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ABSTRACT

Understanding the functions of proteins is crucial
to understand biological processes on a molecular
level. Many more protein sequences are available
than can be investigated experimentally. DeepGO-
Plus is a protein function prediction method based on
deep learning and sequence similarity. DeepGOWeb
makes the prediction model available through a web-
site, an API, and through the SPARQL query lan-
guage for interoperability with databases that rely on
Semantic Web technologies. DeepGOWeb provides
accurate and fast predictions and ensures that pre-
dicted functions are consistent with the Gene Ontol-
ogy; it can provide predictions for any protein and
any function in Gene Ontology. DeepGOWeb is freely
available at https://deepgo.cbrc.kaust.edu.sa/.
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INTRODUCTION

Many more protein sequences are known than can experi-
mentally be investigated. Advances in sequencing technolo-
gies and applications of these technologies to areas such as
metagenomics increase the amount of available protein se-
quences further. Understanding the functions of proteins is
crucial to understanding the biological processes within or-
ganisms on a molecular level.

Several computational approaches to predicting protein
functions have been developed (1). These approaches rely
on different types of information that can be used to pre-
dict protein functions, including the protein sequence (2,3),
interaction networks (4), gene expression (5), sequence sim-
ilarity (6), phenotypes resulting from loss of function mu-
tations (7) and text mining (8). The different types of in-
formation can often provide complementary information
and, consequently, combining multiple types of information
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can often improve predictive performance (1). However, the
only type of information that is available for the majority of
sequenced proteins is the protein amino acid sequence (and,
derived from this sequence, the sequence similarity to other
proteins), whereas the position in interaction networks, text
mining or gene expression data can only be obtained for
some proteins. Therefore, while many features may improve
predictive performance, they also limit the scope of function
prediction.

Computational methods that predict function from se-
quence have to face two challenges; first, they need to find
a way to extract or learn features from the protein sequence
that are predictive of functions; and second, they have to
ensure that predictions are consistent with biological back-
ground knowledge about functions and their interrelations.
The first challenge is now commonly addressed through
deep learning methods which learn ‘representations’ of pro-
tein sequences that can be used to predict functions (9). The
second challenge relates to how predictions can be made
consistent with the Gene Ontology (GO) (10) which is the
structured vocabulary used to characterize protein func-
tions and cellular locations, and contains over 40 000 differ-
ent classes. Function prediction methods that are consistent
with the GO rely either on structured, hierarchical classifi-
cation methods that include the GO as background knowl-
edge within the model itself, or they rely on post-processing
where the GO is ignored within the model and predictions
are post-processed to ensure consistency.

DeepGOPlus (11) predicts protein functions through a
combination of deep learning and sequence similarity to
proteins with known functions, and ensures that predicted
protein functions are consistent with the GO. When evalu-
ating DeepGOPlus on the dataset used by the Critical As-
sessment of Function Annotation (CAFA) 3 challenge (1),
DeepGOPIlus achieves performance close to the state-of-
the-art function prediction methods. DeepGOPlus is avail-
able as a standalone software, and DeepGOWeb makes the
protein function prediction method DeepGOPlus available
as a service. DeepGOWeb can be accessed through a web-
site, a REST API and a SPARQL endpoint to interoperate
with databases that rely on Semantic Web technologies (Fig-
ure 1).

METHODS AND IMPLEMENTATION
Materials and data

For training DeepGOPlus, we use reviewed and man-
ually annotated protein sequences that are available in
UniProtKB/Swiss-Prot (12) with their experimental Gene
Ontology (GO) (10) function annotations. The experimen-
tal annotations are filtered using evidence codes EXP, IDA,
IPI, IMP, IGI, IEP, TAS, IC, HTP, HDA, HMP, HGI and
HEP. We update and retrain the model with every new re-
lease of UniProtKB.

DeepGOPlus prediction model

DeepGOPlus predicts protein functions based on the com-
bination of Convolutional Neural Network (CNN) and se-
quence similarity methods (11). First, we train the CNN
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Figure 1. Overview of DeepGOWeb workflow. DeepGOWeb can be ac-
cessed through a website, a REST API, and SPARQL, and DeepGOPlus
is available as a command line tool. The outputs of DeepGOWeb are the
predicted functions for a protein amino acid sequence and a confidence
score for each function.
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Figure 2. Overview of the CNN in DeepGOPlus. The CNN uses multiple
filters of variable size to detect the presence of sequence motifs in the input
amino acid sequence.

model to predict more than 5,000 GO classes that were an-
notated to at least 50 proteins based on experimental ev-
idence. The CNN model consists of 16 1D-convolutional
layers of sizes {8, 16, 24, ..., 128} with 512 filters in each
layer. The convolutional layers are followed by a max-
pooling layer which returns a value that determine whether
a filter was active or not. The outputs are concatenated and
passed to a fully connected layer with a sigmoid activation
function for classification. Figure 2 depicts the architecture
of the CNN model.

Second, for a query sequence we find sets of similar se-
quences from a training set using Diamond (13) with an
e-value of 0.001 and obtain a bitscore for every similar
sequence. We use GO class annotations of the similar se-
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quences to annotate the query sequence. For a set of similar
sequences E of the query sequence ¢, we compute the pre-
diction score for a GO class f'as

Yer I(f € T;) - bitscore(q, s)
Y scpbitscore(q, s)

where 7} is a set of true annotations of the protein with se-
quence s. Then, to compute the final prediction scores of
DeepGOPlus, we combine the two prediction scores using
a weighted sum model (14):

Slg, )=

)

S = o - Spiamondscore + (1 — o) - SDeepGOCNN s

where 0 < o < 1 is a weight parameter which balances the
relative importance of the two prediction methods.

Evaluation measures

We evaluate DeepGOPlus using standard CAFA evalua-
tion metrics such as Finax, Smin (15) and the area under the
precision-recall curve (AUPR). We report the performance
of every new release on the changelog of the DeepGOWeb
website.

F ax 18 @ maximum protein-centric F-measure computed
over all prediction thresholds. First, we compute average
precision and recall using the following formulas:

e BN feT)
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Avg Pr(t) = m . ;PH(Z)

1 n
Avg Re(t) = — - E rei(t)
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where fis a GO class, 7} is a set of true annotations, P;(?) is
a set of predicted annotations for a protein i and threshold
t, m(t) is a number of proteins for which we predict at least
one class, n is a total number of proteins and / is an identity
function which returns 1 if the condition is true and 0 other-
wise. Then, we compute the Fp,,x for prediction thresholds
t € [0, 1] with a step size of 0.01. We count a class as a pre-
diction if its prediction score is higher than ¢:

2. Avg Pr(t) - Avg Rc(t)
Avg Pr(t) + Avg Re(t) }

Fnax = max {
t

Smin computes the semantic distance between real and pre-
dicted annotations based on information content of the
classes. The information content /C(c) is computed based
on the annotation probability of the class c:

1C(c) = —log(Pr(c| P(c))

where P(c) is a set of parent classes of the class ¢. The Spin
is computed using the following formulas:

Shin = mtin,/ru(z‘)2 + mi(t)?

where ru(t) is the average remaining uncertainty and mi(z) is
average misinformation:

1 n
ru(l):;Z > IC(e)

i=1 ceT—Pi(t)

mi(t):rllz > IC(e)

i=1 ce P(t)-T

Implementation

DeepGOPlus is implemented using the TensorFlow (16) li-
brary and trained on Nvidia Titan X and P6000 GPUs
with 12-24 Gb of RAM. In order to tune the different
parameters of the convolutional neural network model
and its architecture, we performed an extensive search and
selected the best model based on a validation set per-
formance. The DeepGOWeb application and REST API
is implemented using Django Framework (https://www.
djangoproject.com/) with the Django REST Framework
(https://www.django-rest-framework.org/).

The SPARQL endpoint is implemented using the Apache
Jena ARQ query engine. The endpoint uses custom func-
tions which can be called within a SPARQL query. The end-
point uses the REST API to obtain predictions.

RESULTS
DeepGOWeb predictions and access

DeepGOWeb is a webserver that takes a set of protein se-
quences as an input and outputs the predicted functions of
the proteins. Protein sequences can be provided in FASTA
format or as strings separated by new lines. An additional
threshold parameter can be used to select the minimum con-
fidence in function predictions. The default value of the pre-
diction threshold parameter is 0.3 which results in the best
performance of DeepGOPlus using the F,,x measure. Low-
ering the threshold parameter may help to obtain more spe-
cific annotations; however, it may also result in more incor-
rect predictions.

For each protein in a request to DeepGOWeb, the predic-
tion results consist of a list of pairs; each pair consists of a
GO class and a confidence score. Table 1 shows an example
prediction for the zebrafish protein PP2A subunit B isoform
delta (UniProt :Q6NY64).

The true path rule (10) in the GO requires that, if C
is a subclass of D, then any protein with function C will
also have the function D. The prediction model of Deep-
GOPlus does not directly enforce the consistency of pre-
dictions, and it is possible that the predicted functions are
inconsistent with the true path rule in GO. Consistency is
enforced by DeepGOPlus in a post-processing step to en-
sure that, for any class D, the confidence of the prediction
of D (for any protein) is the maximum of the prediction of D
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Table 1. Example predictions for the zebrafish protein PP2A subunit B
isoform delta (UniProt : Q6NY64). We only show predictions for the Cel-
lular Component branch of GO; the DeepGOWeb output will also include
a similar list of predictions for Molecular Function and Biological Process.
The prediction confidence threshold is the default of 0.3. Predictions of
DeepGOPlus are consistent with the GO and confidence scores monotoni-
cally decrease from a class to its subclasses. As a result, the root class within
each of the branches of GO (Cellular Component in this example) will al-
ways have the highest confidence score

Cellular component

GO:0110165  Cellular anatomical entity 0.782
GO:0005622  Intracellular anatomical structure 0.780
GO0:0043226  Organelle 0.689
GO:0043229  Intracellular organelle 0.689
GO0:0005634  Nucleus 0.600
GO:0043227  Membrane-bounded organelle 0.600
GO:0043231  Intracellular membrane-bounded organelle 0.600
GO:0032991  Protein-containing complex 0.507
GO:0005737  Cytoplasm 0.444
GO:1902494  Catalytic complex 0.364
GO:0005829  Cytosol 0.305

and the confidence for the predictions of any subclass of D.
DeepGOWeb only outputs the processed predictions that
are consistent with the true path rule in GO. As a result,
the confidence score of predictions monotonically decreases
with the depth in the GO hierarchy (see Table 1).

DeepGOPlus combines a deep learning model with
similarity-based predictions. Given a query protein, simi-
lar proteins with known functions are identified using se-
quence similarity and their GO annotations are combined
with the predictions of the deep learning model. The pro-
teins that were used to obtain similarity-based predictions
are returned by DeepGOPlus as well together with their
similarity score (bitscore) to the query protein; these pro-
teins can be explored to identify the origins and provenance
of similarity-based predictions.

We provide four different ways for accessing DeepGO-
Plus. DeepGOPlus can be installed as a command line
tool. Installation can be either from the main git reposi-
tory, using the Python pip package manager, or using a
Docker container. The command line tool for DeepGO-
Plus is suitable for installation on single machines, com-
pute clusters, or as part of (containerized) computational
workflows.

DeepGOWeb is a website that makes DeepGOPIlus pre-
dictions available through a web-based user interface. The
website allows users to specify protein sequences and the
confidence threshold and explore the DeepGOPlus predic-
tions. The output of a prediction consists of a sorted list
of GO function predictions; the list is separated by the GO
sub-hierarchy (molecular function, biological process, cellu-
lar component) and sorted by prediction confidence. Addi-
tionally, the website allows exploring the proteins that were
used for similarity-based predictions; this list of proteins is
sorted by the similarity to the query protein, and each pro-
tein is linked to its entry in the UniProt database (12). Pre-
diction results can be downloaded in JSON format together
with the confidence scores. The DeepGOWeb website limits
the amount of proteins for which functions can be predicted
in a single query to 10 to ensure an adequate response time.
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DeepGOWeb can also be accessed through a REST API;
the API allows access to DeepGOPIlus from software ap-
plications without installing the command line tool, where
computational resources are not sufficient to run DeepGO-
Plus locally, or when including DeepGOPIlus predictions as
part of workflows. We limit the amount of sequences that
can be submitted through the API in a single request to
100; the webserver processes a single request in one thread
and the limit of 100 sequences limits the runtime of this
thread and ensures that new requests are treated fairly when
queued.

Finally, DeepGOWeb provides a SPARQL endpoint to
access DeepGOPlus predictions. SPARQL (17) is a query
language for data in the Resource Description Frame-
work (RDF) (18) and use in the Semantic Web (19). Many
databases in the life sciences now make their data avail-
able through public SPARQL endpoints (20); in partic-
ular UniProt (12) provides one of the longest-running
SPARQL endpoints for access to its data. Use of Deep-
GOPlus through its SPARQL endpoint provides interop-
erability with this growing set of Semantic Web resources
in the life sciences. For example, we can query proteins in
UniProt using their SPARQL endpoint and calling Deep-
GOPlus within a single query:

PREFIX dg: <http://deepgoplus.bio2vec.
net/functions#>

PREFIX GO: <http://purl.obolibrary.org/
obo/GO_>

PREFIX rdf: <http://www.w3.org/1999/02/
22-rdf-syntax-ns#>

PREFIX up: <http://purl.uniprot.org/
core/>

PREFIX uniprot: <http://purl.uniprot.
org/uniprot/>

SELECT ?sub ?go ?label ?score

WHERE

{

{

SELECT ?aa_sequence

WHERE
{
SERVICE <http://spargl.uniprot.org/
spargl> {
uniprot:Q6NY64 up:sequence ?iso-
form
?isoform rdf:value ?aa_sequence
}
}

¥
(?sub ?go ?label ?score) dg:deepgo
(?aa_sequence 0.3)

This query will retrieve the sequence of the zebrafish pro-
tein PP2A subunit B isoform delta (UniProt :Q6NY64)
from the UniProt SPARQL endpoint and return the Deep-
GOWeb function predictions with a threshold of 0.3 for this
protein.

Updates and versioning

DeepGOPlus outputs protein functions using the Gene On-
tology (GO) (10) and is trained on the curated version of
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Figure 3. Comparison of DeepGOPlus with CAFA3 top 10 methods.
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UniProt called Swiss-Prot (12). The GO changes regularly
by adding and removing classes, and Swiss-Prot keeps ex-
panding and adding new curated information about pro-
teins and their functions. It is therefore important for Deep-
GOPlus to be updated regularly to reflect these changes to
training data as well as the functions used as output.

For DeepGOWeb, we have implemented an automated
process that periodically checks for a new release of the
Swiss-Prot data and retrains the model accordingly. Each
time new training data becomes available, the GO is also
updated to reflect any added or removed classes. After train-
ing, the new DeepGOPIlus model is released with a new ver-
sion number and release data and the DeepGOWeb web-
site updated. For each release of DeepGOPlus, we compute
evaluation metrics and include them in the release notes as
well as in the DeepGOWeb website as a record of the evo-
lution of the model performance.

To ensure reproducibility, every release of DeepGOPlus
is archived and contains the trained model, data files, eval-
uation scores, and all the necessary files to reproduce the
results shown in the release notes. This data can be ac-
cessed at https://deepgo.cbrc.kaust.edu.sa/data/. Each re-
lease is named after its version and the versioning format we
follow has the form a.b. c where ¢ is the number updated
when a new model is released using new Swiss-Prot data.
For prediction, the old models can be used to reproduce
results that were obtained with a specific version of Deep-
GOPlus. DeepGOWeb and the DeepGOPIlus command line
prediction tool all take an optional parameter to specify the
version of DeepGOPlus to use; the default is always to use
the latest version of DeepGOPlus.

Benchmarking and comparison

We continuously evaluate DeepGOPIlus using the evalua-
tion methods of the Critical Assessment of Function An-
notation (CAFA) (21) challenge. For comparison with other
prediction methods, we use the CAFA3 challenge data (1)
and evaluation method. We generated a time-based split
of training and testing datasets. The training set contains
all proteins with experimental annotations available before
February 2017, and the testing set includes newly annotated
proteins between February 2017 and November 2017. We
compared DeepGOPlus with the top performing methods
in CAFA3 using the Fi,« evaluation metric. DeepGOPlus
resulted in the highest Fj,,,x in the Cellular Component (CC)
subontology evaluation and the second best performance
in Biological Process (BP) and Molecular Function (MF)
subontology evaluations. Figure 3 shows the comparison of
DeepGOPlus with all CAFA3 top performing methods.

The newer versions of DeepGOPIlus obtain higher Fi,y;
for example, version 1.0.3 has an Fp,,x of 0.647, 0.531 and
0.685 for MF, BP and CC, respectively. However, these re-
sults cannot easily be compared with other methods as the
training and testing data, as well as the GO ontology, are
no longer identical to the data used by other methods. We
will continue to update the DeepGOWeb website with the
performance of DeepGOPlus in official CAFA challenges
as they become available.

To ensure practical utility of DeepGOPIlus for prediction
functions for a large number of protein sequences, we also
evaluated the processing time both of DeepGOPlus directly
and of the DeepGOWeb webserver. When using an Nvidia
Titan X GPU for processing, the DeepGOPlus command
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line tool can predict functions for around 40 sequences per
second. The REST API can process ~5 protein sequences
per second when using batches of 100 sequences; the Deep-
GOWeb website is the slowest way to access DeepGOPIlus
and requires on average 13 seconds to predict functions for
10 protein sequences.

We compare DeepGOWeb with several other function
prediction web servers such as SIFTER (22), PredictPro-
tein (23), ECPred (24), NETGO (4), CATH/Gene3D (25),
ProFunc (26), InterProScan (27), I-TASSER (28), PANDA
(29), DEPICTER (30) and FFPRED?3 (31) in terms of their
functionality and accessibility. These servers differ from
DeepGOWeb either in that they limit the organisms for
which protein functions are predicted; do not predict func-
tions using the GO but other functional categories, or only
use parts of the GO; limit the type of proteins for which
functions are predicted; do not have a predictive perfor-
mance comparable to DeepGOPlus; or require substan-
tially more time for predicting functions of one protein. To
our knowledge, no function prediction server is available
through SPARQL. Table 2 provides a comparison of func-
tion prediction web servers.

CONCLUSIONS

DeepGOWeb is a webserver for obtaining fast and accu-
rate functional annotations for proteins. DeepGOPIlus im-
plements a function prediction method that relies only on
protein sequences and focuses on providing predictions
quickly. These design decisions allow DeepGOPlus and
DeepGOWeb to be applied to a wide range of use cases.
In particular, DeepGOWeb can be used to provide whole
genome functional annotations of newly sequenced organ-
isms for which no additional information is available. Deep-
GOPlus has previously been used to annotate newly se-
quenced crop plants, in particular fonio millet (Digitaria
exilis) (32), and early SARS-CoV-2 sequences (33); how-
ever, DeepGOPIlus places no restrictions on the protein se-
quences and can be used to prediction functions for pro-
teins from any organism. DeepGOPlus and DeepGOWeb
are available as Free Software (34) at https://deepgo.cbrec.
kaust.edu.sa/.
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