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Advances in sequencing technology coupled with new integrative approaches

to data analysis provide a potentially transformative opportunity to use

pathogen genome data to advance our understanding of transmission. How-

ever, to maximize the insights such genetic data can provide, we need to

understand more about how the microevolution of pathogens is observed at

different scales of biological organization. Here, we examine the evolutionary

processes in foot-and-mouth disease virus observed at different scales, ran-

ging from the tissue, animal, herd and region. At each scale, we observe

analogous processes of population expansion, mutation and selection result-

ing in the accumulation of mutations over increasing time scales. While the

current data are limited, rates of nucleotide substitution appear to be faster

over individual-to-individual transmission events compared with those

observed at a within-individual scale suggesting that viral population

bottlenecks between individuals facilitate the fixation of polymorphisms.

Longer-term rates of nucleotide substitution were found to be equivalent in

individual-to-individual transmission compared with herd-to-herd trans-

mission indicating that viral diversification at the herd level is not retained

at a regional scale.
1. Introduction
Foot-and-mouth disease virus (FMDV) is a non-enveloped, positive-sense,

single-stranded RNA virus in the Aphthovirus genus of the family Picornaviridae.

RNA viruses such as FMDV evolve rapidly owing to their large population size,

high replication rate and the poor proof-reading ability of their RNA-dependent

RNA polymerase. The mutation rates of RNA viruses are variously cited to be

between 1023 and 1026 mutations per nucleotide per transcription cycle [1–4].

As a result, RNA viruses exist within their hosts as complex, heterogeneous

populations, comprising non-identical genome sequences [5–7].

An integral part of any disease control strategy is the epidemiological re-

construction of virus transmission pathways, conducted by tracing the past

movements of infected individuals and identifying transmission events

between infected and susceptible individuals. Over the past decade, molecular

and phylogenetic methods have been used increasingly for tracing and verify-

ing FMDV transmission pathways [8–16]. These methods use genetic data,

such as full or partial genome sequences, and take advantage of the virus’s

inherent capacity to evolve quickly to identify transmission pathways based

on shared mutations. Global tracing of FMDV movements has been successfully

achieved using VP1 sequences, which encode one of the three surface exposed

capsid proteins of the virus [8,9,15]. However, at shorter ‘epidemic’ time scales,
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Figure 1. Multiple scales at which FMDV evolution can be observed. (a) Virions containing the FMDV genome infect cells, where all viral replication occurs; higher
scales at which the evolutionary process can be observed are the tissue (a set of cells), the host animal (a set of tissues), the herd (a set of animals), a country (a set
of herds) and the globe. (b) The fundamental processes of population expansion, transmission and selection, which occur at each scale, illustrated for the cell and
tissue scales.
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where the viral populations have not substantially diverged,

VP1 sequencing cannot provide the required resolution.

At this scale, complete genome sequencing has been proved

to be a useful tool for transmission tracing [10–14,16].

Complete genome sequencing is typically performed on

the whole viral sample and therefore only identifies the con-

sensus sequence within the sample, masking the complex

substructure of minority variants present. Thus, the level of

resolution afforded by consensus sequencing cannot uncover

all the processes underlying virus evolution at the intra- and

inter-host scales. As a consequence, how variability is gener-

ated within the host and transmitted on to the next host is still

poorly understood, and this impedes our ability to extract

robust detailed epidemiological inferences from consensus

sequence data. Although it is possible to study within-host

diversity using Sanger methods by undertaking serial

dilution, followed by cloning and then sequencing multiple

clones [17], this is laborious and time consuming. Recent

next generation sequencing (NGS) techniques provide the

means for rapid and cost-effective dissection of viral evolution-

ary dynamics at an unprecedented level of detail [18–26].

The resolution and high throughput nature of NGS plat-

forms have the potential to allow differentiation between

samples at the inter- and intra-host scale of infection. NGS tech-

niques have already been applied to compare ‘longitudinal’

samples of hepatitis C virus (HCV), human immunodeficiency

virus (HIV) infection/transmission [27–30], as well as FMDV

itself [25,26].

The evolution of FMDV can be observed at a number

of distinct biological scales [31], for example the cell,

tissue, host, herd, country, continent and inter-continental

(figure 1a). Perhaps, the most commonly encountered scale

is that of the individual host as it is at this scale that FMDV

is detected and that the majority of data are available. How-

ever, virus samples are usually collected from a particular

tissue from within an individual—for example from fluid or
epithelium from vesicles on a single foot, from vesicles in/

around the mouth or from oesophageal–pharyngeal scrap-

ings (known as probang samples), and it is evident that

these different populations can themselves become differen-

tiated through drift or selection for tissue-specific tropisms.

Each tissue within an animal is itself comprised cells, and it

is already possible to examine micro-evolutionary processes

occurring at the scale of individual cells [32,33].

There is an obvious sequence of scales moving up from that

of the individual. FMDV is commonly managed at a herd scale.

However, the majority of data at the herd scale comes from the

scale below—the individual animal—as typically samples are

only obtained from a single animal (often the animal with

the oldest lesion) and used to represent the herd in molecular

phylogenetic methods that generate herd-to-herd transmission

trees during an epidemic [10–12]. Moving to larger scales from

the herd, one might recognize a geographical region such as

County, then a Country, a Continent and the world as a whole.

The diversity of FMDV observed at any given scale can be

related to that observed at the scale directly below, which is

in turn a function of the scale below that: a county is a set of

herds, a herd a set of animals, an animal a set of tissues and

a tissue a set of cells. The smallest scale that we consider here

is that of the cell as this is where all viral replication occurs

and is therefore the building block for all higher scales.

The same fundamental processes operate as virus spreads

between units within any given scale. First, there is popu-

lation expansion, whereby virus enters a unit (be it a cell,

tissue, animal or herd) and replicates from the founding

inoculum. Second, a subset of this population is then trans-

mitted on to a subsequent unit. Selection may take place

during both the population expansion process (e.g. viruses

that replicate fastest within the unit will be favoured) and

during the transmission of virus to the next unit (e.g. viruses

that can enter the unit earliest will be favoured). For example,

FMDV enters and infects a cell, the viral population then
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Figure 2. Mutation spectrum of a lesion. The black line represents the
mutation spectrum generated from NGS sequence data from a cow foot
lesion.
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expands within the cell (accumulating mutations) to the point

of cell lysis and virions are released into the local environ-

ment. A sample of the progeny from the first cell then

enters and infects a second cell. This sample may be small

relative to the total virion output of the first cell reflecting a

transmission bottleneck. Furthermore, the sample may or

may not be a random sample of the amplified progeny as

the result of the action of selection. This may then be repeated

for multiple generations as cells repeatedly infect other cells

within a tissue with mutations in the genome potentially

becoming fixed or drifting in frequency over time. FMDV

replication dynamics at the scale of single cells has not been

studied empirically, although this would now be possible.

The process has been modelled mathematically generating a

number of possible predictions [34,35].

To date, there has been no direct comparison of the

sequence data, diversity and substitution rates that are

observed at each of these different scales, and we proceed

by presenting an overview of the sequence data, comparable

evolutionary metrics and summary statistics that can be

observed at each of these different scales.
2. Methods
We now provide an overview of the sequence data and analysis

techniques available at each of the scales considered for this

analysis, specifically the tissue, animal and herd.

(a) Mutation spectrum
We use the mutation spectrum [25] to characterize the heterogen-

eity in a viral population from NGS sequence data. The spectrum

is generated by grouping nucleotide sites in the FMDV genome

into discrete bins based on their observed polymorphic frequen-

cies, and then plotting the proportion of nucleotide sites in each

polymorphic bin (y-axis) against the polymorphic (mismatch)

frequency of the bin (x-axis) on a log–log plot. Polymorphic

frequencies for each site are calculated with reference to the

inoculum used, which makes the mutation spectrum unfolded.

This spectrum provides a richer view of the diversity within a

viral population, and enables comparison between populations.

(b) Mutation and substitution rate
We refer to the actual error rate of the polymerase as the

mutation rate (mutations per nucleotide per transcription

cycle). The rate of nucleotide substitution in a DNA sequence

is defined as the number of nucleotide substitutions observed

to occur per nucleotide site per unit time. Substitution rates for

transmission chains were calculated using the software package

BEAST [36]. A variety of molecular clocks (strict, exponential

relaxed) and population growth (constant, exponential) models

were evaluated and compared, all of which used the HKY

model (as used in previous FMDV analyses; [11]) of base substi-

tution with the gamma model of site heterogeneity. Tip dates

were assigned based on either the date the sample was taken

during a real epidemic or the number of days that had passed

since the start of the experiment to the sample date for the

serial cow-to-cow infection studies.

(c) Tissue
For the tissue scale, we use sequence data from a study that used

NGS technology to analyse the viral population within a foot

lesion on a single animal [25]. Briefly, a single bovine host was

inoculated with FMDV and 2 days post-inoculation, a sample
was taken from an FMD epithelial lesion that developed on the

front left foot.

(d) Animal
For the animal scale, we use the consensus sequences generated

from samples taken at various points during the infection of a

single animal, specifically animal number two in [26]; data avail-

able from the EBI SRA repository (http://www.ebi.ac.uk/ena/)

accession number ERP001880 from 1 May 2013. Briefly, a calf

was naturally challenged by direct contact with another infected

calf. A total of nine samples were then collected from this

second calf at a range of days post first contact (DPFC) from

different tissues. The samples were processed and sequenced

on an Illumina platform in the same way as the Tissue scale

described earlier. Consensus sequences for each sample were

then generated from the reads aligned to the reference genome.

A genealogy of the samples within the animal can then be

created based on statistical parsimony analysis of the consensus

sequences using the software package TCS [37].

(e) Herd
For the herd scale, we use and compare sequence data from two

types of dataset. First, serial cow-to-cow infection chains from

controlled experiments from [38] where the consensus sequences

from viral samples were generated using Sanger sequencing for

each animal in two independent cow-to-cow infection chains,

one consisting of four animal hosts and the other six; some ani-

mals had multiple consensus sequences generated from different

samples taken at varying DPFC. Second, we use data from herd-

to-herd transmission chains inferred from consensus sequence

analysis from 2001 to 2007 FMD epidemics in Great Britain

(GB). Briefly, information from consensus sequences was com-

bined with dates of disease detection and lesion age to generate

the most probably transmission trees between herds during the

2007 epidemic [12] and a cluster within the 2001 epidemic [11].

As above, TCS was used to generate genealogical relationships

among sequences.
3. Results
(a) Tissue
The mutation spectrum of a lesion (figure 2) shows that the

majority of nucleotides display low-frequency polymorphisms.

However, higher-frequency mutations are observed, including

http://www.ebi.ac.uk/ena/
http://www.ebi.ac.uk/ena/
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Figure 3. Genetic network of intra-host tissue samples. (a) Genealogy of nine samples from cow number 2 in the cow-to-cow infection chain in [26]. A consensus
sequence was generated for each sample from the NGS data and a statistical parsimony tree using the software package TCS [37]. Samples are labelled according to
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a number at the consensus (100%) level. Wright et al. [25] used

the presence of stop codons in the lesion sequence data to

obtain an upper limit on the mutation rate of the virus under

the hypothesis that such mutations are lethal, and were therefore

generated in the last round of cellular replication. An upper

bound of 7.8 � 1024 mutations per nucleotide per transcription

event was estimated (95% CI: 7.4–8.3 � 1024) in line with pre-

vious estimates [2,39,40]. In related work, Cottam et al. [17]

sequenced the capsid region of the FMDV genome of 26

clones created from the same cow epithelium viral sample

and observed a mutation frequency of 2.79 � 1024 mutations

per nucleotide sequenced providing further insight into the

population diversity that exists within a single lesion.
(b) Animal
There is substantial viral diversity within a single cow,

even when examining tissue-specific consensus sequences

(figure 3a). Distinct within-host lineages are evident, for

example, the three feet samples all have different consensus

sequences even though they were all obtained 6 DPFC; fur-

thermore, all of the feet are also different to the probang

sample taken on the same day. There are also consensus

level mutations appearing in only a single sample, for

example the probang sample on day 2 acquired two consen-

sus level mutations at genome positions 1087 and 7355,

which are not observed at the consensus level in any other

sample. Overall, figure 3a highlights the complexity of the

intra-host dynamics of FMDV evolution. An animal’s consen-

sus sequence can be generated by aligning the consensus

sequences of all the individual samples and identifying the

most common base at each nucleotide site. In this case, the
consensus sequence of the animal itself contains only a

single mutation from the original inoculum at genome pos-

ition 2754. All the individual samples from this animal

contain the 2754 mutation and are between 0 and 3 mutations

away from the animal-level consensus. Therefore, as this

mutation is shared across all tissues and time points within

the animal, it will very likely be passed on to the next host,

enabling reconstruction of transmission trees based on

shared mutations.

As the underlying sequence dataset is generated by NGS

approaches, it is also possible to monitor sub-consensus

mutations at the within-host level by tracking the polymorphic

frequency of a particular nucleotide through each of the

samples. For example, figure 3b shows the mutation frequen-

cies of bases 1087 and 7355 across all nine samples. These

two mutations were observed at the consensus level in the

probang sample after 2 days but not observed in any other

sample—at the tissue-specific consensus level. These muta-

tions do not simply disappear but are present in all other

samples at sub-consensus levels, gradually decreasing in

frequency over time (figure 3b).
(c) Herd
At the herd scale we compare two types of data: (i) serial

cow-to-cow infection chains from controlled experiments

and (ii) serial herd-to-herd infection chains from real FMD

epidemics in the UK. Experimentally manipulated serial

cow-to-cow infection chains are not herds because, although

they are a set of animals, their transmission is restricted to a

serial one-to-one sequence of transmission unlike the one-to-

many relationship that can occur when an infected individual
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enters a susceptible herd. However, we use them here to

investigate whether there is a difference between rates of

evolution observed across cow-to-cow and herd-to-herd

transmission events. Figure 4 displays the statistical parsi-

mony trees depicting the genetic relationship between

viruses from two cow-to-cow infection chains from the

study of Juleff et al. [38] and two herd-to-herd infection

chains from the studies of Cottam et al. [11,12] representing

the GB 2001 and 2007 epidemics. We can compare rates of

evolution observed at cow–cow and herd–herd transmission

scales by comparing the distribution of the number of nucleo-

tide changes per herd and per cow in their respective

transmission chains. Figure 5 shows that the two distri-

butions are not statistically distinguishable, with an average

of 2.78 mutations between herds and 3.00 between cows (Wil-

coxon rank sum test W ¼ 106, p ¼ 0.815). This suggests that

there is little difference in the rate at which mutations

accumulate as a result of herd-to-herd and cow-to-cow trans-

mission events. Previous estimates of the substitutions per

genome per herd-to-herd transmission range from 1.5 [10]

to 4.3 [11] for the 2001 UK FMD epidemic.

Table 1 presents an overview of the substitution rates

calculated using BEAST [36] for the two cow-to-cow trans-

mission chains, the herd-to-herd chain from the GB 2007

FMD epidemic, along with previously published estimates

from herd-to-herd transmission chains from the GB 2001

FMD epidemic. The substitution rates for all the chains

are very similar, with overlapping confidence intervals,

again suggesting little difference between herd-to-herd and

cow-to-cow transmission events.

We can compare the rates of evolution measured over the

same time periods both within a cow and as virus is passed

between cows. In both A and B cow-to-cow chains, a probang

sample from animal number 2 was taken 32 DPFC. Figure 6

shows that as the virus is transmitted between animals, it
appears to evolve faster compared with when the virus is

confined to a single host, reaching the same number of con-

sensus mutations but in approximately half the time. This

suggests that cow-to-cow transmission events may be impor-

tant in determining the substitution rate of the virus. This

slower rate within a host could be due to the host immune

system, with the within-host evolution rate slowing down

over the course of infection due to a reduction in the

volume of viral replication within the host over time. Alterna-

tively, tight bottlenecks between hosts could result in a higher

rate of substitutions observed in consensus level sequences.

As the viral population in the infected animal is very diverse,

there is a high probability that the virions transmitted to

the next animal contain mutations, and the smaller the
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Table 1. Comparison of substitution rates between transmission chains. Strict, strict molecular clock; relaxed, exponential relaxed molecular clock; constant,
constant size; exponential, exponential growth; 95% CIs shown in brackets.

dataset
molecular
clock model

coalescent
model

marginal mean
log likelihood

substitution rate (31025 mutations
per nucleotide per day)

cow-to-cow

(chain A)

strict constant 211493.09 2.27 (0.770 – 3.90)

strict exponential 211492.27 2.26 (0.728 – 3.91)

relaxed exponential 211493.55 1.94 (0.205 – 3.78)

relaxed constant 211494.03 1.97 (0.313 – 3.76)

cow-to-cow

(chain B)

strict constant 211605.52 2.86 (1.32 – 4.43)

strict exponential 211603.95 2.91 (1.41 – 4.57)

relaxed exponential 211598.06 3.21 (1.42 – 5.28)

relaxed constant 211600.19 3.05 (1.15 – 4.95)

herd-to-herd (2007) strict constant 211650.38 2.51 (1.43 – 3.74)

strict exponential 211647.06 2.61 (1.45 – 3.87)

relaxed exponential 211640.31 3.09 (1.59 – 4.82)

relaxed constant 211644.21 2.97 (1.48 – 4.65)

herd-to-herd (2001)a relaxed exponential 2.26 (1.75 – 2.8)

herd-to-herd (2001)b relaxed constant 2.08 (0.574 – 3.51)
aAdapted from [10].
bAdapted from [11].
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bottleneck, the higher the proportion of infections starting

from mutated variants only.
4. Discussion
We have introduced a ‘multi-scale’ approach for observing

viral evolution using sequence data enabling the viral diversity

observed at any given scale to be related to that observed at the

scale directly below. Irrespective of the scale being obser-

ved, the same fundamental processes operate—population

expansion, transmission and selection—and we observe these

processes at increasing temporal and spatial scales moving

up from the single transcription event, which actually
introduces the mutations into the genome, to tissue, individual,

herd and regional scales. Through our analyses, we observed

similar rates of evolution between herds and between individ-

uals suggesting there is little difference between cow-to-cow

and herd-to-herd transmission. However, we observed faster

rates of evolution between hosts compared with within

hosts, suggesting bottlenecks or the host immune system

could be the important factors influencing the observed rate

of substitution at the within-host level.

Faster rates of evolution between hosts could be explained

by tight cow-to-cow transmission bottlenecks. Given the high

probability that virions transmitted to the next cow contain

mutations (due to the diverse viral population of the infected

cow), a tight bottleneck could result in a higher proportion of
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infections starting from mutated virions only in the next cow.

As a result, a higher fixation rate in consensus level sequences

will be observed, as the virus moves from host to host. The

host immune system could also be an important factor,

with the within-host evolution rate slowing down over the

course of infection owing to the host immune response

reducing the volume of viral replication within the host

over time.

Unlike experimentally manipulated cow-to-cow infection

chains, real epidemics are rarely fully characterized. Less

clinically obvious infections may be missed altogether, alter-

natively, control strategies such as rapid ring culling around

premises infected with FMD can lead to infected herds

being culled before detection, potentially leading to gaps in

sequence transmission chains. Such missing herds can be

thought of as epidemiological dark matter (‘dark cows’)

that can be inferred from gaps in transmission chains. The

development of statistical methods to estimate the number

and even location of these unobserved infections remains a

contemporary problem awaiting a fully satisfactory solution.

There are also difficulties with interpreting cow-to-cow

infection chains. Figure 3 indicates significant variability at

the within-cow level. Furthermore, Juleff et al. [38] noted

that probang consensus sequences frequently contained

ambiguities, complicating their interpretation. This could

be due to the nature of such samples, which scrape the

oesophageal–pharyngeal area, thus sampling from a poten-

tially large tissue area and multiple numbers of lesions;

whereas, feet samples are typically taken from a single lesion.

We see little difference between rates of substitution

generated over cow-to-cow and herd-to-herd transmission

events, in terms of number of nucleotide changes between

units or substitution rates; however, we note the small

number of datasets limits the statistical power of this infer-

ence. This could be a product of herd-to-herd transmission

essentially being functionally equivalent to cow-to-cow trans-

mission, that is to say, perhaps virus is not passaged

extensively from cow-to-cow prior to transmission to a sub-

sequent herd. Although cows do typically move in batches,

it is relatively a small number that moves from farm-to-

farm; Green et al. [41] calculated a mean batch size of three

animals during the 2002–2005 period suggesting only a

small sample of the viral diversity within a herd will be
transmitted to the next via movements. To date, the sequence

diversity of the UK epidemics at the within-herd level has not

been reported, such data would enable further investigation

of both within- and between-herd dynamics.

Differences between the within- and between-host evol-

utionary rates have previously been reported in both HCV

[42] and HIV [43–45]. Gray et al. [42] reported higher evol-

utionary rates between hosts compared with within hosts

for HCV, similar to our findings here. However, Gray et al.
[42] also estimated evolutionary rates for different partitions

of the HCV genome, and found substantially higher rates

of evolution at within-host scale for the hyper-variable

region HVR1. Future work on partitioning of the FMDV

genome could lead to similar observations.

There is growing evidence that, over calendar time, HIV

evolves considerably faster within individuals than it does

at the between host epidemic level [43–45]. Lythgoe &

Fraser [45] concluded that there is preferential transmission

of ancestral virus through the cycling of virus through very

long-lived memory CD4þ T cells, a process they termed

‘store and retrieve’. Although we observe higher evolutionary

rates between hosts compared with within hosts for FMDV,

there are number of factors that could account for this differ-

ence, such as our relatively small dataset, the longer time

scales of HIV, the mode of transmission and the role of

long-lived memory cells in HIV transmission [45].

We have focussed on FMDV due to the availability of

sequence data at a variety of scales, but similar ideas can be

applied to other livestock viruses such as bluetongue and

Schmallenberg viruses. Similar ideas are obviously extendable

to human viruses such as hepatitis C (e.g. cell, organ, person

and city) and plant viruses (e.g. cell, leaf (tissue), tree and orch-

ard) such as the Plum pox virus L395 which is a serious viral

disease of stone fruit, transmitted by aphids, which causes

acidities and deformities in the fruit [46].
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