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ABSTRACT

Synteny conservation analysis is a well-established
methodology to investigate the potential functional
role of unknown prokaryotic genes. However, bioin-
formatic tools to reconstruct and visualise genomic
contexts usually depend on slow computations, are
restricted to narrow taxonomic ranges, and/or do not
allow for the functional and interactive exploration of
neighbouring genes across different species. Here,
we present GeCoViz, an online resource built upon
12 221 reference prokaryotic genomes that provides
fast and interactive visualisation of custom genomic
regions anchored by any target gene, which can be
sought by either name, orthologous group (KEGGs,
eggNOGs), protein domain (PFAM) or sequence. To
facilitate functional and evolutionary interpretation,
GeCoViz allows to customise the taxonomic scope
of each analysis and provides comprehensive anno-
tations of the neighbouring genes. Interactive visu-
alisation options include, among others, the scaled
representations of gene lengths and genomic dis-
tances, and on the fly calculation of synteny conser-
vation of neighbouring genes, which can be high-
lighted based on custom thresholds. The result-
ing plots can be downloaded as high-quality im-
ages for publishing purposes. Overall, GeCoViz of-
fers an easy-to-use, comprehensive, fast and inter-
active web-based tool for investigating the genomic
context of prokaryotic genes, and is freely available
at https://gecoviz.cgmlab.org
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INTRODUCTION

Bacterial and archaeal microorganisms possess packed
genomes where functionally related genes, or those physi-
cally interacting, tend to cluster together (1,2), sharing reg-
ulatory mechanisms (3) and occasionally leading to gene fu-
sion events (4). Thus, genomic context analysis has been ex-
tensively applied to predict the putative functional role of
unknown genes (5-7). To obtain reliable predictions, com-
parative genomics methods use synteny conservation across
multiple species as a strong indication of functional re-
lationship (2,8,9). This approach has been proven useful
in predicting protein-protein interactions (10), discovering
novel functional roles (11), finding orphan enzymes (12)
and characterising unknown metagenomics sequences (13).

The invaluable information derived from synteny con-
servation analysis has led to the development of numer-
ous bioinformatic tools to automate the reconstruction
of the genomic context of specific genes across multiple
genomes (14,15) and explore it in a visual manner. Most
notably, STRING uses genomic context conservation to
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predict protein-protein interactions (16), allowing also to
display the neighbourhood of specific genes across differ-
ent branches of the tree of life as a schematic represen-
tation. WebFlaGs (17) and TREND (18) can be used to
generate static images representing the genomic context of
custom genes based on previous computations of homolo-
gous sequences. GeConT2 (19) focuses on providing online
searches on reference genomes, while GeneSpy (20) can be
used to generate custom plots based on local computations.
However, despite the unquestionable value of previous soft-
ware, tools are still missing that provide fast and interactive
exploration of genomic context conservation of prokary-
otic genes while keeping a comprehensive phylogenetic and
functional scope.

Here, we present GeCoViz, a highly interactive web ap-
plication that aims at visualising genomic context conser-
vation while offering a responsive and easy-to-use inter-
face accessible to non-expert users. To provide fast searches,
GeCoViz uses precomputed information on orthology as-
signments, phylogenetic information and functional anno-
tations for over 42 million genes extracted from 12 221
reference prokaryotic genomes. Moreover, GeCoViz of-
fers highly customizable searches, allowing users to eas-
ily adjust the phylogenetic scope of each analysis and se-
lect what functional annotations of neighbouring genes are
used to highlight synteny conservation. Notably, GeCoViz
uses eggNOG v5 (21) for its orthology assignments, en-
abling the exploration of thousands of hypothetical genes
that are missing in other databases (COG, KEGG, PFAM)
but still classified as orthologous groups of unknown func-
tion in eggNOG. This is particularly relevant for the char-
acterization of unknown genes without experimentally val-
idated homologs in any reference genome, which account
for nearly one third of all the predicted genes in current
databases.

RESULTS
Phylogenetic and functional scope

GeCoViz is built upon the reference set of genomes pro-
vided in proGenomes v2.0 (22), which includes 11 710 and
511 representative bacterial and archaeal species, respec-
tively. In total, GeCoViz covers 42 542 377 protein cod-
ing genes, which were pinpointed to their location in their
respective genomes. Comprehensive functional predictions
and orthology assignments were computed de novo for all
gene entries using eggNOG-mapper v2.1 (23). In total, 34
554 188 genes (81.2%) were mapped to at least one orthol-
ogous group in eggNOG v5, 21 671 011 (50.9%) were an-
notated to KEGG modules and pathways (24), and 32 215
373 to PFAM domains (25). Overall, we estimate that be-
sides the core set of genes putatively assigned to known
KEGG pathways or having known domains, GeCoViz en-
ables the exploration of 5390 779 highly hypothetical genes
(no KEGG or known PFAM domains), spanning 1 304 714
eggNOG orthologous groups of unknown function.

Hypothesis driven exploration of genomic context

GeCoViz allows users to look up the genomic context of
any bacterial and archaecal gene, automatically estimating
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the conservation of their genomic neighbours along a cus-
tomly selected set of species. Searches can be performed by
using gene names, protein sequences or orthologous groups
identifiers from either eggNOG v5 or KEGG databases
as a query. When a single gene name or protein sequence
is queried, GeCoViz uses precomputed orthology assign-
ments to automatically identify equivalent genes (putative
orthologs) along the different genomes selected. In addi-
tion, PFAM names can also be queried in order to explore
the context of genes sharing the same protein domain. Since
many hypothetical proteins are covered by eggNOG groups
of unknown function, GeCoViz can be easily used to ex-
plore their genomic context and obtain hints on their pos-
sible functional role. Thus, GeCoViz allows users to per-
form hypothesis-driven searches to either inspect the func-
tional context and synteny conservation of uncharacterized
genes, or to explore differences in the genomic organisa-
tion of known molecular functions and pathways across
a custom set of genomes and organisms (see example use
cases).

Interactive exploration of genomic neighbourhood

GeCoViz offers a highly interactive and customizable explo-
ration panel. When a new search is triggered, genomic con-
text and synteny conservation is automatically shown for
up to 100 homologous genes automatically selected from
all major lineages in the prokaryotic phylogeny where the
query term was found. Then, the taxonomic scope can be
easily adjusted by means of the interactive sunburst chart
available at the taxonomic control panel (Figure 1), al-
lowing users to automatically add or remove representa-
tive species from custom clades, or manually select specific
genomes.

Genes matching the original query—which are automat-
ically grouped by either orthology, domain or metabolic
pathway annotation—are vertically aligned in the genomic
context panel and used as an anchoring point to display
up- and down-stream loci for each genomic region (Fig-
ure 2). The genomic window size and graphical aspect of
the genomic context representation can also be adjusted by
the user. For instance, scaled gene lengths and genomic dis-
tances are displayed by default, but an alternative unscaled
visualisation mode can be selected from the context visu-
alisation menu. Moreover, a guiding tree sorting genomic
regions by the NCBI Taxonomy, as well as additional habi-
tat information for each species, can be optionally shown in
the genomic context panel.

To facilitate the analysis of synteny conservation of par-
ticular genes across selected genomes, GeCoViz dynam-
ically calculates a vertical conservation score (VCS) for
each gene entry. The VCS can be estimated based on
any of the annotations associated with the genes shown,
such as the eggNOG orthologous groups restricted to cus-
tom taxonomic levels, KEGG orthologs and pathways,
and PFAM domains. VCS is calculated as the percentage
of genomes that contain the selected term (e.g. eggNOG,
KEGG, PFAM), over the total number of genomes shown.
Users can adjust the threshold of this simple score to high-
light and colour genes that are more or less prevalent across
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Figure 1. Taxonomic selector panel in GeCoViz. The taxonomic selector offers an interactive way of adjusting the phylogenetic scope of each analysis. The
interface consists of a zoomable sunburst that presents the number of hits found (genomes with genes containing the functional term of interest) at each
taxonomic level. Users can choose to add either all genomes under a given clade or a subset of representative genomes at different taxonomic resolutions.

the selected set of genomes, facilitating the identification of
conserved patterns.

Moreover, users can interact with each gene entry by ei-
ther clicking or hovering on its graphical representation.
While gene clicking displays a window with detailed de-
scription of its location and annotated function, gene hov-
ering immediately highlights other genes belonging to the
same orthologous group across all the genomes. Besides,
users can interact with the genomic context panel by: (i)
hiding specific genomes by clicking on their respective tree
nodes, (i1) showing their isolation source, (iii) expanding the
size of the genomic window by increasing the number of up-
and down-stream neighbouring genes shown and (iv) dis-
playing genes in schematic format. Finally, users may down-
load: (i) a table with the complete genomic context infor-
mation including functional annotations, gene order and all
the gene sequences and (ii) high quality images of any cus-
tom view of the genomic context analysis.

EXAMPLE CASE STUDIES
Predicting the functional role of hypothetical proteins

The Salmonella enterica sv. typhimurium LT2 coding gene
STM0239 (yaeQ) is currently annotated as a hypotheti-

cal protein in NCBI. Sequence search in GeCoViz assigns
STMO0239 to the orthologous group of unknown func-
tion COG4681 (eggNOG), which can be directly queried
in GeCoViz. Exploration of COG4681 shows that yaeQ
has 1959 orthologous widely distributed along the bacterial
phylogeny and is embedded in a highly conserved region for
all species under the enterobacteriaceae family (Figure 3A).
Most of the conserved neighbouring genes of yaeQ are in-
volved in tRNAs metabolism, and the gene itself is in an
operon-like structure with yaeJ, which encodes for a trans-
lation release factor. This suggests that yaeQ might indeed
be involved in translation processes, which supports previ-
ous works reporting that YaeQ has a role regulating the ex-
pression of virulence factors in both Escherichia coli and
Salmonella typhimurium (26,27).

Discovering novel genes associated with known pathways

Similarly, genomic context can provide valuable insights not
only for functional but also for regulatory relationships be-
tween neighbouring genes. GeCoViz facilitates the discov-
ery of putative target genes of known regulatory systems
by means of the custom adjustment of taxonomic scopes
and VCS thresholds. To illustrate this, we analysed the ge-
nomic context of PetRP, a recently described regulatory sys-
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Figure 2. Genomic context panel in GeCoViz. The genomic context visualisation panel allows users to explore the genomic neighbourhood of target genes
across different genomes, where phylogenetically conserved genes are coloured based on a custom VSC. When clicking on any gene, extensive functional
information is shown, including eggNOG, KEGG, and Pfam annotations, allowing also to download individual sequences. By means of the context
visualisation menu, users can increase or decrease the number of up- and down-stream neighbouring genes shown, choose between scaled or schematic
representation of genes, and select the functional source used for colouring genes. Users can export their current view either as a high-resolution image
(SVG and PDF) or as raw data (i.e. positional information of each gene in their respective genome).

tem involved in the plastocyanin (PC)/cytochrome c6 (C6)
switch in cyanobacteria (28). Although the copper regula-
tion of these two proteins in cyanobacteria was established
30 years ago (29), the regulatory system remained elusive
until its recent identification by a genomic context approach
(28). In this work, the role of PetR (SIr0240 Synechocystis
sp. PCC 6803 protein), a homologous of the copper tran-
scriptional regulator CopY, as a potential regulator of the
PC/C6 switch was explored. Searching SIr0240 by protein
sequence in GeCoViz assigned it to the eggNOG COG3682
orthologous group, a transcriptional negative regulator in
bacteria. An initial visualisation of the genomic context of
COG3682 in the cyanobacteria phylum reveals that petR
(SIr0241 Synechocystis protein) is always attached to the
metallopeptidase coding gene pet P (eggINOG 1GOTE) (Fig-
ure 3B), with no other genes highly conserved in their con-
text. However, by decreasing the VCS threshold to ~20%,
GeCoViz highlights two other neighbouring genes mod-
erately conserved around petRP: comB, encoding for a 2-
phosphosulfolactate phosphatase, and the experimentally
validated target of PetR, petJ (C6; Figure 3C) (28).

Identifying gene fusion events

Besides genome context conservation, GeCoViz also allows
to easily spot eventual gene fusions. For instance, the explo-
ration of genes of unknown function under the orthologous
group COG3220 reveals that the target gene is tightly cou-
pled to a putative DNA binding protein (COG3219; Figure
3D), occasionally leading to fusion events in several bac-
terial orders, reinforcing their functional relationship as a
DNA interacting protein.

IMPLEMENTATION DETAILS

GeCoViz uses MongoDB (https://www.mongodb.com/) for
storing precomputed genomic data and Django on the
server side (https://www.djangoproject.com/). The web
frontend uses Vue.js (https://vuejs.org/) as a Javascript
framework. Code for generating genomic context layouts
hinges on the data visualisation library D3.js (https://d3js.
org). Data flow and technical implementations are depicted
in Supplementary Figure S1.
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