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Cross‑species inference of long 
non‑coding RNAs greatly expands the ruminant 
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Abstract 

Background:  mRNA-like long non-coding RNAs (lncRNAs) are a significant component of mammalian transcrip-
tomes, although most are expressed only at low levels, with high tissue-specificity and/or at specific developmental 
stages. Thus, in many cases lncRNA detection by RNA-sequencing (RNA-seq) is compromised by stochastic sampling. 
To account for this and create a catalogue of ruminant lncRNAs, we compared de novo assembled lncRNAs derived 
from large RNA-seq datasets in transcriptional atlas projects for sheep and goats with previous lncRNAs assembled in 
cattle and human. We then combined the novel lncRNAs with the sheep transcriptional atlas to identify co-regulated 
sets of protein-coding and non-coding loci.

Results:  Few lncRNAs could be reproducibly assembled from a single dataset, even with deep sequencing of the 
same tissues from multiple animals. Furthermore, there was little sequence overlap between lncRNAs that were 
assembled from pooled RNA-seq data. We combined positional conservation (synteny) with cross-species mapping of 
candidate lncRNAs to identify a consensus set of ruminant lncRNAs and then used the RNA-seq data to demonstrate 
detectable and reproducible expression in each species. In sheep, 20 to 30% of lncRNAs were located close to protein-
coding genes with which they are strongly co-expressed, which is consistent with the evolutionary origin of some 
ncRNAs in enhancer sequences. Nevertheless, most of the lncRNAs are not co-expressed with neighbouring protein-
coding genes.

Conclusions:  Alongside substantially expanding the ruminant lncRNA repertoire, the outcomes of our analysis dem-
onstrate that stochastic sampling can be partly overcome by combining RNA-seq datasets from related species. This 
has practical implications for the future discovery of lncRNAs in other species.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Mammalian transcriptomes include many long non-cod-
ing RNAs (lncRNAs), a collective term for transcripts of 
more than 200 nucleotides that resemble mRNAs (many 
being 3′ polyadenylated, 5′ capped and spliced) but do 
not encode a protein product [1]. Proposed functional 
roles of lncRNAs include transcriptional regulation, 

epigenetic regulation, intracellular trafficking and chro-
matin remodelling (see reviews [2–9]). Some view 
lncRNAs as transcriptional noise [10, 11]. Full length 
lncRNAs are difficult to assemble: many are expressed 
at low levels [12], with high tissue-specificity [13, 14], at 
specific developmental time points (e.g. [15–17]), and 
with few signs of selective constraint [18, 19]. Many 
are also expressed transiently, and thus may be partly 
degraded by the exosome complex [20].

The initial recognition of lncRNAs as widespread and 
bona fide outputs of mammalian transcription was based 
on the isolation and sequencing of large numbers of 
mouse and human full-length cDNAs [21–23], many of 
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which were experimentally validated [24] and shown to 
participate in sense-antisense pairs [25]. They were cap-
tured in significant numbers because the cDNA libraries 
were subtracted to remove abundant transcripts. More 
recent studies have used RNA-sequencing (RNA-seq) 
to assemble larger catalogues of lncRNAs [26]. Because 
of the power-law relationship of individual transcript 
abundance in mammalian transcriptomes [27], unless 
sequencing is carried out at massive depth, the exons of 
lowly-abundant transcripts (such as lncRNAs) are subject 
to stochastic sampling and are detected inconsistently 
between technical replicates of the same sample [28]. 
RNA-seq is also a relatively inaccurate means of recon-
structing the 5′ ends of transcripts [29]. To overcome this 
constraint, the FANTOM Consortium supplemented 
RNA-seq with Cap Analysis of Gene Expression (CAGE) 
data, characterising—in humans—a 5′-complete lncRNA 
transcriptome [30].

RNA-seq libraries from multiple tissues, cell types and 
developmental stages are commonly pooled to maximise 
the number of lncRNA gene models assembled. Genome-
wide surveys have expanded the lncRNA repertoire of 
livestock species such as cattle (18 tissues, sequenced at 
approximately 40 to 100 million reads each) [31], pig (10 
tissues, sequenced at approximately 6 to 40 million reads 
each) [32], horse (8 tissues, sequenced at approximately 
20  to  200 million reads each) [33] and sheep (8 tissues, 
sequenced at approximately 16 million reads each) [34], 
complementing tissue-specific lncRNA catalogues of, for 
example, cattle muscle [35, 36] and skin [37], and pig adi-
pose [38, 39], liver [40] and testis [41].

The low level of lncRNA conservation (at some loci, 
it appears that only the act of transcription, rather than 
the transcript sequence itself, is functionally relevant 
[42]) reduces the utility of comparative analysis of the 
large RNA-seq datasets available from humans [30, 43] 
and mouse [44]. Among 200 human and mouse lncRNAs 
that are each characteristic of specific immune cell types, 
there was less than 1% sequence conservation [45].

Here we focus on more closely related species. We have 
generated atlases of gene expression for the domestic 
sheep, Ovis aries [46], and the goat, Capra hircus (manu-
script in preparation). Since these two species are closely 
related (sharing a common ancestor less than 10 million 
years ago (mya) [47]) and their respective RNA-seq data-
sets contain many of the same tissues, it is possible to use 
data from one species to infer the presence of lncRNAs in 
the other. Cattle and humans are more distantly related to 
small ruminants, nevertheless they are substantially more 
similar than mice. We extend our approach by using 
existing human and cattle lncRNA datasets to identify 
a consensus ruminant lncRNA transcriptome, and use 

the sheep transcriptional atlas to confirm that candidate 
lncRNAs identified by cross-species inference are repro-
ducibly expressed. The lncRNA catalogues that we have 
generated in the sheep and goat are of interest in them-
selves [48] and contribute valuable information to the 
Functional Annotation of Animal Genomes (FAANG) 
project [49, 50].

Methods
Sheep RNA‑sequencing data
Previously, we created an expression atlas for the 
domestic sheep [46], using RNA-seq data that were 
largely collected from adult Texel × Scottish Blackface 
(TxBF) sheep. Experimental protocols for tissue col-
lection, cell isolation, RNA extraction, library prepa-
ration, RNA sequencing and quality control are as 
previously described [46], and independently available on 
the FAANG Consortium website (http://www.ftp.faang.
ebi.ac.uk/ftp/protocols). All RNA-seq libraries were 
prepared by Edinburgh Genomics (Edinburgh Genom-
ics, Edinburgh, UK) and sequenced using the Illumina 
HiSeq 2500 sequencing platform (Illumina, San Diego, 
USA). The majority of these libraries were sequenced to a 
depth of more than 25 million paired-end reads per sam-
ple using the Illumina TruSeq mRNA library prepara-
tion protocol (polyA-selected) (Illumina; Part: 15031047, 
Revision E). A subset of 11 transcriptionally rich ‘core’ tis-
sues (bicep muscle, hippocampus, ileum, kidney medulla, 
left ventricle, liver, ovary, reticulum, spleen, testes, thy-
mus), plus one cell type under two conditions (bone mar-
row derived macrophages (BMDM), unstimulated and 
7 h after simulation with lipopolysaccharide (LPS)), were 
sequenced to a depth of more than100 million paired-end 
reads per sample using the Illumina TruSeq total RNA 
library preparation protocol (rRNA-depleted) (Illumina; 
Part: 15031048, Revision E). The choice of ‘core’ tissues 
was informed by those included in previous human and 
mouse transcriptional atlases [51, 52], and reflect the 
high proportion of protein-coding genes transcribed in 
each species. Other samples—in particular, bone mar-
row derived macrophages—were included in the sheep 
expression atlas as a known source of novel mRNAs [53]. 
For characterising lncRNAs, we assume that the tran-
scriptional diversity of protein-coding RNAs reflects the 
transcriptional diversity of non-coding RNAs.

Sample metadata for all tissue and cell samples are 
deposited in the EBI BioSamples database under submis-
sion identifier GSB-718 (https://www.ebi.ac.uk/biosam-
ples/groups/SAMEG317052). The raw read data, as.fastq 
files, are deposited in the European Nucleotide Archive 
(ENA) under study accession PRJEB19199 (http://www.
ebi.ac.uk/ena/data/view/PRJEB19199).

http://www.ftp.faang.ebi.ac.uk/ftp/protocols
http://www.ftp.faang.ebi.ac.uk/ftp/protocols
https://www.ebi.ac.uk/biosamples/groups/SAMEG317052
https://www.ebi.ac.uk/biosamples/groups/SAMEG317052
http://www.ebi.ac.uk/ena/data/view/PRJEB19199
http://www.ebi.ac.uk/ena/data/view/PRJEB19199
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Goat RNA‑sequencing data
All RNA-seq libraries for goat were prepared by Edin-
burgh Genomics (Edinburgh Genomics, Edinburgh, UK) 
(as above) and sequenced using the Illumina HiSeq 4000 
sequencing platform (Illumina, San Diego, USA). These 
libraries were sequenced to a depth of more than 30 
million paired-end reads per sample using the Illumina 
TruSeq mRNA library preparation protocol (polyA-
selected) (Illumina; Part: 15031047, Revision E). Sample 
metadata for all tissue and cell samples are deposited in 
the EBI BioSamples database under submission identifier 
GSB-2131 (https://www.ebi.ac.uk/biosamples/groups/
SAMEG330351). The raw read data, as.fastq files, are 
deposited in the ENA under study accession PRJEB23196 
(http://www.ebi.ac.uk/ena/data/view/PRJEB23196).

Identifying candidate lncRNAs in sheep and goats
Previously, we described an RNA-seq processing pipe-
line for sheep [46]—using the HISAT2 aligner [54] and 
StringTie assembler [55]—for generating a uniform, non-
redundant set of de novo assembled transcripts. The 
same pipeline was applied to the goat RNA-seq data. This 
produced a single file per species, merged.gtf; that is, the 
output of StringTie—merge, which collates every tran-
script model from the 54 goat assemblies (each assembly 
being both individual- and tissue-specific), and 429 of 
the 441 assemblies within the sheep expression atlas [46] 
(12 sheep libraries were not used for this purpose since 
they were replicates of pre-existing bone marrow-derived 
macrophage libraries, which were prepared by using an 
mRNA-seq rather than a total RNA-seq protocol). Not all 
transcript models in either GTF will be stranded. This is 
because HISAT2 infers the transcription strand of a given 
transcript by reference to its splice sites; this is not possi-
ble for single exon transcripts, which are un-spliced.

The GTF was parsed to distinguish candidate lncR-
NAs from assembly artefacts, and from other RNA, 
by applying the filter criteria of Ilott et  al. [56], exclud-
ing gene models that (a) were longer than 200  bp, (b) 
overlapped (by more than 1 bp on the same strand) any 
coordinates annotated as ‘protein-coding’ or ‘pseudo-
gene’ (these classifications are explicitly stated in the 
Ensembl-hosted Oar v3.1 annotation and assumed true 
of all gene models in the ARS1 annotation), or (c) were 
associated with multiple transcript models (which are 
more likely to be spurious). For single-exon gene mod-
els, we used a more conservative length threshold of 
500  bp—the lower threshold of 200  bp could be other-
wise met by a single pair of reads. We further excluded 
any novel gene model that was previously considered 
protein-coding in each species’ expression atlas (as 
described in [46]); these models contain an ORF encod-
ing a peptide homologous to a ruminant protein in the 

NCBI nr database [46]. These criteria establish longlists 
of 30,677 candidate sheep lncRNAs (14,862 of which are 
multi-exonic) and 7671 candidate goat lncRNAs (3289 
of which are multi-exonic). The sheep genome, Oar v3.1, 
already contains 1858 lncRNA models, of which the 
StringTie assembly precisely reconstructs 1402 (75%). 
In spite of this pre-existing support, these models were 
included on the sheep longlist for independent verifica-
tion. The goat genome, by contrast, was annotated with 
a focus on protein-coding gene models [57], by consoli-
dating protein and cDNA alignments—from exonerate 
[58] and tblastn [59]—with the annotation tool EVidence 
Modeller (EVM) [60]. Consequently, there are no unam-
biguous lncRNAs in the associated GTF (http://www.
ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/
GCF_001704415.1_ARS1/GCF_001704415.1_ARS1_
genomic.gff.gz, accessed 23rd October 2017) (unlike the 
Ensembl-hosted sheep annotation, the goat annotation is 
currently only available via NCBI).

Each longlist of candidates was assessed for coding 
potential using three different tools: CPAT v1.2.3 [61], 
which assigns coding probabilities to a given sequence 
based on differential hexamer usage [62] and Fick-
ett TESTCODE score [63], PLEK v1.2, a support vec-
tor machine classifier using k-mer frequencies [64], and 
CPC v0.9-r2 [65], which was used in conjunction with 
the non-redundant sequence database, UniRef90 (the 
Uniref Reference Cluster, a clustered set of sequences 
from the UniProt KnowledgeBase that constitutes a com-
prehensive coverage of sequence space at a resolution 
of 90% identity) [66, 67] (http://www.ftp.uniprot.org/
pub/databases/uniprot/uniref/uniref90/uniref90.fasta.
gz, accessed 18th August 2017). CPC scores putatively 
coding sequences positively and non-coding sequences 
negatively. We retained only those sequences with a CPC 
score less than −  0.5 (consistent with previous studies 
[31, 37]) and a CPAT probability higher than 0.58 (after 
creating sheep-specific coding and non-coding CPAT 
training data, from Oar v3.1 CDS and ncRNA, this cut-
off is the intersection of two receiver operating charac-
teristic curves, obtained using the R package ROCR [68]; 
this cut-off is also used for the goat data, as there are 
insufficient non-coding training data for this species).

For each remaining gene model, we concatenated its 
exon sequence and identified the longest ORF within it. 
Should CPC, CPAT or PLEK make a false positive clas-
sification of ‘non-coding’, this translated ORF was con-
sidered the most likely peptide encoded by the gene. 
Gene models were further excluded if the translated 
ORF (a) contained a protein domain, based on a search 
by HMMER v3.1b2 [69] of the Pfam database of pro-
tein families, v31.0 [70], with a threshold E-value of 
1 × 10−5, or (b) shared homology with a known peptide 

https://www.ebi.ac.uk/biosamples/groups/SAMEG330351
https://www.ebi.ac.uk/biosamples/groups/SAMEG330351
http://www.ebi.ac.uk/ena/data/view/PRJEB23196
http://www.ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/GCF_001704415.1_ARS1/GCF_001704415.1_ARS1_genomic.gff.gz
http://www.ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/GCF_001704415.1_ARS1/GCF_001704415.1_ARS1_genomic.gff.gz
http://www.ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/GCF_001704415.1_ARS1/GCF_001704415.1_ARS1_genomic.gff.gz
http://www.ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/GCF_001704415.1_ARS1/GCF_001704415.1_ARS1_genomic.gff.gz
http://www.ftp.uniprot.org/pub/databases/uniprot/uniref/uniref90/uniref90.fasta.gz
http://www.ftp.uniprot.org/pub/databases/uniprot/uniref/uniref90/uniref90.fasta.gz
http://www.ftp.uniprot.org/pub/databases/uniprot/uniref/uniref90/uniref90.fasta.gz
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in the Swiss-Prot March 2016 release [71, 72], based on 
a search with BLAST + v2.3.0 [59]: blastp with a thresh-
old E-value of 1 × 10−5. Shortlists of 12,296 (sheep) and 
2657 (goat) candidate lncRNAs—each with three inde-
pendent ‘non-coding’ classifications and no detectable 
blastp and HMMER hits—are in Tables S1 and S2 [see 
Additional file 1: Table S1 and Additional file 2: Table S2], 
respectively.

Classification of lncRNAs
Using the set of Oar v3.1 transcription start sites (TSS), 
which was obtained from Ensembl BioMart [73], and the 
set of ARS1 gene start sites (http://www.ftp.ncbi.nlm.nih.
gov/genomes/all/GCF/001/704/415/GCF_001704415.1_
ARS1/GCF_001704415.1_ARS1_genomic .gf f .gz , 
accessed 23rd October 2017), we classified novel candi-
date lncRNAs for each species as done in [74], as either 
(a) sense or antisense (if the coordinates of the lncRNAs 
overlap, or are encapsulated by, a known gene on the 
same, or opposite, strand), (b) up- or downstream, and 
on the same or opposite strand (if < 5 kb from the nearest 
TSS), or (c) intergenic (if ≥ 5, 10, 20, 50, 100, 500 kb or 
1 Mb from the nearest TSS, irrespective of strand). The 
HISAT2/StringTie pipeline, used to generate these tran-
script models, could not infer the transcription strand in 
all cases, particularly for single-exon transcripts. Accord-
ingly, some lncRNAs will overlap the coordinates of a 
known gene, but its strandedness with respect to that 
gene—whether it is sense or antisense—will be unknown.

Conservation of lncRNAs in terms of sequence
To assess the sequence-level conservation of sheep 
and goat lncRNA transcripts, we obtained human 
lncRNA sequences from two databases, NON-
CODE v5 [75] (http://www.noncode.org/datadown-
load/NONCODEv5_human.fa.gz, accessed 27th 
September 2017) and lncRNAdb v2.0 [76] (http://
www.lncrnadb.com/media/cms_page_media/10651/
Sequences_lncrnadb_27Jan2015.csv, accessed 27th Sep-
tember 2017) (which contain 172,216 and 152 lncRNAs, 
respectively). A previous study of lncRNAs in cattle [31] 
also generated a conservative set of 9778 lncRNAs, all of 
which were detectably expressed in at least one of the 18 
tissues (read count > 25 in each of three replicates per tis-
sue). These sets of sequences constitute three independ-
ent BLAST databases. For each sheep and goat lncRNA, 
blastn searches [59] were made against each database 
using an arbitrarily high E-value of 10, as substantial 
sequence-level conservation was not expected.

Conservation of lncRNAs in terms of synteny
For each of the human (GRCh38.p10), sheep (Oar v3.1), 
cattle (UMD3.1) and goat (ARS1) reference genomes, we 

established those regions in each pairwise comparison 
where gene order is conserved, obtaining reference anno-
tations from Ensembl BioMart v90 [73] (sheep, cattle and 
human) and NCBI (goat; http://www.ftp.ncbi.nlm.nih.
gov/genomes/all/GCF/001/704/415/GCF_001704415.1_
ARS1/GCF_001704415.1_ARS1_genomic .gf f .gz , 
accessed 27th September 2017). By advancing a sliding 
window across each chromosome gene-by-gene from the 
5′ end, we identified the first upstream and first down-
stream gene of each focal gene, irrespective of strand. 
For the purpose of this analysis, the first and last genes 
on each chromosome are excluded, since they have no 
upstream or downstream neighbour, respectively. Then, 
for each pairwise species comparison, we determined 
which sets of blocks were present in both—that is, where 
the HGNC symbols for upstream gene/focal gene/down-
stream gene were identical. These syntenic blocks, of 
three consecutive genes each, are regions in the genome 
where gene order is conserved both up- and downstream 
of a focal gene: between sheep and cattle, there are 2927 
regions (comprising 5601 unique genes); sheep and goat, 
2038 regions (3883 unique genes); cattle and goat, 2982 
regions (5258 unique genes); sheep and human, 380 
regions (930 unique genes); goat and human, 527 regions 
(1262 unique genes); cattle and human, 443 regions 
(1063 unique genes). If in each syntenic block a lncRNA 
was found between the upstream and focal gene, or the 
focal and downstream gene, in only one of the two spe-
cies, a global alignment was made between the transcript 
and the intergenic region of the corresponding species. 
Alignments were made using the Needleman-Wunsch 
algorithm, as implemented by the ‘needle’ module of 
EMBOSS v6.6.0 [77], with default parameters. By effec-
tively treating lncRNA transcripts as if they were CAGE 
tags (that is, short reads of 20 to 50 nucleotides [78]), we 
considered successful alignments as those containing 
one or more consecutive runs of 20 identical residues, 
without gaps. The probability that a transcript randomly 
matches 20 consecutive residues, within a pre-defined 
region, is extremely low.

For successful alignments, the target sequence (that 
is, an extract from the intergenic region) was consid-
ered to be a novel lncRNA. For this analysis, the sheep 
and goat lncRNAs used are those from their respective 
shortlists [see Additional file 1: Table S1 and Additional 
file  2: Table S2]. Locations of lncRNAs in other species 
are obtained from previous studies that applied similarly 
conservative classification criteria. For cattle, 9778 lncR-
NAs were obtained [31], each of which were longer than 
200 bp, considered non-coding by the classification tools 
CPC [65] and CNCI [79], lacked sequence similarity to 
the NCBI nr [46] and Pfam databases [70], and had a nor-
malised read count higher than 25 in at least two of three 

http://www.ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/GCF_001704415.1_ARS1/GCF_001704415.1_ARS1_genomic.gff.gz
http://www.ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/GCF_001704415.1_ARS1/GCF_001704415.1_ARS1_genomic.gff.gz
http://www.ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/GCF_001704415.1_ARS1/GCF_001704415.1_ARS1_genomic.gff.gz
http://www.noncode.org/datadownload/NONCODEv5_human.fa.gz
http://www.noncode.org/datadownload/NONCODEv5_human.fa.gz
http://www.lncrnadb.com/media/cms_page_media/10651/Sequences_lncrnadb_27Jan2015.csv
http://www.lncrnadb.com/media/cms_page_media/10651/Sequences_lncrnadb_27Jan2015.csv
http://www.lncrnadb.com/media/cms_page_media/10651/Sequences_lncrnadb_27Jan2015.csv
http://www.ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/GCF_001704415.1_ARS1/GCF_001704415.1_ARS1_genomic.gff.gz
http://www.ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/GCF_001704415.1_ARS1/GCF_001704415.1_ARS1_genomic.gff.gz
http://www.ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/GCF_001704415.1_ARS1/GCF_001704415.1_ARS1_genomic.gff.gz
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replicates per tissue for 18 tissues. For human, 17,134 
lncRNAs were obtained [80], each of which were assem-
bled from transfrags longer than 250  bp, considered 
non-coding by the classification tool CPAT [61], lacked 
sequence similarity to the Pfam database [70], and had 
active transcription confirmed by intersecting intervals 
surrounding the transcriptional start site with chromatin 
immunoprecipitation and sequencing (ChIP-seq) data 
from 13 cell lines.

Quantification of expression level
For the 11 ‘core’ tissues of the sheep expression atlas, plus 
unstimulated and LPS-stimulated BMDMs (for details 
Table S2 in [46] and available under ENA accession 
PRJEB19199), expression was quantified using Kallisto 
v0.43.0 [81] with a k-mer index (k = 31) derived after 
supplementing the Oar v3.1 reference transcriptome 
with the shortlist of 11,646 novel sheep lncRNA models 
(Additional file  1: Table S1) and those lncRNAs assem-
bled in either human (n = 18), goat (n = 164), or cattle 
(n = 1219), and which map to a conserved region of the 
sheep genome [see Additional file 3: Table S3]. Oar v3.1 
transcripts were obtained from Ensembl v90 [73] in the 
form of separate files for 22,823 CDS (http://www.ftp.
ensembl.org/pub/release-90/fasta/ovis_aries/cds/Ovis_
aries.Oar_v3.1.cds.all.fa.gz, accessed 27th September 
2017) and 6005 ncRNAs (http://www.ftp.ensembl.org/
pub/release-90/fasta/ovis_aries/ncrna/Ovis_aries.Oar_
v3.1.ncrna.fa.gz, accessed 27th September 2017).

An equivalent set of expression estimates was made 
for goat, across the 21 tissues and cell types of the goat 
expression atlas (i.e., 54 RNA-seq libraries available under 
ENA accession PRJEB23196). 47,193 transcripts, from 
assembly ARS1, were obtained from NCBI (http://www.
ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/
GCF_001704415.1_ARS1/GCF_001704415.1_ARS1_
rna.fna.gz, accessed 27th September 2017), and sup-
plemented both with the shortlist of 2657 novel goat 
lncRNA models [see Additional file  2: Table S2], and 
those lncRNAs assembled in human (n = 15), sheep 
(n = 507), or cattle (n = 1213) [see Additional file 3: Table 
S3]. After quantification in each species, transcript-level 
abundances were summarised to the gene-level.

Categorisation of expression profiles
Expression levels were categorised as done in the Human 
Protein Atlas [82], and as previously employed in the 
Sheep Gene Expression Atlas [46]. Each gene is consid-
ered to have either no detectable expression (average 
TPM < 1, a threshold chosen to minimise the influence 
of stochastic sampling), low expression (10 > average 
TPM ≥ 1), medium expression (50 > average TPM > 10), 
or high expression (average TPM ≥ 50). Three sample 

specificity indices were calculated for each gene, as in 
[46]. These include tau, a scalar measure of expression 
breadth bound between 0 (for housekeeping genes) and 
1 (for genes expressed in one sample only) [83], and the 
mean TPM (across all samples) divided by the median 
TPM (across all tissues). Genes with greater sample spec-
ificity will have a more strongly skewed distribution (i.e. 
a higher mean and a lower median), and so the larger the 
ratio, the more sample-specific the expression. To avoid 
undefined values, if median TPM is equal to 0, it is set to 
0.01.

We also calculated a preferential expression measure 
(PEM), as in [84]. PEM is calculated per tissue per gene 
(unlike tau) and quantifies the expression of a given 
gene in a given tissue in relation to its average expres-
sion across all tissues (more tissue-specific genes will 
have higher PEM values for that tissue). For each gene 
i in tissue ti, PEM(ti) = S −  A, where S = expression of 
gene i in tissue ti, and A = arithmetic mean expression of 
gene i across all tissues. As there are biological replicates 
of each tissue, we considered S to be the mean TPM per 
gene and A to be the mean of all values of S. Before PEM 
was calculated, all values less than 1 were considered to 
be 1, and a log2-transformation was then applied.

Each gene is also assigned one or more categories, to 
allow an at-a-glance overview of its expression profile: (a) 
‘tissue enriched’ (expression in one tissue at least five-fold 
higher than all other tissues [‘tissue specific’ if all other 
tissues have 0 TPM]), (b) ‘tissue enhanced’ (five-fold 
higher average TPM in one or more tissues compared 
to the mean TPM of all tissues with detectable expres-
sion [this category is mutually exclusive with ‘tissue 
enriched’), (c) ‘group enriched’ (five-fold higher average 
TPM in a group of two or more tissues compared to all 
other tissues (‘groups’ are analogous to organ systems, 
and are as described in the sheep expression atlas [46]), 
(d) mixed expression (detected in one or more tissues 
and neither of the previous categories), (e) ‘expressed in 
all’ (more than 1 TPM in all tissues), and (f ) ‘not detected’ 
(less than 1 TPM in all tissues).

Network analysis
Network analysis of the sheep expression level data was 
performed using Graphia Professional (Kajeka Ltd, Edin-
burgh, UK), a commercial version of BioLayout Express3D 
[85, 86]. A correlation matrix was built for each gene-
to-gene comparison, which was then filtered by remov-
ing all correlations below a given threshold (Pearson’s 
r < 0.95). A network graph was constructed by connecting 
nodes (genes) with edges (correlations above the thresh-
old). The local structure of the graph—that is, clusters 
of co-expressed genes—was interpreted by applying the 

http://www.ftp.ensembl.org/pub/release-90/fasta/ovis_aries/cds/Ovis_aries.Oar_v3.1.cds.all.fa.gz
http://www.ftp.ensembl.org/pub/release-90/fasta/ovis_aries/cds/Ovis_aries.Oar_v3.1.cds.all.fa.gz
http://www.ftp.ensembl.org/pub/release-90/fasta/ovis_aries/cds/Ovis_aries.Oar_v3.1.cds.all.fa.gz
http://www.ftp.ensembl.org/pub/release-90/fasta/ovis_aries/ncrna/Ovis_aries.Oar_v3.1.ncrna.fa.gz
http://www.ftp.ensembl.org/pub/release-90/fasta/ovis_aries/ncrna/Ovis_aries.Oar_v3.1.ncrna.fa.gz
http://www.ftp.ensembl.org/pub/release-90/fasta/ovis_aries/ncrna/Ovis_aries.Oar_v3.1.ncrna.fa.gz
http://www.ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/GCF_001704415.1_ARS1/GCF_001704415.1_ARS1_rna.fna.gz
http://www.ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/GCF_001704415.1_ARS1/GCF_001704415.1_ARS1_rna.fna.gz
http://www.ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/GCF_001704415.1_ARS1/GCF_001704415.1_ARS1_rna.fna.gz
http://www.ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/GCF_001704415.1_ARS1/GCF_001704415.1_ARS1_rna.fna.gz
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Markov clustering (MCL) algorithm [87] at an inflation 
value (which determines cluster granularity) of 2.2.

Enrichment of lncRNAs in the vicinity of protein‑coding 
genes
To test whether lncRNAs that are co-expressed with 
protein-coding genes are more likely to be closer to 
them (from which we can infer that they are more likely 
to have been derived from an enhancer sequence affect-
ing that protein-coding gene), we used a randomisation 
test as in [88]. First, we obtained clusters of co-expressed 
genes from a network graph of the sheep expression level 
dataset (see above). We then calculated q, the number of 
times the distance between each lncRNA and the nearest 
protein-coding gene within the same cluster was higher 
than the distance between each lncRNA and the nearest 
gene within s = 1000 randomly selected, equally sized, 
subsets of protein-coding genes, drawn from the same 
chromosome as each lncRNA. Letting r = s − q, then the 
p-value of this test is r + 1/s + 1.

Results and discussion
Identifying lncRNAs in the sheep and goat transcriptomes
Previously, we created an expression atlas for the domes-
tic sheep [46], using both polyadenylated and rRNA-
depleted RNA-seq data that were collected primarily 
from three male and three female adult Texel × Scottish 
Blackface (T × BF) sheep at 2 years of age: 441 RNA-seq 
libraries in total, comprising five cell types and multi-
ple tissues spanning all major organ systems and sev-
eral developmental stages, from embryonic to adult. To 
complement this dataset, we also created a smaller-scale 
expression atlas—of 54 mRNA-seq libraries—from 6-day 
old crossbred goats, which will be the subject of a dedi-
cated analysis. For both species, each RNA-seq library 
was aligned against its reference genome (Oar v3.1 and 
ARS1, for sheep and goat, respectively) using HISAT2 
[54], with transcripts assembled using StringTie [55]. 
This pipeline produced a non-redundant set of de novo 
gene and transcript models, as previously described 
[46], and expanded the set of transcripts in each refer-
ence genome to include ab initio lncRNA predictions and 
novel protein-coding genes. As the primary purpose of 
the sheep expression atlas was to improve the functional 
characterisation of the protein-coding transcriptome, the 
novel sheep protein-coding transcript models generated 
by this pipeline are discussed in [46] (novel protein-cod-
ing transcripts for goats will be discussed in a dedicated 
analysis of the protein-coding goat transcriptome).

Using similar filter criteria to a previous study [56], the 
de novo gene models were parsed to create longlists of 

30,677 (sheep) and 7671 (goat) candidate lncRNAs, each 
of which was longer than 200 bp and was not associated, 
on the same strand, with a known protein-coding locus. 
The fourfold difference in the length of each longlist can 
be attributed to the relative size of each dataset. The 
sheep atlas contains 8 times as many RNA-seq libraries, 
spans multiple developmental stages (from embryonic 
to adult), and has a subset of its samples that was spe-
cifically prepared to ensure the comprehensive capture of 
ncRNAs—unlike any sample in the goat dataset, this sub-
set is sequenced at a fourfold higher depth (> 100 million 
reads, rather than > 25 million reads) using a total RNA-
seq, rather than mRNA-seq, protocol.

Each model on both longlists was assessed for coding 
potential using the classification tools CPC [65], CPAT 
[61] and PLEK [64], alongside homology searches of its 
longest ORF—with blastp [59] and HMMER [69]—to 
known protein and domain sequences (within the Swiss-
Prot [71, 72] and Pfam-A [70] databases, respectively). 
Those gene models classified as non-coding by CPC, 
CPAT and PLEK, and having no detectable blastp and 
HMMER hits, are considered novel lncRNAs.

This pipeline creates shortlists of 12,296 (sheep) and 
2657 (goat) lncRNAs [see Additional file 1: Table S1 and 
Additional file  2: Table S2], respectively), representing 
approximately 40% (sheep) and 35% (goat) of the gene 
models on each longlist. The mean gene length is similar 
in both shortlists—6.7  kb (sheep) and 8.8  kb (goat)—as 
its summed exon length, averaging 1.2 kb in each species.

Consistent with previous analyses in several other 
species [31, 89], 6956 (57%) of the sheep lncRNAs, and 
1284 (48%) of the goat lncRNAs, were single-exonic. For 
sheep, the shortlist contains 11,646 previously unknown 
lncRNA models and provides additional evidence for 
650 existing Oar v3.1 lncRNA models (Additional file 1: 
Table S1). A small proportion of longlisted gene mod-
els were considered non-coding by at least one of CPC, 
CPAT or PLEK, nevertheless they showed some degree of 
sequence homology to either a known protein or protein 
domain: for sheep, 226 (including 13 existing Oar v3.1 
models) [see Additional file  1: Table S4], and for goats, 
153 [see Additional file 2: Table S5]. The number of novel 
lncRNAs identified is also given per chromosome, for 
sheep [see Additional file  1: Table S6] and for goat [see 
Additional file  2: Table S7] and per type, for sheep [see 
Additional file  1: Table S8] and for goat [see Additional 
file 2: Table S9], the majority of which—in both species—
are found in intergenic regions, 10  to  100  kb from the 
nearest gene. Overall, the addition of these lncRNA mod-
els increases the total number of genes in the reference 
annotation by approximately 30% (sheep) and 12% (goat).
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The sets of ab initio sheep and goat lncRNAs only 
minimally overlap at the sequence level
Even with full length cDNA sequences, comparative anal-
ysis revealed that the majority are not conserved between 
species: estimates of the proportion of human lncRNAs 
with mouse counterparts range from 14 [90]–27% [23] 
(see also review [19]). When comparing the sets of sheep 
and goat lncRNAs, few predicted transcripts—in either 
species—show sequence-level similarity either to each 
other or to other closely or distantly related species (cat-
tle and humans, respectively, which shared a common 
ancestor with sheep and goats approx. 25 and 95  mya 
[47]). Of the 12,296 shortlisted sheep lncRNAs, less than 

half (n = 5139, i.e. 42%) had any detectable pairwise align-
ment—of any quality and of any length—to either the 
shortlisted goat lncRNAs, a set of 9778 cattle lncRNAs 
from a previous study [31] or two sets of human lncRNAs 
(Fig. 1 and Table S10 [see Additional file 1: Table S10]).

High confidence is possible only for a small proportion 
of these alignments, i.e. the alignment has a % identity 
higher than 50% within an alignment longer than 50% 
of  the length of the target sequence. Of the 5139 sheep 
lncRNAs that could be aligned to any species, only 293 
(5.7%) could be aligned with high confidence to goat and 
265 (5.2%) to cattle transcripts. Similarly, of the sheep 
lncRNAs that could be aligned to either of two human 

Fig. 1  Minimal overlap of lncRNAs at the sequence level. Venn diagrams show the number of sheep (a and c) or goat (b and d) lncRNAs that can 
be aligned—either with an alignment of any length or quality (A and B), or with ≥ 50% identity over ≥ 50% of the length of the target sequence (c 
and d)—to either shortlist of goat (a and c) or sheep (b and d) lncRNAs, and to sets of cattle and human lncRNAs from previous studies. The major-
ity (58% of sheep lncRNAs, and 49% of goat lncRNAs) have no associated alignment. Alignments are detailed in Additional file 1: Table S10 (sheep) 
and Additional file 1: Table S11 (goat)
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lncRNA databases—NONCODE [75] and lncRNAdb 
[76]—68 (1.6% of the total alignable lncRNA) aligned 
with high confidence to the NONCODE database, and 
none to the lncRNAdb. Similar findings are observed 
with the 2657 shortlisted goat lncRNAs: 1343 (50.5%) 
had a detectable pairwise alignment, of any quality, to 
either set of sheep, cattle or human lncRNAs. However, 
of these 1343 lncRNAs, only 113 (8.4%) aligned with high 
confidence to sheep, 88 (6.6%) to cattle, 55 (4.1%) to the 
human NONCODE database, and 1 (0.1%) to the human 
lncRNAdb database (Fig. 1 and Table S11 [see Additional 
file 2: Table S11]). These observations allow for two pos-
sibilities. First, lncRNAs may, in general, be poorly con-
served at the sequence level, which is consistent with 
previous findings [18, 19] and the observation that only 
6% of the sheep/goat alignments have more than 50% 
reciprocal identity. However, an alternative is that in spite 
of the apparent depth of coverage, we have only assem-
bled a subset of the total lncRNA transcriptome in each 
species.

lncRNAs not captured by the RNA‑seq libraries of one 
species can be found using data from a related species
A reasonable a priori prediction is that lncRNAs con-
served in a closely related species—which are more 
likely to be functionally relevant—are also more similarly 
expressed. Whereas human and mouse lncRNAs identi-
fied as full length cDNAs were generally less conserved 
between species than the 5′ and 3′UTR of protein-coding 
transcripts, their promoters were more highly conserved 
than those of protein-coding transcripts, some extending 
as far as chicken [44, 91]. These findings suggested that 
the large majority of lncRNAs that were analyzed dis-
played positional conservation across species. Accord-
ingly, rather than comparing the similarity of two sets of 
lncRNA transcripts, we mapped the lncRNAs assembled 
in one species (e.g. sheep) to the genome of another (e.g. 

goat), deriving confidence in the mapping location from 
synteny.

For each of the pairwise sheep/cattle, sheep/goat, cat-
tle/goat, sheep/human, goat/human, and cattle/human 
comparisons, we identified sets of syntenic blocks: 
regions in the genome where gene order is conserved 
both up- and downstream of a focal gene (see Table 1 and 
the “Methods” section).

In the sheep/cattle comparison, approximately 5% of 
the syntenic blocks contain at least one lncRNA with 
a relative position conserved in both species, either 
upstream (n = 139 lncRNAs) or downstream (n = 141) 
of the central gene in each block [see Additional file  3: 
Table S12]. In the sheep/goat and cattle/goat compari-
sons, respectively, approximately 2 and 3% of the syn-
tenic blocks contain a lncRNA (for sheep/goat, n = 42 
upstream, 40 downstream; for cattle/goat, 86 upstream, 
83 downstream) [see Additional file  3: Tables S13 and 
S14]. With increased species divergence, far fewer lncR-
NAs have relative positions conserved in either the 
upstream or downstream positions of the sheep/human, 
goat/human and cattle/human syntenic blocks (typi-
cally, < 1% of the syntenic blocks contain a lncRNA) [see 
Additional file  3: Tables S15, S16 and S17]. These com-
paratively small proportions highlight the minimal over-
lap between each set of assembled transcripts, which is 
consistent with stochastic assembly—lncRNAs expected 
to be present in a particular location are captured in 
only one species, not both. As such, very few lncRNAs in 
either of the sheep, goat and cattle subsets have evidence 
of both shared sequence homology and conserved syn-
teny. When comparing sheep and cattle, 16 unique lncR-
NAs have high-confidence pairwise alignments within 
a region of conserved synteny, and six when comparing 
sheep and goat [see Additional file 3: Table S18].

In most of the syntenic blocks examined, if a lncRNA 
was detected in one location in one species (either up- or 

Table 1  Comparatively few lncRNAs appear positionally conserved, suggesting minimal overlap between  each species’ 
set of transcripts

The results suggest that the lncRNAs that are expected to be found at a given genomic location are captured in only one species, not both, consistent with the 
stochastic sampling of lncRNAs by RNA-seq libraries

Species 1 Species 2 Number of syntenic blocks 
(i.e. three conserved con‑
secutive genes)

Number of unique pro‑
tein-coding genes in the 
set of syntenic blocks

Total number of positionally 
conserved lncRNAs in the set 
of syntenic blocks (in either the 
up- or downstream position)

% of syntenic blocks 
with at least one 
positionally conserved 
lncRNA

Sheep Cattle 2927 5601 280 9.57

Sheep Goat 2038 3883 82 4.02

Sheep Human 380 930 8 2.11

Goat Cattle 2982 5258 169 5.67

Goat Human 527 1262 2 0.38

Cattle Human 443 1063 5 1.13
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downstream of a focal gene), no corresponding assem-
bled lncRNA was annotated in the species used for com-
parison, although for both species a similar range of 
tissues was sequenced. For example, of the 2927 syntenic 
blocks in the sheep/cattle comparison, 347 (12%) of the 
sheep blocks, and 506 (17%) of the cattle blocks, contain 
a lncRNA in the ‘upstream’ position (that is, between 
genes 1 and 2), with little overlap between the two spe-
cies: in only 139 blocks (5%) is a lncRNA present in this 
position in both species [see Additional file 3: Table S12]. 
Similar results are found if the ‘downstream’ position is 
considered, as well as the sheep/goat, goat/cattle, sheep/
human, goat/human and cattle/human comparisons: 
approximately 2 to 5 times as many lncRNAs are found 
in either of the two species than are found in both [see 
Additional file 3: Tables S13, S14, S15, S16 and S17].

Each set of syntenic blocks, by definition, represents a 
set of conserved intergenic regions. Given that the major-
ity of the lncRNAs are intergenic [see Additional file  1: 
Table S8 and Additional file 2: Table S9], these regions are 
reasonable locations for mapping candidate transcripts 
(strictly speaking, concatenated exon sequences) directly 
to the genome. For the syntenic blocks in each species 
comparison, we made global alignments of the lncRNAs 
in species x to the intergenic region of species y, and vice 
versa (see Methods section). Retaining only those align-
ments in which the lncRNA can match the intergenic 
region with 20 or more consecutive residues (the major-
ity of these alignments in any case have more than 75% 

identity across their entire length), we predicted 1077 
additional lncRNAs in cattle, 1401 in sheep, and 1735 in 
goat, although only 44 in humans (Table 2).

The fact that comparatively few ruminant lncRNAs 
are recognisable at the sequence level in humans (and 
vice versa) is consistent with the rapid turnover of the 
lncRNA repertoire between species [92]. In the case of 
the goat, the number of new lncRNAs predicted by this 
approach is 50% more than the number captured (and 
shortlisted) using goat-specific RNA-seq (Fig. 2).

This suggests that for the purposes of lncRNA detec-
tion, datasets from related species can help overcome 
limitations of sequencing breadth and depth. This is even 
apparent with comparatively large datasets—the sheep 
RNA-seq, for instance, spans more tissues and develop-
mental stages than goat, but in absolute terms, it still fails 
to generate assemblies of many lncRNAs.

Many of the sheep lncRNAs inferred by synteny—which 
could not be fully assembled from the RNA‑seq reads: are 
nevertheless detectably expressed
To determine the expression level of the sheep lncRNAs, 
we used a subset of 71 high-depth (> 100 million reads) 
RNA-seq libraries from the sheep expression atlas [46]. 
This subset constitutes a set of 11 transcriptionally-
rich tissues (bicep muscle, hippocampus, ileum, kidney 
medulla, left ventricle, liver, ovary, reticulum, spleen, 
testes, thymus), plus one cell type under two conditions 
(bone marrow derived macrophages, unstimulated and 

Table 2  Direct mapping of lncRNA transcripts to the genome of another species

The results show that lncRNA transcripts assembled using the RNA-seq libraries of only one species can in many cases be directly mapped to the genome of another 
species, assuming the lncRNA is located within a region of conserved synteny

Species 1 (in 
which lncRNAs 
are captured 
by RNA-seq 
libraries)

Species 2 (in 
which lncRNA 
can be inferred)

Number of lncRNA models 
detected within a region 
of conserved synteny 
between species 1 and 2, 
but not captured by the 
RNA-seq libraries of spe‑
cies 2

Number 
of lncRNA 
models 
from species 
1 mapped 
to the genome 
of species 2

% of lncRNA 
models 
detected 
by direct 
genome map‑
ping

Number of inter‑
genic regions 
in the syntenic 
blocks conserved 
between these two 
species

% of intergenic 
regions in which a 
lncRNA from spe‑
cies 1 is inferred 
in species 2

Cattle Goat 2593 1213 46.78 5964 20.34

Human 163 20 12.27 886 2.26

Sheep 2939 1219 41.48 5854 20.82

Goat Cattle 2593 286 11.03 5964 4.8

Human 76 9 11.84 1054 0.85

Sheep 991 164 16.55 4076 4.02

Human Cattle 163 16 9.82 886 1.81

Goat 76 15 19.74 1054 1.42

Sheep 93 18 19.35 760 2.37

Sheep Cattle 2939 775 26.37 5854 13.24

Goat 991 507 51.16 4076 12.44

Human 93 15 16.13 760 1.97
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7  h after simulation with lipopolysaccharide), each of 
which was sequenced in up to six individuals (where pos-
sible, three adult males and three adult females).

For each sample, expression was quantified—as tran-
scripts per million (TPM)—using the quantification tool 
Kallisto [81] [see Additional file  1: Table S19]. Kallisto 
quantifies expression by matching k-mers from the 
RNA-seq reads to a pre-built index of k-mers, derived 
from a set of reference transcripts. For sheep, we supple-
mented the complete set of Oar v3.1 reference transcripts 
(n = 28,828 transcripts, representing 26,764 genes) both 
with the shortlist of 11,646 novel lncRNAs (each of which 
is a single-transcript gene model) [see Additional file  1: 
Table S1], and those lncRNAs assembled from either 
human, goat and cattle (respectively, 18, 164 and 1219 
lncRNA; see Table  2), the presence of which was pre-
dicted in sheep by mapping the transcript to a conserved 
genomic region.

Of these 13,047 novel lncRNAs, 8826 were detected 
at a level of TPM higher than 1 in at least one of the 71 

adult samples, including 14 of the human transcripts 
(78%), 128 of the goat transcripts (78%), and 772 of the 
cattle transcripts (63%) [see Additional file 1: Table S19]. 
At a depth of coverage of 100 million reads, we would 
expect to detect transcripts reproducibly at between 
0.01 and 0.1 TPM if they are expressed in all the libraries 
that are derived from the same tissue/cell type. Indeed, 
of the 13,047 total novel lncRNAs, 5353 (41%) were 
detected with at least one paired-end read in all six rep-
licates of the tissue in which it is most highly expressed 
[see Additional file 1: Table S19]. Those lncRNAs derived 
from goat and cattle transcripts are similarly reproduc-
ible: 83 (51%) of the goat transcripts were detected with 
at least one paired-end read in all 6 replicates of its most 
expressed tissue, as were 570 (47%) of the cattle tran-
scripts, and 7 (39%) of the human transcripts [see Addi-
tional file 2: Table S20].

By extension, we can consider sheep, cattle and human 
lncRNAs to be goat lncRNAs, and create a Kallisto index 
containing candidate lncRNAs that are extracted from 

Fig. 2  Stochastic detection and assembly of lncRNAs by RNA-seq libraries. These results—a consequence of limitations in sequencing breadth 
and depth—suggest that for a given species, only a subset of the total lncRNA transcriptome is likely to be captured. Nevertheless, the number of 
candidate lncRNAs for that species can be increased if directly mapping, to a positionally conserved region of the genome, the lncRNAs from either 
a related (sheep, goat, cattle) or more distant (human) species. Many of these mapped lncRNAs (which could not be completely reconstructed with 
the RNA-seq libraries of that species) are nevertheless detectably expressed
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the goat genome after mapping sheep and cattle tran-
scripts. Using such a Kallisto index (which contains the 
2657 shortlisted goat lncRNAs [see Additional file  2: 
Table S2], 507 sheep lncRNAs, 1213 cattle lncRNAs, and 
15 human lncRNAs), 1478 (34%) of a total set of 4392 
candidate goat lncRNAs were reproducibly detected 
(> 0.01 TPM) in all four sampled goats [see Additional 
file 2: Table S20]. Hence, data from the sheep expression 
atlas can be used to provide additional functional anno-
tation of the goat genome, in spite of the much smaller 
number of tissue samples compared to sheep.

In general, lncRNA expression is low: 12,325 sheep 
lncRNAs (94% of the total) have a mean TPM less than 
10 across all 71 samples. The mean and median maxi-
mum TPM for each lncRNA across the total sheep data-
set was 18.4 and 2.2 TPM, respectively [see Additional 
file  1: Table S19]). Other reports have described per-
vasive, but low-level, mammalian lncRNA transcrip-
tion [12], and—given that the mean TPM exceeds the 
median—a high degree of lncRNA tissue-specificity 
[93–95]. Indeed, for those lncRNAs detected at a TPM 
less than 1, the average value of tau—a scalar measure 
of expression breadth bound between 0 (for housekeep-
ing genes) and 1 (for genes expressed in one sample only) 
[83] (see Methods section)—is 0.66. Although most of 
the lncRNAs (n = 4972, 65% of the 7627 lncRNAs with 
an average TPM higher than 1 in at least one tissue) have 
idiosyncratic ‘mixed expression’ profiles (see Methods 
section), 1339 lncRNAs (17%) are nevertheless detected 
at an average TPM higher than 1 in all 13 tissues [see 
Additional file 1: Table S19]. Many are enriched in spe-
cific tissues, with 905 (12%) lncRNAs exhibiting either a 
testes-enriched (that is, fivefold higher expression in tes-
tes than other tissues) or testes-specific expression pat-
tern (that is a TPM higher than 1 in the testes and equal 
to 0 in all other tissues), which is consistent with a previ-
ous study that identified numerous lncRNAs involved in 
ovine testicular development and spermatogenesis [96]. 
Many lncRNAs are expressed most strongly, even if not 
uniquely, in the testes. Each gene can be associated with 
a tissue in which it has the highest preferential expression 
measure (PEM; see Methods section). For the majority of 
genes, this tissue is the testes (n = 3770, 49% of the 7627 
lncRNA with an average TPM higher than 1 in at least 
one tissue) [see Additional file 1: Table S19].

Few lncRNAs are fully captured by biological replicates 
of the same RNA‑seq library
In the largest assembly of predicted lncRNAs, from 
humans, the transfrags (transcript fragments) assem-
bled from 7256 RNA-seq libraries were consolidated 
into 58,648 candidate lncRNAs [80]. Before assembling 
transfrags, machine-learning methods were used to 

filter, from each library, any library-specific background 
noise (genomic DNA contamination and incompletely 
processed RNA). Then, filtered libraries were merged 
before assembling the final gene models, which in effect 
is equivalent to pooling together transfrags (which may 
be partial or full-length transcripts) from all possible 
libraries. Consequently, a given set of transfrags can be 
assembled into a consensus transcript for a lncRNA, 
but that consensus transcript might not actually exist in 
any one cellular source. The only unequivocal means to 
confirm the full-length expression would be to clone the 
full-length cDNA. However, additional confidence could 
be obtained by increasing the depth of coverage in the 
same tissue/cell type in a technical replicate. In the sheep 
expression atlas, 31 diverse tissues/cell types were sam-
pled in each of six individual adults (three females, three 
males, all unrelated virgin animals approximately 2 years 
old). By taking a subset of 31 common tissues per indi-
vidual, each of the six adults was represented by ~ 0.75 
billion reads.

In a typical lncRNA assembly pipeline, read align-
ments from all individuals are merged, to maximise the 
number of candidate gene models (using, for instance, 
StringTie—merge; see Methods). With n = 6 adults (and 
~ 0.75 billion reads per adult), there are 2n − 1 = 63 pos-
sible combinations of data for which GTF can be made 
with StringTie—merge. The reproducibility of each 
shortlisted lncRNA, in terms of the number of GTF it is 
reconstructed in, is shown in Table S21 [see Additional 
file  1: Table S21]. The GTF themselves are available via 
the University of Edinburgh DataShare portal; http://
dx.doi.org/10.7488/ds/2284.

Only 812 of the 12,296 sheep lncRNAs (6.6%) could 
be fully reconstructed by any of the 63 GTF combina-
tions [see Additional file 1: Table S21]. One caveat in this 
assessment is that these sheep libraries are exclusively 
from adults. Many of the 12,296 lncRNA models may 
instead be expressed during embryonic development. 
There is evidence of extensive embryonic lncRNA expres-
sion in humans [15, 97] and mouse [16, 98]. The lack of 
embryonic tissues could also explain why fewer lncRNAs 
were assembled in goat. Nevertheless, when considering 
all 429 RNA-seq libraries in the sheep expression atlas 
(i.e. including non-adult samples), there are only, on aver-
age, 29 libraries (7%) in which any individual lncRNA can 
be fully reconstructed (Fig. 3 and Additional file 1: Table 
S22).

In many cases, full-length sheep lncRNAs cannot 
be reconstructed using all the reads sequenced from 
a given individual. For instance, the known lncRNA 
ENSOARG00000025201 is reconstructed by 28 of the 
63 possible GTF, but none of these GTF was built using 
reads from only one individual [see Additional file  1: 

http://dx.doi.org/10.7488/ds/2284
http://dx.doi.org/10.7488/ds/2284
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Table S21]. Only 189 lncRNAs (1.5%) were fully recon-
structed in all 63 possible GTF. Notably, 154 of these are 
known Ensembl lncRNAs [see Additional file  1: Table 
S21].

lncRNAs are enriched in the vicinity of co‑expressed 
protein‑coding genes
Enhancer sequences positively modulate the transcrip-
tion of nearby genes (see reviews [99, 100]), and may be 
the evolutionary origin of a fraction of these lncRNAs 
(as suggested by [101, 102]), including a novel class of 
enhancer-transcribed ncRNAs, enhancer RNAs (eRNAs), 
which—although a distinct subset—are arbitrarily clas-
sified as lncRNAs [103]. eRNAs are likely to be co-
expressed with protein-coding genes in their immediate 
genomic vicinity.

To identify co-regulated sets of protein-coding and 
non-coding loci, we performed network cluster analy-
sis of the sheep expression level dataset [see Additional 
file  1: Table S19] using the Markov clustering (MCL) 
algorithm [87], as implemented by Graphia Professional 
(Kajeka Ltd., Edinburgh, UK) (see Methods section) [85, 
86]. To reduce noise, only those novel lncRNAs with 
reproducible expression (i.e. that have a TPM higher than 
0.01 in every replicate of the tissue in which it is most 
highly expressed) are included in this analysis (n = 5353). 
The resulting graph contained only genes with tightly 
correlated expression profiles (Pearson’s r ≥ 0.95) (Fig. 4) 

and was highly structured, organised into clusters of 
genes with a tissue or cell-type specific expression profile 
[see Additional file 1: Table S23].

We expect that for a given cluster of co-expressed 
genes (which contains x lncRNAs and y protein-coding 
genes, each on chromosome z), the distance between 
an enhancer-derived lncRNA and the nearest protein-
coding gene should be significantly shorter than the 
distance between that lncRNA and a random subset of 
protein-coding genes. For the purposes of this test, each 
random subset, of size y, is drawn from the complete 
set of protein-coding genes on the same chromosome z 
(that is, the same chromosome as the lncRNA), irrespec-
tive of strand and their degree of co-expression with the 
lncRNA. The significance of any difference in distance 
was then assessed using a randomisation test (see Meth-
ods section).

Of the 5353 lncRNAs included in the analysis, 1351 
(25%) were found on the same chromosome as a highly 
co-expressed protein-coding gene [see Additional file  1: 
Table S24], with 252 of these (19%) significantly closer to 
the co-expressed gene than to randomly selected genes 
from the same chromosome (p < 0.05) [see Additional 
file 1: Table S25].

Even when the lncRNA is reproducibly expressed in 
each of the six animals, there is still substantial noise in 
the expression estimates which compromises co-expres-
sion analysis. We therefore calculated the Pearson’s r 
correlation between the expression profile of each repro-
ducibly expressed lncRNA and its nearest protein-cod-
ing gene (which may overlap it), located both 5′ and 3′ 
on the sheep genome [see Additional file  1: Table S26]. 
The distance to the nearest gene correlates negatively 
with the absolute value of Pearson’s r, both for genes 
upstream (rho = − 0.19, p < 2.2 × 10−16) and downstream 
(rho = −  0.21, p < 2.2 × 10−16) of the lncRNA [see Addi-
tional file 1: Table S26]. This suggests that, in general, the 
expression profile of a lncRNA is more similar to nearer 
than more distant protein-coding genes. Using a variant 
of the above randomisation test, we also tested whether 
the absolute value of Pearson’s r, when correlating the 
expression profiles of the lncRNA and its nearest protein-
coding gene, was significantly greater than the value of r 
obtained when correlating the lncRNA with 1000 random 
protein-coding genes drawn from the same chromosome. 
For this test, analysis was restricted to the lncRNA that 
were drawn from complete chromosomes rather than the 
smaller unplaced scaffolds. 27% of lncRNAs had a Pear-
son r higher than 0.5 with either the nearest upstream or 
downstream gene, and in around 20% of cases, r was sig-
nificantly different (p < 0.05) from the average correlation 
with the random set [see Additional file 1: Table S26].

Fig. 3  Proportion of sheep expression atlas samples for which a 
candidate lncRNA cannot be fully reconstructed. The sheep expres-
sion atlas comprises 429 RNA-seq libraries, representing 110 distinct 
samples; that is, each sample is a tissue/cell type at a given develop-
mental stage, with up to six replicates per sample. Twenty-two candi-
date lncRNAs cannot be reconstructed in any given sample (i.e., the 
proportion of samples is 100%). These lncRNAs could be assembled 
only after pooling data from multiple samples. Data for this figure are 
in Additional file 1: Table S22
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There are, in total, 2 × 6720 lncRNA/protein-coding 
gene pairs (i.e., the lncRNA both with its nearest up- 
and nearest downstream gene, excluding 491 lncRNAs 
on unplaced scaffolds, for which pairing was not pos-
sible) × 13 tissues/cells in which the expression of each 

gene is assessed. Of these 174,720 possible observations, 
there are 45,959 instances (26%) in which the lncRNA 
and the nearest protein-coding gene are both detect-
ably expressed (TPM higher than 1), of which the larg-
est number are found in the testes (n = 2477 lncRNAs) 

Fig. 4  3D visualisation of a gene-to-gene correlation graph. Each node (sphere) represents a gene. Nodes are connected by edges (lines) that rep-
resent Pearson’s correlations between the two sets of expression level estimates, at a threshold greater than or equal to 0.95. The graph comprises 
11,841 nodes and 2214,099 edges. Genes cluster together according to the similarity of their expression profiles (i.e. their degree of co-expression), 
with clusters (coloured sets of nodes) determined by using the MCL algorithm. Expression level estimates for the lncRNAs in this graph are in Addi-
tional file 1: Table S19. The genes comprising each co-expression cluster are in Additional file 1: Table S23. The lncRNAs that are co-regulated with 
protein-coding genes are found within the same co-expression cluster
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and hippocampus (n = 2393) [see Additional file 1: Table 
S26]. In conjunction with a generally closer proximity 
to co-expressed protein-coding genes, this further sug-
gests there is biological relevance for particular lncRNA/
mRNA pairings, particularly in these tissues.

Conclusions
Comparative analysis of lncRNAs that are assembled 
using RNA-seq data from several closely related spe-
cies—sheep, goat and cattle—demonstrates that the de 
novo assembly of lncRNAs requires very high-depth 
RNA-seq datasets with a large number of replicates 
(more than six replicates per sample, each sequencing 
with many more than 100 million reads). The transcrip-
tion of many lncRNAs that are identified by this cross-
species approach is conserved, which is a reasonable 
confirmation of their existence. We identified a subset 
of lncRNAs in close proximity to protein-coding genes 
with which they are strongly co-expressed, which is con-
sistent with the evolutionary origin of some ncRNAs in 
enhancer sequences. Conversely, the majority of lncR-
NAs are not co-expressed with neighbouring protein-
coding genes. Overall, alongside substantially expanding 
the lncRNA repertoire for several livestock species, we 
demonstrate that the conventional approach to lncRNA 
detection—that is, species-specific de novo assem-
bly—can be reliably supplemented by data from related 
species.
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