesis,
while missense variants depending on their location in the
amino acid sequence can be neutral, damaging, or partially
damaging to the structure and function of protein. As a
consequence, pathogenicity of many missense variants is
difficult to assess.

Basic information on pathogenic mutations is provided
by curated databases such as Online Mendelian Inheritance
inMan (OMIM) [1] and theHumanGeneMutationDatabase
(HGMD) [2] collecting data on variants of all genes, mainly
from the literature. Disease and gene-specific databases often
contain variants that are incorrectly classified including
incorrect claims published in peer-reviewed literature since
different authors interpret the term “mutation pathogenicity”
differently because of the increased complexity of analysis
and interpretation of clinical genetic testing. Experimental
study of the molecular effects of mutations is laborious,
whereas useful and reliable information about the effects of
amino acid substitutions can readily be obtained by theoret-
ical methods [3]. A variety of in silico tools, both publicly
and commercially available, can help in the interpretation of
sequence variants without structural or functional studies.
However, algorithms used by each tool may differ, but can
include determination of the effect of the sequence variant
at the nucleotide and amino acid as well as the potential
impact of the variant on the protein.The impact of amissense
substitution depends on criteria such as the evolutionary
conservatism of an amino acid/nucleotide, location, and
context within the protein sequence and the biochemical
consequence of the amino acid substitution [4].

Different in silico tools each have their own strengths
and weaknesses depending on the algorithm, and in many
cases performance varies depending on the certain gene and
protein [5, 6]. Performance of available prediction software
is constantly being evaluated by comparing their ability to
predict “known” disease-causing variants. As a result, the
MutPred performed best for variants of genes associated
with the RASopathy and limb-girdle muscular dystrophy
(LGMD) [7]; the MAPP and the MAPP + PolyPhen-2.1
provided the best combined model for testing variants of
MLH1,MSH2,MSH6, and PMS2 genes associated with Lynch

syndrome, a hereditary form of colon cancer [8]; the SIFT
was well suited for the analysis of variants of the UGT1A1
gene associated with Crigler-Najjar syndrome (congenital
hereditary nonhemolytic unconjugated bilirubinemia) [9];
the Align GVGD in silico tool was shown as the best for
testing variants of genes associated with cancer (BRCA1,
BRCA2,MLH1, andMLH2) [10]; in silico test of 236 BRCA1/2
missense variants suggested that SIFT and MutationTaster2
are suitable to predict benignity of variants in these genes
[11]. There is also a big class of tools for predicting splice
site variations which were tested by comparing the predic-
tions against RNA in vitro results for natural splice sites of
clinically relevant genes in hereditary breast/ovarian cancer
(HBOC) [12]. The analysis revealed that HSF, HSF+SSF-
like, or HSF+SSF-like+MES achieved a high performance
for predicting the disruption of donor sites, and SSF-like for
predicting disruption of acceptor sites [12]. In general, most
missense variant prediction algorithms are 65-90% accurate
when examining known disease variants.

However, so far the accuracy of in silico pathogenicity
prediction tools was not assessed for variants of genes associ-
ated with autosomal recessive deafness 1A. To date, the only
published study was focused on the pathogenicity analysis
of 211 missense variants of the GJB2 gene annotated in the
Ensembl and the HGMD databases [13]. Four predictive in
silico tools, SIFT, PANTHER, PolyPhen-2, and FATHMM,
were used but the comparison of their performance was not
performed.

The aimof this study is to compare the performance of the
in silico pathogenicity prediction tools by testing themissense
variants inGJB2 (Cx26),GJB6 (Cx30), andGJB3 (Cx31) genes
associated with the autosomal recessive deafness 1A.

2. Materials and Methods

2.1. Missense Variants Selection. To assess accuracy of
selected in silico tools, we tested nine missense variants
of the GJB2 (Cx26), GJB6 (Cx30), and GJB3 (Cx31) genes
found earlier in a large cohort of deaf patients and control
groups from the Sakha Republic (Eastern Siberia, Russia):
GJB2 (bI26): c.79G>A (p.Val27Ile), c.101T>C (p.Met34Thr),
c.109G>A (p.Val37Ile), c.269T>C (p.Leu90Pro), c.341A>G
(p.Glu114Gly), c.368C>A (p.Thr123Asn), and c.457G>A
(p.Val153Ile); GJB6 (Cx30): c.301G>A (p.Glu101Lys);
GJB3 (Cx31): c.580G>A (p.Ala194Thr) [14–16] (Figure 1).
Of these, three variants of the GJB2 gene, c.269T>C
(p.Leu90Pro), c.101T>C (p.Met34Thr), and c.109G>A
(p.Val37Ile), are pathogenic variants associated with hearing
impairment (DFNB1A); the remaining six variants were
interpreted as benign variants of no clinical significance
[14, 15]. To assess the clinical relevance of the presented
missense variants, we analyzed not only the results of the
segregation analysis of genotype-phenotype correlation, but
also the data from the databases of annotated variants:
OMIM (the Online Mendelian Inheritance in Man,
http://www.omim.org) [1]; HGMD (the Human Gene
Mutation Database, http://www.hgmd.cf.ac.uk) [2]; the
ClinVar (a public archive with interpretations of clinically

http://www.ncbi.nlm.nih.gov/books/NBK1272/
http://www.ncbi.nlm.nih.gov/books/NBK1272/
http://www.hgmd.cf.ac.uk/ac/all.php
http://www.hgmd.cf.ac.uk/ac/all.php
http://www.omim.org
http://www.hgmd.cf.ac.uk
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Figure 1: Localization of the tested nonsynonymous (missense) amino acid substitutions in the structure of connexin 26.Note.The informa-
tion about the structure bx26 was obtained from the database of three-dimensional structures of proteins and nucleic acids PDB ID:2ZW3
(https://www.ncbi.nlm.nih.gov/Structure/pdb/2ZW3) [22]. Localization of the studied amino acids in structure of Cx26 was obtained using
the 3D-structure viewer applet with the protein structure loaded software PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/). Detailed
structure models of human Cx30 and Cx31 proteins are currently not defined.

relevant variants, http://www.ncbi.nlm.nih.gov/clinvar/)
[17, 18]; ExAC (the Exome Aggregation Consortium,
http://exac.broadinstitute.org) [19]; the 1000 Genomes
Project (http://www.ncbi.nlm.nih.gov/variation/tools/
1000genomes) [20]; dbSNP (the Single Nucleotide
Polymorphism database, http://www.ncbi.nlm.nih.gov/snp/)
[21].

2.2. In Silico Prediction Tools. In this study, 9 predictive
computer programs were used to predict pathogenicity: SIFT
(Sorting Intolerant From Tolerant) [3, 24–27], FATHMM
(Functional Analysis Through Hidden Markov Models) [28–
30], MutationAssessor [31, 32], PolyPhen-2 (Polymorphism
Phenotyping V-2) [33], CONDEL (Consensus Deleterious-
ness) [34], MutationTaster [35, 36], MutPred (Mutation
Prediction) [37], Align GVGD (Align Grantham Varia-
tion/Grantham Deviation) [38, 39], and PROVEAN (Protein
Variation Effect Analyzer) [40, 41]. Each in silico tool uses
different parameters for classification of variants which are
detailed according to websites listed in Supplementary Mate-
rials (see Table S1).The FASTA format and Ensembl sequence
identifiers (nucleotide, amino acid, andprotein)were used for
query in programs (see Table S2).

2.3. Analytical Parameters of In Silico Tools. Analytical
parameters of studied tools were calculated according to
Fletcher & Fletcher, 2005, and Glantz, 1997 [23, 42]:

Sensitivity (Se) is a proportion of the true-positive results
(correct identification of pathogenic variants), according to
equation

𝑆𝑒 =
𝑇𝑝

𝑇𝑝
+ 𝐹𝑁 × 100% (1)

where Tp denotes true-positive cases and FN denotes false
negative cases.

Specificity (Sp) is a proportion of the true negative
results (correct identification of benign variants), according
to equation

𝑆𝑝 =
𝑇𝑁

𝑇𝑁
+ 𝐹𝑝 × 100% (2)

where TN denotes true negative cases and Fp denotes false-
positive cases.

Accuracy (Ac) is the ratio of complete correct predictions
to the total number of predictions, according to the following
equation.

𝐴𝑐 = 𝑇𝑝 +
𝑇𝑁

𝑇𝑝
+ 𝑇𝑁 + 𝐹𝑝 + 𝐹𝑁 × 100% (3)

Positive predictive values (PPV) are a proportion of
positive results that were true-positive (the ratio of true-
positive results to all positive results), according the following
equation.

𝑃𝑃𝑉 =
𝑇𝑝

T𝑝
+ 𝐹𝑝 × 100% (4)

Negative predictive values (NPV) are a proportion of
negative results that were true negative (the ratio of true
negative results to all negative results), according to the
following equation.

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁
+ 𝐹𝑁 × 100% (5)

Correlation coefficient (r) is the determination of the
relationship between the clinical values of missense variants
and predictive evaluation of the program.

https://www.ncbi.nlm.nih.gov/Structure/pdb/2ZW3
http://genetics.bwh.harvard.edu/pph2/
http://www.ncbi.nlm.nih.gov/clinvar/
http://exac.broadinstitute.org
http://www.ncbi.nlm.nih.gov/variation/tools/1000genomes
http://www.ncbi.nlm.nih.gov/variation/tools/1000genomes
http://www.ncbi.nlm.nih.gov/snp/


4 The Scientific World Journal

ROC curve: the way to express the relationship between
sensitivity and specificity for a given test is to construct
a curve, called a Receiver Operating Characteristic (ROC)
curve [42]. ROC curves are frequently used in the bioinfor-
matic analysis to evaluate classification and prediction mod-
els for supporting, diagnosis, and prognosis. To construct a
ROC curve, along the Y-axis, the true-positive share (sensi-
tivity) is plotted, along the X-axis, the false-positive share (1 −
specificity).The values on the axes ran fromprobability of 0 to
100% [42].The quantitative interpretation of ROC is given by
AUC (area under ROC curve), the area bounded by the ROC
curve and the axis of the share of false-positive cases. The
bigger the area under the ROC curve, the better the model.
A rough guide for classifying the accuracy of a diagnostic
test is the traditional academic point system: 0.9-1.0: excellent
(A); 0.8-0.9: good (B), 0.7-0.8: fair (C); 0.6-0.7: poor (D);
0.5-0.6: fail (F) (corresponds to random guessing) [43]. The
ROC curves were constructed using the MedCalc statistical
software for biomedical research (https://www.medcalc.org).

3. Results

The predictions for missense variants in the GJB2 (CI26),
GJB6 (bI30), and GJB3 (Cx31) genes by the in silico tools
in comparison with their established clinical significance are
presented in Table 1. Predictions for studiedmissense variants
(3 pathogenic, 6 benign) were different in every analyzed
in silico tool. Only the c.269T>C (p.Leu90Pro) variant of
the GJB2 gene was evaluated by all programs as a damaging
variant.

The informative parameters of the compared programs
are presented in Table 2. The accuracy of the clinical signifi-
cance predictions for missense variants among the analyzed
nine programs varies from 33% (FATHMM) to 89% (SIFT
and PROVEAN). The SIFT and PROVEAN showed high
sensitivity and specificity parameters: 67% and 100%, respec-
tively. The programs MutationAssessor, FATHMM, Muta-
tionTaster, and CONDEL had 100% sensitivity, but showed a
low specificity, between 33% and 67%, and CONDEL showed
total absence of specificity. High rates of predictability of
positive and negative results were provided by the SIFT
and PROVEAN programs (PPV = 100% and NPV = 86%
for both programs) while the FATHMM and Align GVGD
programs were the most inaccurate, which resulted in a
decrease in almost all of the analyzed parameters. How-
ever, FATHMM showed 100% sensitivity since all missense
variants were classified by this program as equally damag-
ing.

The overall correlation coefficients are presented in Fig-
ure 2. The SIFT and PROVEAN programs demonstrate the
highest correlation of in silico predictions with observed
clinical significance ofmissense substitutions (r =0.75)which
corresponds to their analytical parameters (Table 2). The
average values of correlation were shown for MutationAsses-
sor (r = 0.63), PolyPhen-2 (r = 0.5), and CONDEL (r =
0.5) which also correspond to their analytical parameters
(Table 2). The MutationTaster demonstrated a weak cor-
relation (r=0.37), MutPred showed very weak correlation

(r = 0.18), and the FATHMM and Align GVGD programs
showed no correlation between the observed values (r =
0).

The result of ROC curve analysis is shown in Figure 3.
The resulting ROC curves demonstrated that the largest
coefficient of the area under the curve was shown by three
programs: SIFT (AUC = 0.833, p = 0.046, 95% CI: 0.45-0.98),
PROVEAN (AUC = 0.833, p = 0.046, 95% CI: 0.45-0.98), and
MutationAssessor (AUC = 0.833, p = 0.002, 95% CI: 0.45-
0.98). For PolyPhen-2 and CONDEL, the area of the curve
was in the range of 0.7-0.8 (AUC = 0.750, p = 0.175, 95%
CI: 0.37-0.96), and for MutationTaster it was in the range of
0.6-0.7 (AUC = 0.665, p = 0.114, 95% CI: 0.29-0.92). Two
programs, FATHMM and Align GVGD, showed a complete
lack of information in the predictions (AUC = 0.500, p =
1.000, 95% CI: 0.17-0.82).

4. Discussion

For the first time, we analyzed the informative parameters
of nine predictive in silico tools, obtained by predictions of
the clinical significance of missense variants of GJB2 (Cx26),
GJB6 (Cx30), and GJB3 (Cx31) connexin genes associated
with hearing impairment. The capabilities of in silico pre-
diction tools were demonstrated by testing nine missense
variants with confirmed clinical significance of GJB2 (CI26),
GJB6 (Cx30), and GJB3 (Cx31) genes detected earlier in
the study of congenital hearing impairment in the Sakha
Republic of Russia [14, 15]. The results of this study may be
applicable for analysis of novel missense variants of the GJB2
(Cx26), GJB6 (Cx30), and GJB3 (Cx31) genes.

We focused on nine programs chosen according to the
following criteria: predicting the impact of missense variants
on the function or structure of the protein, differing in
computationalmethods and/or tools, popularity (the top pro-
grams included in the dbNSFP [44]), and free online access.
Parameters such as accuracy, sensitivity, and specificity were
chosen to assess their predictive abilities. Without these
parameters, it is not possible to fully evaluate the accuracy
of a test [42].

As a result, the SIFT and PROVEAN programs showed
the highest sensitivity (Se = 67%) and specificity (Sp =
100%). Thus, the requirement for maximum total sensitivity
and specificity in our study was 167% (Se + Sp), while the
required balance between sensitivity and specificity was 33%
(� Se - Sp). The accuracy (Ac) of the predictions of the
SIFT and PROVEAN programs was 89%. This result can be
considered as the best in this study; it can also be compared
to accuracy of predictions published earlier in other studies:
80% - 90% [6, 7, 28, 36, 45]. A lower accuracy was shown
by MutationAssessor (Ac = 78%), CONDEL (Ac = 67%),
and MutationTaster (Ac = 56%) that were highly sensitive
(Se = 100%), but not very specific (Sp = 33-67%). These
results indicate a low accuracy of predictions for neutral
variants. Align GVGD (Ac = 44%) and FATHMM (0c =
33%) produced a large number of incorrect pathogenicity
predictions and thus were unacceptable for testing variants
of the studied genes.

https://www.medcalc.org
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Table 2: Performance of in silico tools.

in silico Tools Accuracy Sensitivity Specificity PPV NPV
SIFT 89% 67% 100% 100% 86%
MutationAssessor 78% 100% 67% 60% 100%
FATHMM 33% 100% 0% 33% 0%
Polyphen-2 78% 67% 83% 67% 50%
MutationTaster 56% 100% 33% 43% 33%
PROVEAN 89% 67% 100% 100% 86%
Align GVGD 44% 33% 33% 33% 67%
MutPred 67% 33% 83% 50% 71%
CONDEL 67% 100% 50% 50% 100%
Note. Accuracy (Ac) - the proportion of the correct test results (that is the sum of true positive and true negative results) among all the patients examined. In
our case, this is the proportion of correct estimates of pathogenic and benign variants; Sensitivity (Se) - the ability of the diagnostic method to give the correct
result which is defined as the proportion of true positive results among all performed tests. In our case, this is the proportion of true positive results, that is,
the correct identification of pathogenic variants; Specificity (Sp) - the ability of the diagnostic method not to give false positive results in the absence of disease,
which is defined as the proportion of true negative results among healthy individuals in studied group. In our case, this is a share of true negative results, that
is, a correct identification of benign variants; Positive predictive values (PPV) - prediction of pathogenic variants; Negative predictive values (NPV) - prediction
of benign variants.
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Figure 2:The correlation coefficient (r) histogram.Note. r: the relationship between the known clinical significance of missense variants and
in silico evaluation given by 9 predictive tools; 𝛼: the level of significance of the correlation coefficient: the critical value for the significance
level and the sample size n=9 is 0.933, so the correlation is significant at p<0.001 [23].

In addition to the obtained characteristics of accuracy,
sensitivity, and specificity, we also used correlation coef-
ficients (r) and areas under the ROC curve (AUC) as
alternative indicators of the quality of the tested programs.
We compared the values of r and AUC with the quantitative
values of the exact predictions of the in silico tools under
study. For instance, the highest values of r = 0.75 were shown
by the SIFT and PROVEAN programs that gave the highest
number of correct predictions. As is known, the higher the
predictive power of the model, the closer the ROC curve
to the upper left corner, where the fraction of true-positive
cases is 100% (ideal sensitivity) and the share of false-positive
cases is zero [42]. The resulting ROC curves demonstrated
that the curves of SIFT and PROVEAN were closest to the
ideal chart, with the largest area under the curve: AUC = 0.83
(95% confidence interval is 0.45-0.98), which indicates a very

good quality of predictions. The ROC curves of FATHMM
and Align GVGD on the diagonal line indicated an absolute
lack of informativeness (AUC = 0.500, which corresponds to
random guessing); as a result, they had the most erroneous
predictions. Our results confirmed that the best programs
for bioinformatic analysis of missense variants of the GJB2
(Cx26), GJB6 (Cx30), and GJB3 (Cx31) connexin genes are
SIFT and PROVEAN.

The resulting performance of the PROVEAN and SIFT
tools turned out to be fully comparable, as previously
described [40, 41]. Note that both programs have the same
algorithm of assessing variants by whether they occur in
evolutionary conserved region or not, which uses the most
popular service, BLASTP (Basic Local Alignment Search
Tool) [3, 24, 27, 40, 41]. Thus, we can assume that both tools
have the same predictability. However, it should be noted
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Figure 3: ROC curves expressing the relationship of the sensitivity and specificity of the tested programs.These graphs illustrate performance
of studied in silico tools. The overall accuracy of the tests can be described as the area under the ROC curve (AUC); a higher AUC
score indicates a better performance. The diagonal line shows the relationship between true-positive and false-positive values of absolutely
uninformative in silico tools (FATHMM and Align GVGD). 95% CI indicates 95% confidence interval (Binomial Exact). The ROC curves
were constructed using the MedCalc statistical software for biomedical researches (https://www.medcalc.org).

that SIFT predicts the effects of all possible substitutions
at each position in the protein sequence calculated from a
Dirichlet mixture. On the other hand, PROVEAN provides
a generalized approach to predict the functional effects of
protein sequence variations computed based on BLOSUM62
[40]. The obtained data indicate that, with a wide choice
of predictive programs, it is important to consider their
methods and tools used for analysis. Also, it should be
considered that any computer analysis of biological data is an
in silico experiment, which has only a more or less reliable
prediction that must be verified by other comprehensive
structural/functional studies.

5. Conclusion

In summary, the analysis of all obtained informative param-
eters (accuracy, sensitivity, and specificity) of the nine in
silico tools along with the correlation coefficient and the area
under the ROC curve showed that SIFT and PROVEAN
were the tools with the best pathogenicity prediction power;
MutationAssessor, PolyPhen-2, and CONDEL performed at
an average level; MutationTaster and MutPred were below
average; and Align GVGD and FATHMM were uninforma-
tive. The results of this study may be applicable for analysis
of novel missense variants of the GJB2 (Cx26), GJB6 (Cx30),
and GJB3 (Cx31) genes.
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