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Abstract The representation of position in the mammalian brain is distributed across multiple

neural populations. Grid cell modules in the medial entorhinal cortex (MEC) express activity

patterns that span a low-dimensional manifold which remains stable across different environments.

In contrast, the activity patterns of hippocampal place cells span distinct low-dimensional manifolds

in different environments. It is unknown how these multiple representations of position are

coordinated. Here, we develop a theory of joint attractor dynamics in the hippocampus and the

MEC. We show that the system exhibits a coordinated, joint representation of position across

multiple environments, consistent with global remapping in place cells and grid cells. In addition,

our model accounts for recent experimental observations that lack a mechanistic explanation:

variability in the firing rate of single grid cells across firing fields, and artificial remapping of place

cells under depolarization, but not under hyperpolarization, of layer II stellate cells of the MEC.

Introduction
The discoveries of spatially selective cells in the hippocampus (O’Keefe and Dostrovsky, 1971) and

the medial entorhinal cortex (MEC) (Hafting et al., 2005), have opened a window into the mecha-

nisms underlying neural coding and processing of a high-level cognitive variable, which is separated

from direct sensory inputs: the brain’s estimate of an animal’s position. Experimental evidence and

theoretical reasoning have suggested that the neural representation of this variable is maintained by

multiple attractor networks in the hippocampus (Battaglia and Treves, 1998; Quirk et al., 1990;

Samsonovich and McNaughton, 1997; Schlesiger et al., 2018; Wills et al., 2005) and the MEC

(Burak, 2014; Burak and Fiete, 2009; Fuhs and Touretzky, 2006; Guanella et al., 2007;

McNaughton et al., 2006; Stensola et al., 2012), each expressing highly restricted patterns of neu-

ral activity at the population level that are preserved across multiple environments and conditions

(Gardner et al., 2019; Trettel et al., 2019; Yoon et al., 2013). Under this interpretation of the

experimental observations, patterns of population activity in the hippocampal-entorhinal system are

selected from a limited repertoire, shaped by synaptic connectivity that enforces the attractor

dynamics. These activity patterns are dynamically linked with the animal’s position in response to

external sensory inputs and self-motion cues.

Despite the hypothesized role of recurrent connectivity in shaping spatial responses in the hippo-

campus and the MEC, theoretical research on the relationship between these brain areas has mostly

treated them as successive stages in a processing hierarchy involving feed-forward connectivity from

grid cells to place cells, or vice-versa (Figure 1a) (but see [Laptev and Burgess, 2019; Rennó-

Costa and Tort, 2017]). It is easy to show that summed inputs from multiple grid cells, combined
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with thresholding or competitive dynamics, can produce place-cell like responses (de Almeida et al.,

2009; Monaco et al., 2011; Neher et al., 2017; Rolls et al., 2006; Solstad et al., 2006). It is also

straightforward to produce grid-cell like responses by combining synaptic inputs from multiple place

cells whose receptive fields are periodically arranged in space. Furthermore, theoretical studies have

demonstrated that plasticity mechanisms, acting between place cells and their post-synaptic part-

ners in the MEC, can give rise to synaptic connectivity of this form, thereby producing grid-cell like

responses that are driven by place cell inputs (D’Albis and Kempter, 2017; Dordek et al., 2016;

Kropff and Treves, 2008; Monsalve-Mercado and Leibold, 2017; Stepanyuk, 2015; Weber and

Sprekeler, 2018). Nevertheless, the functional relationship between grid cells and place cells, its

relationship with recurrent connectivity within each brain region, and its role in the encoding of posi-

tions across multiple environments, remain unclear.

There are several difficulties with the hypothesis that spatial selectivity in the entorhinal-hippo-

campal system emerges from a simple feedforward architecture. First, a number of experiments indi-

cate that grid cell inputs are not necessary for emergence of place cell spatial specificity. Stable

place fields are expressed in the hippocampus of preweanling rats before the appearance of stable

grid cell activity in the MEC (Langston et al., 2010; Wills et al., 2010), and place fields are main-

tained under MEC lesions (Hales et al., 2014). Global hippocampal remapping can occur without

input from the MEC (Schlesiger et al., 2018), and place fields are expressed under the inactivation

of the medial septum, which eliminates the spatial periodicity of grid cells (Koenig et al., 2011). Fur-

thermore, new place fields can be established in novel environments under medial septum inactiva-

tion (Brandon et al., 2014).

Second, there are difficulties with the opposite hypothesis, that feedforward inputs from place

cells are the sole determinants of grid cell specificity. One such difficulty arises from the observation

that place cell activity patterns remap in different environments (Muller and Kubie, 1987). If grid

cell responses emerge under activity dependent plasticity of feedforward synapses from place cells

to grid cells (D’Albis and Kempter, 2017; Dordek et al., 2016; Kropff and Treves, 2008; Mon-

salve-Mercado and Leibold, 2017; Stepanyuk, 2015; Weber and Sprekeler, 2018), it is difficult to

Figure 1. Schematic illustration: possible architectures of grid cell and place cell connectivity. (a) Two hypotheses on connectivity, with hierarchical

relationship between grid cells and place cells. Left: feed-forward connectivity from grid cells to place cells. Right: feed-forward connectivity from place

cells to grid cells. Grid cells are color coded by their allocation to modules. Place cells exhibit global remapping between distinct environments (room

A/room B) accompanied by grid cells realignment (not shown). (b) Schematic illustration of the model’s architecture: place cells and grid cells are

bidirectionally coupled. Top: the strength of synaptic connectivity between a pair of place cells is a sum of map-specific contributions arising from the

distinct maps. In each discrete map, the connectivity depends on the environment-specific spatial separation between the place cell receptive fields

(arrow thicknesses for place cells #1 and #2). Bottom: grid cell modules are modeled as independent continuous attractors. Recurrent connectivity is

identical in all modules. Straight arrows: the bi-directional connection between a grid cell and a place cell is proportional to the overlap between their

receptive fields across the discrete maps.
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explain why they remain grid-like across familiar and novel environments, and why phase relation-

ships between grid cells within a module are tightly preserved (Gardner et al., 2019; Trettel et al.,

2019; Yoon et al., 2013). Furthermore, grid cells maintain their correlation structure under hippo-

campal inactivation (Almog et al., 2019), indicating that the low dimensionality of activity within

each grid cell module is independent of hippocampal inputs.

Third, anatomically, the MEC and the hippocampus are reciprocally connected (van Strien et al.,

2009). A significant proportion of excitatory projections to place cells that arise in MEC originate in

grid cells (Zhang et al., 2013), and there are abundant feedback projections from place cells to

deep layers of MEC (Deadwyler et al., 1975).

Here, instead of assuming a feed-forward architecture of the entorhinal-hippocampal network, we

explore theoretically an alternative hypothesis, that grid cells and place cells are driven by two types

of synaptic inputs (Figure 1b): inputs arising from recurrent connectivity within each brain area that

restrict activity to lie within low dimensional manifolds, and inputs arising from reciprocal connec-

tions between the MEC and the hippocampus that coordinate their joint representation of position.

We first examine whether such an architecture can enforce a coordinated representation of posi-

tion in both brain regions. The joint system must be able to represent all possible positions within

each environment by coordinated and persistent patterns of neural activity. To achieve this goal,

while accounting for the global remapping of place cells (Muller and Kubie, 1987) and the phase

shift of grid cells (Fyhn et al., 2007) across distinct environments (Jeffery, 2011), we evoke theoreti-

cal ideas on the representation of multiple spatial maps by attractor dynamics in the hippocampus

(Battaglia and Treves, 1998; Monasson and Rosay, 2013; Samsonovich and McNaughton, 1997),

and extend them to construct synaptic connectivity that supports a representation of position jointly

with the grid cell system.

We demonstrate that the coupling between hippocampal and entorhinal attractor networks ena-

bles two computational functions. First, integration of velocity inputs in the grid cell network drives

similar updates of the place cell representation of position. Idiothetic path integration can thus be

implemented within the grid cell system, using fixed synaptic connectivity that does not require

readjustment in new environments. Second, the reciprocal connectivity between grid cells and place

cells yields an error correcting mechanism that eliminates incompatible drifts in the positions repre-

sented by distinct grid cell modules, independently from sensory inputs. Such independent drifts

would otherwise rapidly lead to catastrophic readout errors of the grid cell representation

(Burak, 2014; Fiete et al., 2008; Mosheiff and Burak, 2019; Sreenivasan and Fiete, 2011;

Welinder et al., 2008) and would therefore be highly detrimental for the coding of position by grid

cell activity.

Next, we show that our model exhibits two emergent features that provide a compelling explana-

tion for several recent experimental observations.

Variability of individual grid cell firing rates across firing fields
Even though grid cell activity is spatially periodic to a good approximation, several recent works

showed that firing rates of individual grid cells vary across firing fields (Diehl et al., 2017;

Dunn et al., 2017; Ismakov et al., 2017). These firing rate differences are retained across multiple

exposures to the same environment. On their own, attractor models of grid cell dynamics predict

that firing rates should be identical across firing fields. However, external inputs to the grid cell sys-

tem could modulate the activity of grid cells in a non-periodic manner. Such inputs could have a sen-

sory origin and project to grid cells from the LEC or the hippocampus. Here, we show that even

without any sensory inputs projecting into the system, the embedding of multiple spatial maps

within the hippocampus, combined with the synaptic projections from place cell to grid cells, gener-

ates variability in the firing rate of grid cells across firing fields.

Artificial hippocampal remapping upon grid cell depolarization
Place cell firing fields were recently recorded during hyperpolarization or depolarization of layer II

stellate cells in the MEC (Kanter et al., 2017), giving rise to surprising observations. First, depolari-

zation in the MEC led to a form of remapping in the hippocampus that resembles partial remapping

(Colgin et al., 2008; Latuske et al., 2017; Muller and Kubie, 1987; Quirk et al., 1990). Some place

cells shifted their firing fields to new locations, while other place fields remained anchored to their
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original positions and exhibited only rate remapping. This implies that in contrast to global remap-

ping, population patterns of activity under depolarization of the MEC retained partial overlap with

firing patterns that were expressed under non-perturbed conditions. Unlike classical remapping

experiments, the changes in the firing patterns of place cells in Kanter et al., 2017 were induced

without any changes in the sensory inputs. We refer to this form of remapping induced by MEC

depolarization as artificial remapping, following Kanter et al., 2017. Second, an asymmetry was

observed between consequences of depolarization and hyperpolarization in the MEC, since hyper-

polarization had only mild effect on the spatial tuning curves of place cells. So far, these observations

have lacked a satisfying theoretical explanation. We show below that our model exhibits the same

phenomenology as observed in Kanter et al., 2017. The theory predicts that MEC depolarization,

but not hyperpolarization, alters the manifold of persistent population activity patterns, such that

the hippocampus expresses mixtures of patterns that were associated with different environments

before the perturbation. The emergence of such mixed states under certain perturbations is charac-

teristic of models of associative memory. Thus, artificial remapping may offer the first experimental

observation of this phenomenon in a well-characterized neural network.

Results
We first ask whether bidirectional connectivity between grid cells and place cells can enforce persis-

tent states of activity that enable continuous coding of position, and are compatible with the

observed phenomenology of the place and grid cell neural codes in multiple environments: global

hippocampal remapping (Muller and Kubie, 1987), and phase shifts in individual modules of the

MEC (Fyhn et al., 2007). For simplicity, and to reduce the computational cost of simulations, we

consider throughout this manuscript a one-dimensional (1d) analogue of grid cell and place cell

dynamics.

Model architecture and description
We model neural activity using a standard rate model. Neurons are grouped into several sub-popu-

lations: hippocampal place cells and three grid-cell modules. The architecture of synaptic connec-

tions is briefly described here, and fully specified in Methods. There are three types of synaptic

connections in the model:

Recurrent connectivity between grid cells
Connectivity within each grid cell module produces a continuous attractor with a periodic manifold

of steady states. We adopt the simple synaptic architecture proposed in Guanella et al., 2007. In

the 1d analogue, this form of connectivity maps into the ring attractor model (Ben-Yishai et al.,

1995; Redish et al., 1996; Skaggs et al., 1995; Zhang, 1996): neurons, functionally arranged on a

ring, excite nearby neighbors, while global inhibitory connections imply that distant neurons inhibit

each other. This synaptic architecture leads to coactivation of a localized group of neurons, which

can be positioned anywhere along the ring. The possible positions of the bump are associated with

the 1d spatial coordinate by tiling them periodically along the spatial dimension, with an environ-

ment specific phase, in accordance with the experimentally observed phase-shifts of grid cell

responses under global remapping (Fyhn et al., 2007).

Recurrent connectivity between place cells
Connectivity between place cells is based on similar principles, with two differences: first, each pop-

ulation activity pattern is mapped to a single spatial location. Second, the network possesses a dis-

crete set of continuous attractors, each mapping a distinct environment to a low dimensional

manifold of population activity patterns. The synaptic connectivity can be expressed as a sum over

contributions from different maps, in similarity to the sum of contributions associated with discrete

memories in the Hopfield model (Hopfield, 1982). To mimic the features of global remapping, spa-

tial relationships between place cells in the different maps are related to each other by a random

permutation. This is similar to previous models (Battaglia and Treves, 1998; Monasson and Rosay,

2013; Samsonovich and McNaughton, 1997) but adapted here to the formalism of a dynamical

rate model.
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Connectivity between grid cells and place cells
We first define an idealized tuning curve for each grid cell and each place cell, in each environment.

These tuning curves are determined by the mapping between attractor states and positions, as

described above and in Methods. For each pair of grid and place cells, we evaluate the correlation

between their spatial tuning patterns across all spatial positions and environments. The efficacy of

the synapse is then linearly related to this correlation coefficient.

Coordinated persistent representations
We demonstrate that coordinated persistent representations, and only them, simultaneously co-exist

in grid cells and place cells. Our methodology is based on quantitative mapping of persistent states

obtained when starting from multiple types of initial conditions. We require that in all cases the sys-

tem will settle on a persistent activity bump in one of the hippocampal maps, and on persistent

activity bumps in each grid cell module at matching locations. Examples of such states are shown in

Figure 2. Each state exhibits unimodal and co-localized activity bumps when cells are ordered

according to their firing location in a particular environment, whereas scattered place cell activity

accompanied with grid cell realignment is observed when cells are ordered according to their firing

location in other environments.

To test whether a persistent state represents coherently a valid position in one of the environ-

ments, we define a bump score that quantifies the existence of a unimodal activity bump in each

sub-network. In the hippocampal sub-network, a high bump score should be seen only in a single

spatial map. Within that map, we also measure the spatial location that corresponds to activity

bumps in each sub-network (Methods). This measurement allows us to verify that all sub-networks

express activity bumps in compatible positions, and to test the persistence of these bump states.

Figure 3 shows the results from several types of initial conditions:

1. ‘Consistent condition’: Grid cell and place cell activities are initially set to encode an identical
location within the same map. Using these initial conditions, we verify that all locations, in all
environments, can be represented by persistent states (Figure 3a–d). The bump score remains
high after 1 s when initializing the network in co-localized bump states, and the drift of the
represented position is small compared to the width of activity bumps, indicating that these
states are persistent.

2. ‘Inconsistent condition’: Grid cell and place cell activities are initially set to encode different
locations. Using this test, we verify that such incompatible states are unstable and give rise
(after a short transient period) to a consistent state (Figure 3e–h).

3. ‘All random’: Both grid cell and place cell activities are set to random initial rates. The goal of
these tests is to verify that even if bump states do not exist initially, the system evolves into
unimodal activity bumps in compatible positions, and that no other spurious states emerge. As
expected, co-localized place cell and grid cell activity bumps appear with equal probabilities
across the different maps (Figure 3i).

4. Finally, we test how the system evolves from two additional types of initial states: in one condi-
tion grid cells are initially set to have random rates, while place cells are set to encode a spe-
cific location. In the second condition, grid cells are set to encode a specific location, and
place cells are assigned with random rates. The results (Figure 3—figure supplement 1) indi-
cate that both place cells and grid cells are capable of attracting activity in the other network
to organize in a compatible manner with their initial state (note however that in the ‘inconsis-
tent’ initial condition, under our choice of coupling parameters, the final locations of persistent
states are typically determined by the initial place cell location).

Figure 3—videos 1–3 show examples of activity dynamics in the network for initial conditions of

types (1–3) and Figure 3—figure supplement 2 quantify the dynamics of the bump score for each

type of the initial conditions shown in Figure 3.

Functional consequences: path integration and dynamic coupling
Two functional consequences arise from the coupling between the place and grid cell networks:

Path integration
The MEC has been hypothesized to be the brain area responsible for idiothetic path integration for

several reasons (Burak, 2014; Hafting et al., 2005; McNaughton et al., 2006) among them the
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highly geometric nature of grid cell spatial selectivity, the existence of inputs to the MEC that convey

information about the animal’s self-motion and heading (Kropff et al., 2015; Sargolini et al., 2006),

and the impairment of path integration following disruption of grid cell activity (Gil et al., 2018).

The similarity in response patterns of grid cells across environments implies that implementation of

path integration in the MEC could be accomplished in different environments by the same synaptic

Figure 2. Examples of simulation results, demonstrating joint persistent states of place cells and grid cells. (a) One persistent state of the network (state

1). In each panel, cells are ordered according to their preferred firing locations in one environment. In each grid cell module, positions displaced by any

integer multiple of the grid spacing correspond to the same cell, whereas distinct place cells span the whole extent of the environment. When cells are

ordered according to their preferred firing locations in map #1 (left), a unimodal place cell bump is observed, and the distinct grid cell bumps of the

three modules co-localize around the same spatial location. When the cells are ordered according to their preferred firing locations in a different map

(middle - map #3 and right - map #6), the same place cell activities are scattered throughout the environment and do not resemble a unimodal activity

bump. Furthermore, grid cell bumps do not necessarily co-localize around the same spatial location, as they independently realign. (b-c) Examples of

persistent states (state 2 and 3), similar to (a) but representing positions in map #3 and in map #6 respectively. Note that here the activity of place cells

seems scattered and grid cell bumps independently realign when cells are ordered according to their preferred firing locations in map #1.
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connectivity, whereas implementation in the hippocampus (McNaughton et al., 1996) would require

establishment of dedicated synaptic connectivity in each environment. Figure 4a demonstrates that

in the coupled system, integration of velocity inputs in the MEC, using mechanisms described in

Burak and Fiete, 2009 (Methods) induces coordinated updates in the position represented in the

place cell network and Figure 4—figure supplement 1 shows the dynamics of the corresponding

Figure 3. Quantitative mapping of the persistent states expressed by the joint network. In all panels, the system is placed at 500 initial conditions of

three types (a-d: ‘consistent’, e-h: ‘inconsistent’, i-l: ‘all random’). Its state is then analyzed after a 1 s delay period. (a-d) Results from the ‘consistent’

initial condition (the system is placed without loss of generality in map #1). (a) Histogram of winning map, defined as the map that achieved the highest

bump score. Red dashed line: uniform distribution. (b) Histogram of place cell bump scores, obtained from the winning map (blue) and from an

average on all other maps (‘Losing maps’, orange). (c) Histogram of distances between the measured spatial location of each grid cell bump and the

place cell bump, evaluated in the coordinates of the winning map. (d) Histogram of distances traveled by the activity bumps from their initial condition,

evaluated in the coordinates of the winning map. (e-h) Similar to (a-d) but for ‘inconsistent’ condition. (i-l) Similar to (a-d) but for ‘all random’ condition.

The initial position was evaluated using the same algorithm used in (d,h) but in this case, where there were no initial bumps, the outcome depended on

slight random variations in the initial condition and thus, effectively, the initial position was chosen randomly. Note that for all initial conditions the state

of the system after the delay period corresponded to a single spatial map (b,f,j), and the place cell and grid cell representations are coordinated (c,g,k).

The online version of this article includes the following video and figure supplement(s) for figure 3:

Figure supplement 1. Analysis of persistent states following initial conditions of type (4).

Figure supplement 2. Bump score dynamics of persistent states.

Figure 3—video 1. Dynamics under ‘consistent’ initial condition.

https://elifesciences.org/articles/56894#fig3video1

Figure 3—video 2. Dynamics under ‘inconsistent’ initial condition.

https://elifesciences.org/articles/56894#fig3video2

Figure 3—video 3. Dynamics under ‘all random’ initial condition.

https://elifesciences.org/articles/56894#fig3video3
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bump scores across multiple maps. Figure 4b shows that errors accrued during path integration

remain small, when using realistic velocities that were measured experimentally during foraging in

an open field environment (Figure 4c). Interestingly, the representation in the hippocampus lags

behind the entorhinal representation, due to synaptic transmission delays (Figure 4d).

Coordination of the grid cell representation: suppression of incompatible
drifts
The modular structure of the grid cell code for position confers it with large representational capac-

ity (Fiete et al., 2008). Yet, the modularity poses a significant challenge for the neural circuitry that

Figure 4. Velocity integration in grid cells can update the place cell representation. (a) Readout of place cell bump

location (black) while grid cell modules (green, red, and blue) integrate a velocity profile (dashed orange line). (b)

Mean absolute distance between measured location of the place cell activity bump, and integrated velocity (blue),

as a function of time. This quantity is compared with the total distance traveled by the place cell bump (red), which

is much larger. Averaging was performed over 500 trajectories. In each trajectory velocity was randomly sampled

every 0.5 s from an experimentally measured velocity distribution, which was obtained during foraging of a rat in

an open-field environment (see panel c). Shaded error bars are 1.96 times the standard deviations obtained from

each simulation, divided by the square root of the number of realizations (corresponding to a confidence interval

of 95%). (c) Histogram of velocities measured experimentally during foraging of a rat in an open field environment

(Hafting et al., 2005). (d) Mean squared displacement between positions represented by place cells and grid

cells, when evaluated at varying time lags between the two measurements. Red circle marks the minimal MSE. The

minimum MSE occurs at a negative time lag (~�100 ms), which indicates that the place cell representation lags

behind the grid cell representation. Shaded error bars are 1.96 times the standard deviations obtained from each

simulation, divided by the square root of the number of realizations (corresponding to a confidence interval of

95%).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Bump score dynamics for each of the embedded maps, corresponding to the realization

shown in Figure 4a.
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maintains the representation and updates it based on self-motion. The configurational space of M

grid module phases is M dimensional in 1-d (or 2M dimensional in 2-d), but phases that correspond

to continuous motion in a given environment span a much smaller subspace: during continuous

motion, changes in the phases of any two modules should be identical, up to a proportionality factor

related to their respective grid spacings. However, in the absence of correcting mechanisms phase

errors that accrue in different modules due to noise might not adhere to these restrictions. Such

incompatible drifts can rapidly lead to combinations of phases that do not represent any position in

the nearby vicinity of the animal, resulting in catastrophic readout errors (Figure 5a) (see also

Burak, 2014; Sreenivasan and Fiete, 2011; Welinder et al., 2008).

Sensory cues may correct drifts in individual modules and restore the coordination between the

phases of different modules. It has been shown that such phase resets occur during encounters with

walls, possibly mediated by an interaction between grid cells and border cells (Hardcastle et al.,

2015; Mulas et al., 2016; Pollock et al., 2018). However, it has been argued that under conditions

in which sensory inputs are absent or poor, other mechanisms must act to coordinate grid cell

phases and prevent catastrophic readout errors (Burak, 2014; Fiete et al., 2008). Two possible

mechanisms have been proposed: in one solution (Sreenivasan and Fiete, 2011; Welinder et al.,

2008), the hippocampal network reads out the position jointly represented by grid cell modules,

and projections from hippocampus to the MEC correct small incompatible drifts accrued in the dif-

ferent modules. A second solution, proposed more recently (Mosheiff and Burak, 2019) involves

synaptic connectivity between grid cells belonging to different modules. The first solution has been

explored previously (Sreenivasan and Fiete, 2011) without explicit modeling of attractor dynamics

in the hippocampus, and without considering the embedding of multiple spatial maps in the entorhi-

nal-hippocampal network. Therefore, we tested whether coordination of modules can be imple-

mented in the coupled system, across multiple environments.

We first considered the consequences of stochastic neural firing, by modeling grid cells as noisy

(Poisson) units. In the absence of coupling between the MEC and hippocampus the positions repre-

sented in different modules drifted randomly in an uncoordinated manner (Figure 5b, top). With

bidirectional coupling (Figure 5b, middle) the representation of position accrued errors relative to

the true position of the animal, but remained coordinated in all modules and in the hippocampus.

Figure 5b (bottom) quantifies the relative drift between modules in the different conditions over

multiple realizations of the dynamics, showing that drifts remain coordinated under coupling with

the hippocampus. Drifts that are coordinated across modules are much less detrimental for decod-

ing of position than coordinated drifts [see (Burak, 2014; Mosheiff and Burak, 2019) for a thorough

discussion].

Next, we demonstrated that the system is resilient to noise in the velocity inputs to the different

modules (Figure 5c). Even in an extreme situation, in which modules received highly incompatible

velocity inputs, their motion remained coordinated in the coupled network but not in the uncoupled

network.

Emergent properties in the hippocampus and MEC
The embedding of multiple spatial maps in the coupled hippocampal-entorhinal network gives rise

to two non-trivial emergent properties.

Variability of individual grid cell firing rates across firing fields
As the animal moves in a given environment, the summed synaptic input from all place cells to a

given grid cell includes a contribution associated with that environment, which is spatially periodic.

However, grid cell synaptic inputs also receive contributions from place cells associated with other

spatial maps that are embedded in the synaptic connectivity. The latter contributions are spatially

aperiodic within the present environment, leading to variability across fields. As an example,

Figure 6a shows the population activity of place cells and grid cells from module #3. The system is

placed at three spatial locations that are displaced from each other by the grid spacing of module

#3. Thus, the same grid cells are active in these three locations. However, the amplitude of the grid

cell activity bump differ at the three locations. Figure 6b quantifies the variability of peak firing rates

generated by individual grid cells across firing fields within a single environment, using the coeffi-

cient of variation (CV): a histogram of the CV, collected from all cells, is shown for networks with
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varying number of embedded maps. CVs vanish

when a single spatial map is embedded in the

synaptic connectivity and increase with the addi-

tion of spatial maps.

Artificial hippocampal remapping
upon grid cell depolarization
In a recent experiment (Kanter et al., 2017),

MEC layer 2 stellate cells were reversibly hyper-

polarized or depolarized using chemogenetic

receptors, while animals were foraging in a famil-

iar environment. Chronic tetrode arrays

implanted in the hippocampus were used to

monitor CA1 firing fields during these manipula-

tions. Hyperpolarization of the MEC had very lit-

tle effect on place cell firing fields, whereas

depolarization of the MEC elicited dramatic

effects: a significant portion of place cells exhib-

ited changes in the locations or rates of their fir-

ing fields, resembling those seen during global

and rate remapping experiments. This effect

included place cells that had been turned off or

on as seen in natural remapping experiments. Fir-

ing fields of all other cells remained in their base-

line positions, without significant changes. As for

the grid cells, both manipulations led to changes

in the firing rates but did not elicit a change in

the firing locations, unlike the coherent shifts and

rotations seen in distinct familiar environments

(Fyhn et al., 2007).

The asymmetric effect of entorhinal depolari-

zation and hyperpolarization was highlighted

(Kanter et al., 2017) as the most puzzling experi-

mental outcome. Indeed, under simple feedfor-

ward models of place cell emergence from grid

cell inputs (de Almeida et al., 2009;

Monaco et al., 2011; Neher et al., 2017;

Rolls et al., 2006; Solstad et al., 2006), it is diffi-

cult to envision why such an asymmetry would be

observed. Overall, a theoretical framework that

can coherently explain the consequences of

depolarization and hyperpolarization of the MEC

hasn’t been available so far.

To test the effect of grid cell depolarization or

hyperpolarization in our model, we adjusted the

excitability of grid cells by adding a fixed contri-

bution to their synaptic drive, which was either

excitatory or inhibitory. We first placed the sys-

tem in persistent states in one map (map 1). We

then hyperpolarized the grid cell network. Place

cell bumps remained around their baseline spatial

location, and activity in the place-cell network

exhibited significant overlap only with map 1

(Figure 7a–b). Similar results from control trials,

in which no manipulation was performed, are

Figure 5. Place cells coordinate the representations of

position in distinct grid cell modules. (a) The need for

coupling. Top panel: blue- and red-shaded areas

represent schematically the posterior likelihood for the

animal’s position in 2-d, obtained from the activity of

Figure 5 continued on next page
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shown in Figure 3a–b. The minor effect of grid

cell hyperpolarization is not surprising, since

the hippocampal network is structured such

that it can sustain population activity patterns

associated with each environment even without

inputs from grid cells. Therefore, suppression

of activity in the MEC network did not signifi-

cantly alter the population activity patterns

expressed by the place cell network.

In contrast with this result, depolarization of

the MEC network elicited significant changes in

the structure of population activity patterns

expressed by the hippocampal network. Fol-

lowing a short transient, population activity of

place cells stabilized on patterns that exhibited

overlap with patterns that were previously

associated with multiple spatial maps

(Figure 7c). The overlap was highly significant

compared to overlaps obtained with random

maps that were not embedded in the connec-

tivity (gray bars in Figure 7c). Thus, the place

cell network expressed mixtures of population

activity patterns from different maps stored in

the hippocampal connectivity. Typically, the

highest overlap remained with map 1

(Figure 7d). An example of population activity

patterns before and after depolarization in one

location is shown in Figure 7—figure supple-

ment 1a–d. (Corresponding dynamics can be

seen in Figure 7—video 1, and Figure 7—fig-

ure supplement 2 quantifies the bump score

dynamics, from all realizations shown in Fig-

ure 7.) In similarity to experimental results

(Kanter et al., 2017), both depolarization and

hyperpolarization changed the firing rate, but

not firing location, of MEC neurons. On aver-

age, grid cells increased their firing rates under

grid cell depolarization and decreased their fir-

ing rates under grid cell hyperpolarization (not

shown), in agreement with the experiment. Figure 7—figure supplement 1e demonstrates that the

mixed activity patterns are persistent.

Our interpretation of artificial remapping is thus that excessive inputs from grid cells enhance the

quenched noise arising from multiple embedded maps, and that this enhancement puts the system

in a regime in which it expresses mixed states. To demonstrate the existence of such a regime, we

show in Figure 7—figure supplement 3a–b that similar expression of mixed states emerges when

synapses between grid and place cell are strengthened, even without grid cell depolarization. In

contrast, selective strengthening only of the component associated with one of the maps, does not

generate mixed states (Figure 7—figure supplement 3c–d). On the contrary: this selective enhance-

ment suppresses the emergence of mixed states under grid cell depolarization (Figure 7—figure

supplement 3e–f). These results demonstrate that the emergence of mixed states is not simply due

to enhancement of inputs from the MEC, but is due to the amplification of quenched noise.

To make direct contact with the experimental observations (Kanter et al., 2017), we examined

the firing properties of individual place cells as a function of the animal’s position during locomotion

under MEC depolarization. The observation that population activity patterns under depolarization

are mixtures of activity patterns from different maps led us to expect that some cells would maintain

place fields in their baseline locations, while others would remap. To test this hypothesis, we first

Figure 5 continued

all grid cells in module 1 (red) and module 2 (blue).

Periodic colored blobs correspond to areas with high

likelihood for the position, while blank areas

correspond to low likelihood (note that since the blobs

represent a decoded likelihood from the activity of all

grid cells in the same module, they should not be

confused with the spatial receptive fields of single

cells). The position which is most likely given the joint

activity in both modules is designated by a black circle.

Bottom left: when noise-driven drifts in the two

modules are identical (compatible drifts, blue and red

arrows), the outcome is a shift in the represented

position (original location marked by black dashed

circle for reference). Bottom right: incompatible drifts

in the two modules may result in abrupt jumps in the

maximum-likelihood location (Burak, 2014;

Mosheiff and Burak, 2019). (b) Examples of 1-d

simulation results starting from a consistent initial

condition showing grid cell module bump locations

(green, red and blue) vs. time without (up) and with

(middle) coupling between place cells and grid cells.

Random accumulated drifts are driven by intrinsic

neural noise, modeled as arising from Poisson spiking.

Dashed lines in middle panel are generated from a

non-noisy simulation for reference. Bottom: mean

square displacement (MSD) between bump locations of

distinct grid cell modules (averaged across all pairs and

realizations of the stochastic dynamics) vs. time with

(green) and without (red) coupling between place cells

and grid cells, starting from a consistent initial

condition. Shaded error bars are 1.96 times the

standard deviations obtained from each simulation,

divided by the square root of the number of

realizations (corresponding to a confidence interval of

95%). (c) Similar examples (top, middle) and analysis

(bottom) as in (b) but obtained from simulations in

which drifts arise from incompatible velocity inputs

provided to the distinct modules.
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placed the system in a state corresponding to a particular position in map 1. Then, while applying

the perturbation, we induced path integration in the MEC network and monitored population activ-

ity patterns while continuously scanning positions along the environment.

In accordance with the hypothesis, we found that cells exhibited the same phenomenology

observed experimentally (Kanter et al., 2017; Figure 8a–g). Many cells shifted their firing location

(~29%), whereas others (~18%) maintained their place fields in their baseline location. Of these,

some cells exhibited rate remapping (~7%), while the firing rate of other cells remained unaffected

(~11%). Some place cells expressed one or (rarely) more firing fields in addition to their original field

location (~36.5%), some completely turned-off (~6%) or exhibited a minor field (~1.5%), and some

place cells remapped into more than a single field (~9%). The percentages of place cell responses

are likely influenced by the model parameters (Table 1), and depend also on the precise classifica-

tion criteria (Methods). Qualitatively, however, all the response types observed in our model have

been observed experimentally (Kanter et al., 2017). All active cells exhibited a continuous activity

pattern with one, or occasionally few, unimodal firing fields. Figure 8—figure supplement 1 shows

all the population activity patterns observed while traversing the environment in a single path inte-

gration cycle. In agreement with the experimental observations, firing patterns returned to baseline

configurations following reversal of MEC depolarization (not shown). As expected (Figure 7a–b),

hyperpolarization did not elicit significant changes in the firing locations of place cells (Figure 8h).

Finally, we examined how grid cell activity is influenced by the altered firing patterns of place cells

during grid cell depolarization. Our previous observation that place cell inputs induce variability in

firing rates of single grid cells across different firing fields, led us to examine whether the rank order

of grid fields according to peak firing changes under the modification of place cell firing patterns

associated with grid cell depolarization (similar rank changes have been observed also under place

cell rate remapping, but in this case changes were induced by modifications of sensory inputs in a

familiar environment [Diehl et al., 2017]). Figure 8—figure supplement 2 demonstrates that when

a single spatial map is embedded in the synaptic connectivity the rank correlation is equal to unity,

as expected. When multiple spatial maps are embedded in the connectivity, the rank order correla-

tion weakens, in accordance with experimental observations (Kanter et al., 2017).

Discussion
We demonstrated how multiple attractor networks in the hippocampus and MEC can be coupled to

each other, such that they jointly and coherently represent positions across multiple spatial maps,

Figure 6. Spontaneously emerging variability of individual grid cell firing rates across firing fields. (a) Simultaneous firing rates of place cells (black) and

grid cells from one module (module #3, blue), shown at three different persistent states that represent periodic locations of module #3. Even though

the same grid cells are active in all three locations, the amplitude of the grid cell activity bumps differ (compared with the red dashed line which shows

the maximal grid cell firing rate achieved at the left example, for reference). Different place cells are active in the three examples, thus providing

different quenched noise to the same grid cells in each case. (b) Histogram showing CV of maximal firing rate obtained from all individual grid cells

across firing fields within a single environment, shown for networks with a single map (blue), two maps (green), and six maps (red).
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while exhibiting the features of global remapping that are experimentally observed in both brain

areas.

Due to the embedding of multiple spatial maps in the hippocampal network, the input to a place

cell in a given environment can be separated into two components. The first component arises from

the synaptic connectivity associated with the presently expressed spatial map. The other component

Figure 7. Emergence of persistent mixed states under depolarization but not under hyperpolarization of grid cells.

(a) Histogram showing bump score distributions for all embedded maps under grid cell hyperpolarization. In each

simulation, the system is placed in a ‘consistent’ initial condition, and hyperpolarization is applied. Spatial maps

are then ranked according to their bump score. Each color corresponds to a histogram over all bump scores from

maps with specific rank, regardless of the map’s identity (this is identical to the analysis shown in Figure 3b,g,f

except that here losing maps are separated into distinct histograms according to rank). Bump scores for random

unembedded maps are shown in gray. (b) Distribution of identities of the top scored maps from (a). Dashed red

line shows the uniform distribution. In all realizations, top ranked map is map #1. (c) Same as (a) under grid cell

depolarization. Bump scores are lower than the winning scores in Figure 3b. Bump score distributions from

differently ranked maps overlap, and all histograms exhibit significantly higher bump scores than those of

unembedded maps (gray), indicating simultaneous expression of activity patterns from multiple embedded maps.

(d) Same as (b) under grid cell depolarization.

The online version of this article includes the following video and figure supplement(s) for figure 7:

Figure supplement 1. Persistent mixed state examples, and maintenance of grid cell firing location but not firing

rate under grid cell depolarization.

Figure supplement 2. Bump score dynamics under grid cell hyperpolarization and depolarization.

Figure supplement 3. Mixed states can be induced or suppressed by changing the connectivity between grid

cells and place cells.

Figure 7—video 1. Dynamics under grid cell depolarization.

https://elifesciences.org/articles/56894#fig7video1
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is associated with other spatial maps, and contributes quenched noise to the synaptic inputs

(Battaglia and Treves, 1998; Monasson and Rosay, 2013; Samsonovich and McNaughton, 1997)

(Appendix 1). Due to this quenched noise, the system loses its ability to represent all spatial posi-

tions in true steady states of the network dynamics. However, if the quenched noise is sufficiently

weak, bump states representing all possible positions remain highly persistent. This feature of con-

tinuous attractor systems with quenched noise, and specifically with multiple maps, has been exten-

sively discussed in previous works (Itskov et al., 2011; Monasson and Rosay, 2014). For this

reason, we tested for the existence of persistent rather than steady states in our analysis (Figure 3).

In particular, we verified that drifts of the represented location are small, when starting from the con-

sistent condition (Figure 3d). The drift rate is expected to be even smaller with a larger number of

place cells, since the contribution from place cell inputs to the drift scales inversely with the network

size (Monasson and Rosay, 2014). Furthermore, it has been demonstrated that sensory inputs, pro-

jecting to the hippocampus can pin the representation and prevent drift (Monasson and Rosay,

2014).

Systematic drifts (Itskov et al., 2011; Monasson and Rosay, 2014) and pinning of the attractor

state when velocity inputs are small (Burak and Fiete, 2009), can reduce the precision of path inte-

gration. Yet, Figure 4b demonstrates that with a realistic distribution of velocities, the system is still

highly effective in integrating the velocity inputs, over multiple spatial maps, even when allocentric

sensory inputs are completely absent.

Our model simplified the biological complexity of the hippocampal formation: we did not take

into account the laminar organization of the MEC, and the division of the hippocampus into sub-

regions. Our model of the hippocampal network matches most closely CA3, which is believed to

underlie the auto-associative features of network activity in the hippocampus, and is the area tar-

geted by layer II of the MEC, which was manipulated by Kanter et al., 2017.

Figure 8. Artificial remapping of place cells following depolarization, but not hyperpolarization of grid cells. (a-g) Firing rate maps of seven

representative place cells during locomotion without (blue) and with (orange) grid cell depolarization. Rate maps show that under grid cell

depolarization place cells changed locations (a-b), acquired additional fields (c-d), turned off (e), rate remapped (f) or were unaffected (g). (h) Rate maps

of a representative place cell without (blue) and with (orange) grid cell hyperpolarization.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Place cell population activity patterns observed while traversing the environment using path integration.

Figure supplement 2. Altered firing rate relationship between individual grid fields is observed during grid cell depolarization.
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We assumed that the association of place cells to locations in a novel environment is random and

occurs jointly with random and independent realignment of grid phases. The connectivity is then set

up in order to support the joint representation in the hippocampus and MEC. Under independent

remapping in grid cells and place cells, the capacity of the joint representation is limited by the grid-

to-place connections (Appendix 1). This result is in line with recent analysis (Yim et al., 2019), which

indicates that once grid phases are set, realizable patterns of place fields by a binary perceptron

(involving a linear weighting of grid cell inputs) are limited. As an alternative to independent remap-

ping in place cells and grid cells, it has been proposed that place cell firing locations may be deter-

mined in a new environment by grid cell inputs (Fyhn et al., 2007; Monaco et al., 2011). We did

not explore this scenario explicitly in this work, but in principle, it may be possible to construct a var-

iant of our model in which connections from grid cells to place are kept fixed as new maps are

embedded in the network, while the association of place cells to positions in a new environment is

determined by these fixed connections, followed by competitive dynamics. The exact mechanism

through which spatial fields in novel environments are associated to place cells is not known and

since global remapping in place cells can occur also without input from grid cells (Schlesiger et al.,

2018), it is likely that place fields are not solely determined by grid cells inputs.

Previous theoretical works showed that the grid cell representation has a high dynamic range,

which enables coding and storage in working memory of the animal’s location with high spatial reso-

lution, over a large range of positions (Burak, 2014; Fiete et al., 2008; Mathis et al., 2012;

Sreenivasan and Fiete, 2011; Wei et al., 2015). However, due to the distributed nature of the grid

cell code, it was argued that it is crucial to maintain precise coordination between the positions rep-

resented in different grid cell modules (Burak, 2014; Mosheiff and Burak, 2019; Sreenivasan and

Fiete, 2011; Welinder et al., 2008). Here, we showed that the required coordination can be

achieved through bidirectional connectivity between grid cells and place cells, over multiple spatial

maps, using an explicit model of attractor dynamics in the MEC and the hippocampus.

Table 1.

Parameter Value Units

L 6
� none

A 8:31 � 10�2 Hz

s 4:8 cm

h �2:6 � 10�2 Hz

B 75 � 10�2 Hz

� 1

3
� 2p radian

k �6:93 � 10�1 Hz

D� 1

16
� 2p radian

a 1:03 � 10�2 Hz

b � 20

3
� 10�4 Hz

t 15 � 10�3 s

Dt 2 � 10�4 s

gg 4 none

Ipc;0 �10 Hz2

gp 50 none

I
�
gc;0

�5;�5;�5ð Þ Hz2

"� 1:7; 1:9; 2:3ð Þ cm � sð Þ�1

IDepo
per

500 Hz2

IHyperper
�100 Hz2

*In all Figures we simulated the same networks using L ¼ 6, except for Figure 6b (where L was also set to 1 and 2),

and Figure 8—figure supplement 2 (where L was also set to 1, 2 and 4).
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The experimentally observed variability in the firing rates of individual grid cells across their firing

fields may arise from place cell inputs, as predicted by our model and proposed in other studies

(Dunn et al., 2017; Ismakov et al., 2017). The variability can arise from inhomogeneities in the syn-

aptic connections from place cell to grid cells which are unrelated to the embedding of multiple

maps (Dunn et al., 2017). Alternately, it can arise from sensory inputs, or from synaptic inputs from

different modules (Ismakov et al., 2017; Kang and Balasubramanian, 2019). Instead, we identified

a mechanism which naturally produces this variability, at least in part, simply by the process of

embedding multiple spatial maps in the connectivity and is independent from sensory inputs. The

fact that the rank order of grid fields was modified under grid cell depolarization when the hippo-

campal network exhibited artificial remapping (Kanter et al., 2017), as observed in our model, pro-

vides further support to the hypothesis that inputs from place cells significantly contribute to the

variability, independently of sensory inputs.

Our model reproduces the recently observed phenomenology of artificial remapping in the hip-

pocampus under MEC depolarization but not under hyperpolarization. While this phenomenon

resembles partial remapping observed under certain manipulations of environmental features

(Colgin et al., 2008; Latuske et al., 2017; Muller and Kubie, 1987; Quirk et al., 1990), we focused

on artificial remapping (Kanter et al., 2017) since our interest in this work is in the ability of the

MEC and hippocampus to sustain persistent patterns of activity at the population level, irrespective

of external inputs. Artificial remapping, as opposed to partial remapping, occurs under a manipula-

tion in which sensory inputs are kept fixed and therefore must arise from mechanisms that are intrin-

sic to the MEC-hippocampal network.

According to our model, artificial remapping is a consequence of a perturbation to the network

that places it in a regime in which it expresses mixtures of population activity patterns. This transition

does not require any modification of sensory inputs, in accordance with the experimental protocol

(Kanter et al., 2017), in which the environment remains fixed. All types of remapping observed

experimentally (Kanter et al., 2017), emerged in our model except for cells that lacked a firing field

before depolarization and acquired one afterwards. This is due to the fact that, for simplicity, we

assigned a spatial receptive field to all cells in each environment. It would be straightforward to

include in the model silent cells in each spatial map (Monasson and Rosay, 2013), in order to obtain

cells in the hippocampal network that acquire a firing field only after grid cell depolarization.

Our results also suggest that place cell artificial remapping is likely to occur at specific spatial

locations which are determined by the relationship between grid phases and the place cell’s firing

locations across all maps: remapped place fields are likely to emerge at locations in which the grid

phases (associated with the original spatial map) align under the coordinates of another spatial map.

Note that artificial remapping occurs only in place cells while grid cell activities do not collectively

realign or change their firing location (in agreement with Kanter et al., 2017). This property breaks

the symmetry between the maps, as there is still a signature of the original map expressed by grid

cells. One implication of this prediction is that remapping is likely to occur to locations in which the

synaptic input to the place cells is elevated before the depolarization (even if it is not sufficiently

strong to induce firing). Another manifestation of this prediction can be easily seen in Figure 8—fig-

ure supplement 1a: a margin of positions near the diagonal into which place cells are highly unlikely

to remap.

The model explains why artificial remapping occurred under depolarization, but not under hyper-

polarization of MEC cells (Kanter et al., 2017). In another experiment (Miao et al., 2015), remap-

ping in the hippocampus was observed under suppression of activity in the MEC. The reason for the

different outcomes (Kanter et al., 2017; Miao et al., 2015) is unclear. The different outcomes may

have arisen from specificity differences in the targeted populations: in Kanter et al., 2017 chemoge-

netic receptors were targeted almost exclusively to layer II stellate cells of the MEC in transgenic ani-

mals. In comparison, a broader population has been likely affected in Miao et al., 2015–in terms of

the targeted anatomical area and cortical layers (since the manipulation relied on the diffusion of a

virus), and the affected cell types, which most likely included interneurons. Another difference

between the experiments of Miao et al and Kanter et al is that the former recorded neural activity in

CA3, whereas the latter recorded activity in CA1.
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Experimental predictions
We next discuss some of the predictions arising from our model. To test some of these predictions

experimentally, it will be necessary to simultaneously record the activity of multiple cells in the MEC

and the hippocampus in freely behaving animals, in sufficient numbers that will enable dynamic

decoding of the population activity. Thus, our results offer a rich set of predictions that could be

tested using high-throughput recording techniques (Jun et al., 2017; Pfeiffer and Foster, 2015;

Ziv et al., 2013; Zong et al., 2017).

Idiothetic path integration
We predict that when updates of the brain’s self-estimate of position rely solely on idiothetic path

integration, the hippocampal representation of position will lag behind the MEC representation, due

to synaptic transmission delays (Figure 4d). If verified, this feature of the neural population dynamics

may help identify where different types of sensory inputs are integrated into the joint neural repre-

sentation of position in the hippocampus and the MEC. If sensory inputs that convey spatial informa-

tion project mainly to hippocampus, we expect a reversal of the time lag under conditions in which

such sensory inputs are highly informative.

The hippocampal network in our model is set up such that it expresses bump activity patterns at

the neural population level even without inputs from the MEC. This is in agreement with the obser-

vation that place fields are expressed under MEC lesions (Brun et al., 2008; Hales et al., 2014). We

predict that under these manipulations, and in conditions in which sensory inputs are absent, such

that the brain must rely on idiothetic path integration to update its internal representation of posi-

tion, bump activity patterns will still be expressed in the hippocampus at the population level, but

their association with position will be disrupted. Thus, the spatial fields of single cells will be severely

disrupted in these conditions.

Coupling of entorhinal modules
To test whether a coupling mechanism coordinates the states of grid cell modules, we propose to

simultaneously decode activities of multiple modules under conditions in which sensory inputs are

absent or poor, and observe whether drifts in these modules are coordinated. A hippocampus-inde-

pendent mechanism for coordinating the activity of grid cells modules, which relies on synaptic con-

nectivity within the MEC was recently proposed (Mosheiff and Burak, 2019). Therefore, it will be of

interest to further test whether the coordination requires place cell inputs to the MEC, by repeating

the experiment while inactivating inputs from the hippocampus. Under these conditions, cells within

a single grid cell module maintain their phase relationships (Almog et al., 2019), but it is unknown

whether drifts in different modules remain coordinated. Another possible way to approach this ques-

tion is to examine the coordination of grid cell modules immediately after exposure to a completely

novel environment, since it is unlikely that reciprocal connectivity that could support this coordina-

tion is established immediately.

Variability of individual grid cell firing rates across firing fields
Two experiments can directly test the hypothesis that inputs from place cells, independent of sen-

sory inputs, are responsible for a significant fraction of the variability observed in the firing rates of

individual grid cells across different firing fields. First, if grid cell modules remain coordinated under

hippocampal inactivation, it may be possible to decode position from activity in the MEC in this con-

dition, and test whether firing rates become less variable across firing fields. Second, the indepen-

dence of variability on sensory inputs could be tested by monitoring activity in the MEC under

conditions in which sensory cues are poor or absent. It would also be interesting in this context to

measure the variability in animals that have been exposed to different numbers of environments.

Artificial remapping
We predict that artificial remapping (Kanter et al., 2017) arises due to the auto-associative features

of network dynamics in the hippocampus, which are believed to arise in area CA3. However, Kanter

et al recorded in area CA1. Global and partial remapping have been observed both in CA1 and

CA3, yet patterns of activity in CA1 tend to be more correlated across different environments than

those observed in CA3 (Leutgeb et al., 2004). Thus, partial remapping in CA1 does not necessarily

Agmon and Burak. eLife 2020;9:e56894. DOI: https://doi.org/10.7554/eLife.56894 17 of 32

Research article Neuroscience

https://doi.org/10.7554/eLife.56894


imply that remapping in CA3 is partial as well. Since Kanter et al observed partial overlap between

CA1 activity patterns that were expressed before and after entorhinal depolarization, it will be inter-

esting to record activity also in CA3 under similar conditions. We predict that mixed states will be

observed already in CA3 during entorhinal depolarization. Thus, we expect that in CA3 (in similarity

to CA1) only a subset of place fields will shift their firing fields. On the other hand, this form of

remapping is not expected to occur in the dentate gyrus, since this area is upstream of CA3.

According to our theory, artificial remapping (Kanter et al., 2017) arises from expression of pop-

ulation activity patterns that mix contributions normally associated with distinct environments. To

test this prediction, we propose to raise animals while exposing them to a limited number of envi-

ronments. After measuring the response patterns of place cells in each of these environments, we

propose to apply depolarization of the MEC in one environment, and look for overlap between place

cell activity patterns, and the activity patterns that were previously observed in the other environ-

ments (with appropriate controls such as those obtained by randomly permuting cells, or by expos-

ing the animal to new environments after the depolarization experiments). Overlap with one of the

experimentally characterized spatial maps is not certain, but this is a plausible outcome of our the-

ory, since we observe that the overlap is highly significant with many spatial maps. If successful, such

experiments may provide direct evidence for a key theoretical prediction on the dynamics of auto-

associative networks: the emergence of mixed states (Amit et al., 1985; Brunel, 2003).

Methods

Place cell network
The place network consists of N ¼ 4800 neurons, which represent positions in L environments. All

environments are one-dimensional, spanning a length of 192 cm with periodic boundary conditions.

A distinct spatial map is generated for each environment, by choosing a random permutation that

assigns all place cells to a set of preferred firing location that uniformly tile this environment.

The synaptic connectivity between place cells is expressed as a sum over contributions from all

spatial maps:

J¼
XL

l¼1

J l (1)

where J li;j depends on the distance between the preferred firing locations of cells i and j in environ-

ment l, as follows

J li;j ¼
Aexp �

dli;j

� �2

2s2

2

6
4

3

7
5þ h ; i 6¼ j

0 ; i¼ j

8

>>><

>>>:

(2)

The first term is an excitatory contribution to the synaptic connectivity that decays with the dis-

tance dli;j, with a Gaussian profile. The second term is a uniform inhibitory contribution. The parame-

ters A > 0, s, and h < 0 are listed in Table 1. Note that the connectivity matrices corresponding to

any two maps l and k are related to each other by a random permutation:

J li;j ¼ Jkpl;k ið Þ;pl;k jð Þ (3)

where pl;k denotes the random permutation from map k to map l.

Grid cell network
Each grid cell module is modeled as a double ring attractor (Xie et al., 2002) with n ¼ 960 neurons.

Within each module, neurons are assigned angles �i, uniformly distributed in ½0; 2pÞ i ¼ 1:::nð Þ. The
synaptic weight between neurons i and j is given by
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Wi;j ¼
Bexp �

�i� �j
�
�

�
�
2p
�D�

� �2

2�2

2

6
4

3

7
5þ k ; i 6¼ j

0 ; i¼ j

8

>>><

>>>:

(4)

where �i� �j
�
�

�
�
2p
�min �i� �j

�
�

�
�; 2p� �i � �j

�
�

�
�

� �
and the small phase shift þD� �D�ð Þ applies to the pre-

synaptic neurons with even (odd) index j. Thus, evenly indexed and oddly indexed neurons comprise

two sub-populations that drive motion of the activity to the right and to the left, respectively, to

implement idiothetic path integration (see also Equation 9 below). The parameters B > 0, �, k < 0,

and D� are listed in Table 1. The ring attractor possesses a continuous manifold of steady states,

structured as activity bumps that can be localized anywhere in the range ½0;2pÞ. We refer to the the

center of the activity bump as the phase of the population activity pattern. Grid cells from distinct

modules are not directly connected to each other.

In our implementation of the model, we include three grid cell modules with grid spacings

l� ¼ 64; 48 and 38:4 cm for modules � ¼ 1; 2 and 3, respectively. Within each environment, posi-

tions are mapped to attractor states by tiling the possible phases ½0; 2pÞ of the population activity

periodically along the extent of the environment. For simplicity, we chose grid spacings that corre-

spond precisely to 5, 4 and 3 cycles along the 192 cm environment. To account for grid cell realign-

ment during global remapping (Fyhn et al., 2007), a uniform phase shift Dl;� is applied to the tiling

of grid phases to positions. This phase shift is randomly chosen from the range ½0; 2pÞ, indepen-
dently for each environment l and module �.

Bi-directional synaptic connectivity between grid cells and place cells
The mutual connection between each place cell and grid cell depends linearly on the overlap

between their tuning curves, summed over all environments. We thus define a connectivity matrix

M
� between all place cells and all grid cells from module � as a sum over contributions Ml;� from all

environments:

M
� ¼

XL

l¼1

Ml;� (5)

To determine Ml;� we first define a correlation matrix

m
l;�
i;j ¼

1

z�

Z

f li xð Þ � gl;�j xð Þdx (6)

where f li is the idealized receptive field of place cell i and g
l;�
j is the idealized receptive field of grid

cell j measured from uncoupled networks at environment l. The normalization factor z� is chosen

such that ml;� 2 0;1½ � 8� .
Note that the correlation matrices corresponding to any two maps l and k are related to each

other by a permutation on the place cell indices, and a cyclic shift on the grid cell indices. Finally,

M l;� ¼ a �ml;�þb (7)

where the parameters a > 0 and b < 0 are identical for all modules and maps (Table 1).

The idealized receptive fields of place cells and grid cells from Equation (6) are determined as

follows: the field f li is generated by simulating only the place cell network, uncoupled from the grid

cell network and when only a single map is embedded in the connectivity. This generates an ideal-

ized bump around the initial condition, and all possible steady states of this bump are related to

each other by rigid translation in the neural space sorted by the coordinates of map l. Thus, rigid

translations of the observed activity bump are associated with all possible positions in the environ-

ment. Similarly, the tuning curve g
l;�
j of a particular grid cell from module �, is defined using a rigid

translation of an idealized grid cell activity pattern which emerged in a simulation of an uncoupled

grid cell module network, and association of the different translations with all possible positions in

the environment.
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Dynamics
The dynamics of neural activity are described by a standard rate model. The synaptic activation Si of

place cell i evolves in time according to the following equation:

t

_Si ¼�Siþf
XN

j¼1

Ji;jSjþgg
�

XXn

k¼1

M
�
i;ks

�
k þ Ipc

" #

þhi (8)

and the synaptic activation s
�
i of grid cell i from module � evolve as follows:

t _s
�
i ¼�s

�
i þf

Xn

j¼1

Wi;js
�
j þgp

XN

k¼1

M
�T

i;k Sk þ I�gc� "� � v
" #

þh
�
i (9)

In both equations, t is the synaptic time constant (taken for simplicity to be identical for all synap-

ses). The coupling parameters gg and gp determine the strength of synaptic connections from grid

cells to place cells and from place cells to grid cells, respectively. The velocity signal is denoted by v.

The signs (+) and (�) are used for the even and odd grid cell populations, respectively. Thus, neu-

rons with even index, whose outgoing synaptic weights are biased to the right (see Equation 4) are

preferentially activated during motion to the right, whereas neurons with odd index, whose synaptic

weights are biased to the left are preferentially activated during motion to the left. The coefficients

"� determine the weighting of the velocity signal per module. These parameters are chosen in order

to obtain correct grid spacings during idiothetic path integration. The external currents Ipc in the

place cell population and I�gc in the grid cell population are constant in time and identical in all cells

from a given subpopulation. These currents include two terms: one term is the baseline current,

required to drive activity when a single spatial map is embedded in the connectivity. The second

term compensates for interference coming from additional maps, and is proportional to L� 1 (see

Appendix 1, Equations 37 and 38).

The transfer function f determines the firing rate (in Hz) of place cells Rið Þ and grid cells r
�
ið Þ as a

function of their total synaptic inputs. To resemble realistic neuronal F-I curves, it is chosen to be

sub-linear:

f xð Þ ¼ 0 ;x � 0
ffiffiffi
x

p
;x > 0

�

(10)

The noise terms hi in Equation 8 and h
�
i in Equation 9 are included only in Figure 5. These terms

have zero mean, and to mimic Poisson noise, we assume that they are independent for different neu-

rons and obey

hi tð Þhi t
0ð Þh i ¼ Ri tð Þd t� t0ð Þ (11)

h
�
i tð Þh�

i t0ð Þ

 �

¼ r
�
i tð Þd t� t0ð Þ (12)

We implemented the dynamics using the Euler-method for numeric integration, with a time inter-

val Dt (Table 1).

Coupling parameters
The parameter a in Equation 7 is included for convenience but is redundant since it can be

absorbed in the definitions of b; gg and gp. We note also that due to the coupling parameters gg

and gp the synaptic connectivity is not necessarily symmetric. However, it is possible to recast the

equations in a form that involves symmetric connectivity, by rescaling the synaptic variables Si and

s
�
i . This observation is important since it implies that the dynamics always settle on stationary steady

states and do not exhibit limit cycles (Cohen and Grossberg, 1983).

The coupling parameters gg and gp were chosen based on the following considerations: on one

hand, if the coupling parameters are too weak, the network exhibits persistent states in which the

bump positions in different sub-networks are incompatible. Moreover, it is essential for path integra-

tion and the coupling of grid cell modules, that both place cells can influence the position of grid

cell bumps, and that grid cells can influence the state of the place cell network. Thus, it was not
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sufficient to include connections only in one direction. On the other hand, the connections cannot

be too strong since we are interested in the regime in which the structure of steady states in each

sub-network is predominantly determined by its internal connectivity. These goals can be achieved

using a wide range of choices for gg and gp. A single set of parameters (Table 1) was used through-

out the manuscript.

Bump score and location analysis
Without loss of generality, whenever we set the system in a bump state, we do so in the map labeled

as map 1.

Place cell network
To identify whether the place cell network expresses a bump state, and to identify its location x and

associated spatial map l, we define a correlation coefficient ql xð Þ that quantifies the overlap between

the hippocampal population activity pattern and the activity pattern corresponding to position x in

spatial map l:

ql xð Þ ¼
i

X

Pl
i xð Þ �Ri (13)

where Ri (already defined above) is the firing rate of place cell i, and Pl
i xð Þ, is the firing rate of neuron

i in an idealized bump state localized at position x in map l. The idealized bump (as defined above)

is obtained from the activity of a network in which a single map (map l) is embedded in the neural

connectivity, and there is no quenched noise.

Next, we define a bump score for each spatial map, defined as the maximum of the correlation

coefficient ql xð Þ over all positions x in spatial map l:

Ql ¼max
x

ql xð Þ (14)

Finally, the map with the highest Ql value is considered as the winning map, and the location x

that generated that value is considered as the location of the place cell bump within that map.

Grid cell network
To identify the location corresponding to activity in each grid cell module, we use a similar proce-

dure, in which we calculate the overlap between the population activity and an idealized activity pat-

tern of grid cells, evaluated across all positions in the winning map. Note that due the periodicity of

grid cell responses, multiple positions produce the same correlation coefficient. When measuring

the distance between the grid cell activity bump and the place activity bump or with its initial

position (for example in Figure 3c,g and k), we chose from these periodically spaced positions the

one closest to the location of the place cell bump.

Grid cells hyperpolarization and depolarization implementation
To mimic to effects of transgenic DREADDs (Designer Receptors Exclusively Activated by

Designer Drugs) in MEC layer 2 cells as performed experimentally (Kanter et al., 2017) we added a

constant current Iper to the total synaptic input driving grid cell activity. Equation 9 is thus replaced

by:

t _s
�
i ¼�s

�
i þf

Xn

j¼1

Wi;js
�
j þgp

XN

k¼1

M
�T

i;k Sk þ I�gc� "� � vþ Iper

" #

þh
�
i (15)

A current Iper > 0 was used for depolarization, and a current Iper < 0 was used for hyperpolarization

(see Table 1).

Analysis of persistent mixed states
In Figure 7, the system is placed at bump states corresponding to 500 uniformly distributed spatial

locations in map 1, and its state is analyzed after a 2 s delay period following the onset of grid cell

depolarization.
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Classification of place cell responses under grid cell depolarization
Classification of place cell responses under grid cell depolarization was performed based on the fol-

lowing criteria: (a) Cells that turned off (~6%) are defined as cells that exhibited a precisely vanishing

firing rate at all locations. (b) Cells with a minor field (~1.5%) are defined as cells that exhibited maxi-

mal peak firing rate of 2.5 Hz (not necessarily in the vicinity of the peak’s original location). (c) Cells

that rate remapped (~7%) are defined as cells whose peak firing rate remained within a distance of

at most 12 cm from its original location. In addition, their peak firing rate decreased or increased by

more than 33% relative to its baseline value (but did not decrease below 2.5 Hz). (d) Cells that were

not affected (~11%) are defined as in (c), except that their peak firing rate did not change by more

than 33% relative to its baseline value. (e) Cells that shifted their firing location (~29%) are defined

as cells that exhibited a peak firing rate greater than 2.5 Hz, at a distance of 12 cm or more from the

baseline peak location. (f) Cells that expressed remapped fields but maintained their firing field in

their original location (~36.5%) are defined as in (e), but exhibited in addition a peak firing

rate which did not change by more than 33% relative to its baseline value and at a distance not

greater than 12 cm from its original location. (g) Cells that expressed multiple fields (~9%) are

defined as cells that exhibited more than a single peak (at least one peak greater than 2.5 Hz - could

involve in addition multiple smaller peaks) at distances greater than 12 cm from the original peak

location.
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Barbic M, Blanche TJ, Bonin V, Couto J, Dutta B, Gratiy SL, Gutnisky DA, Häusser M, Karsh B, Ledochowitsch P,
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Appendix 1
In this appendix, we analyze mathematically how the embedding of multiple spatial maps in the syn-

aptic connectivity affects the existence of bump states in the system, using a mean-field analysis.

Similar questions have been extensively studied for associative networks with discrete memories,

and for models of multiple spatial map representations in the hippocampus. Here, we consider prop-

erties of the coupled entorhinal-hippocampal network.

As the number of spatial maps L increases, the shape of the bump is increasingly distorted until at a

certain critical Lc the representation of the bump will totally collapse and no localized bump will be

observed in any of the embedded maps. This happens since with every map added, there is addition

of quenched noise into the place cell connections, arising from the random permutations and thus,

there is accumulating interference between the distinct map representations. To characterize the

influence of the quenched noise, we compute here the mean and variance of quenched noisy inputs

to place cells and grid cells.

The calculation of the mean input is used to adjust the feed-forward inhibition in the network (which

is uniform in each grid cell module and within the place cell network), such that the mean input to all

cells remains fixed with addition of new maps (Equations 37 and 38). The calculation of the variance

allows us to assess how Lc scales with network parameters.

Quenched noise conveyed to place cells
Without loss of generality, we assume a steady bump state in map 1. Since the synaptic activities are

steady, we can replace them in all expressions with the corresponding firing rates: Si ¼ Ri and

si ¼ ri . The firing rate profile of place cells can be thought as the sum of two contributions: a

smooth bump of synaptic activation associated with map 1, and noisy deviations originating from

the synaptic weights associated with the rest of the maps. When L � Lc, these deviations are too

large and the representation collapses.

Since we assume that the deviations are sufficiently small, we decompose terms in the steady

state equation to inputs from map 1 and to inputs from all the other interfering maps. We obtain

terms describing (1) inputs from place cells through the synaptic connectivity that corresponds to

map 1, (2) noisy inputs from place cells arising from all the other interfering maps, (3) inputs from

grid cells, associated with map 1, and (4) noisy inputs from grid cells that arise from all the other

interfering maps. When evaluating these terms, to leading order in the deviations we can approxi-

mate the firing rates Ri; ri by those taken from the case L ¼ 1 . Rewriting the steady state equation

of a place cell accordingly yields
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We are interested in the means, variances and covariances of terms (2) and (4), compared to the

means of terms (1) and (3).

Quenched noise conveyed to place cells by place cells (term 2):

We note that the sum of each row and the sum of each column of J l are all identical, and denote

j

X

J li;j ¼
i

X

J li;j �C ; 8 i; j (17)

Since maps are drawn independently, we note also that

J lJm

 �

¼ J l

 �

Jmh i ; 8 l 6¼m (18)

where the pointy brackets denote an average over the random permutation pl that relates the

matrix J l to J1:
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J l ¼PplJ1PT
pl (19)

and Pp is the permutation matrix corresponding to the permutation p.

For convenience, we denote term (2) by P:

P¼
XL

l¼2

XN

k¼1

J li;kRk (20)

The mean of P is

Ph i ¼
XL

l¼2

XN

k¼1

J li;k

D E

Rk ¼
XL

l¼2

XN

k¼1

C

N
Rk ¼ L� 1ð ÞC�R (21)

where �R is the average firing rate of place cells in the bump steady state when L¼ 1 . Since the per-

mutations in different maps are drawn independently, the variance of P is

Var Pð Þ ¼ L� 1ð Þ
XN

k¼1

J li;kRk

" #2* +

�C2�R2

0

@

1

A (22)

Thus, both the mean and the variance grow linearly with L, and vanish when L¼ 1 .

Quenched noise conveyed to place cells by grid cells (term 4):

Similarly, the sums of all rows of ml;� (Equation 6) are equal to each other, and we denote

Xn

i¼1

m
l;�
i;j � ~D� ; 8 j (23)

Thus,

Xn

i¼1

M
l;�
i;f ¼ a~D�þbn�D� ; 8 f (24)

Similarly to (Equation 18), note that

Ml;�Mm;�

 �

¼ Ml;�

 �

Mm;�h i ; 8 l 6¼m (25)

For convenience, we denote the contributions of module � from term 4 by G�:

G� ¼
XL

m¼2

Xn

f¼1

M
m;�
i;f r

�
f (26)

The mean contribution of module � to the quenched noise in the input to place cells is

gg G�h iper¼ gg

XL

m¼2

Xn

f¼1

M
m;�
i;f

D E

per
r
�
f ¼ gg L� 1ð ÞD��r� (27)

The variance of place cell inputs arising from grid cell activities includes two types of contribu-

tions: (a) covariance terms between inputs arising from all pairs of grid modules, and (b) covariance

terms between place cell inputs and the inputs from each grid module (discussed in the next

subsection).

Since phase shifts of each grid module are drawn independently of each other we note that

Ml;�Ml;n

 �

¼ M l;�

 �

Ml;n

 �

for � 6¼ n . Consequently, all covariance terms between distinct modules

(the mixed expressions in term 4) vanish (Appendix 1—figure 1a). The variance to place cell inputs

from each grid module is:
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g2

gVar G�ð Þ ¼ L� 1ð Þg2

g

Xn

f¼1

M
l;�
i;f r

�
f

" #2* +

per

� D�ð Þ2 �r�ð Þ2
0

@

1

A (28)

where �r� is the average firing rate of grid cells from module � in the bump steady state when L¼ 1 .

Overall mean and variance of place cell inputs

The overall mean of the quenched noise is (sum of terms from Equation (21) and Equation(27)):

L� 1ð Þ � C�Rþgg
�

X

D��r�
� �

(29)

The overall variance of the quenched noise is determined by Equation (22), Equation (28) and

the covariance between place cell and grid cell activities (terms 2 and 4 in Equation 16). Since in

each map, phase shifts of each grid module are drawn independently from the permutation of the

place cells, we note that J lM l;�

 �

¼ J l

 �

Ml;�

 �

, and thus all covariance terms between place cell and

grid cell vanish (Appendix 1—figure 1b). The overall variance is thus:

Var Pð Þþg2

g
�

X

Var G�ð Þ (30)

Note that all terms in these expressions are proportional to L� 1ð Þ .

Quenched noise conveyed to grid cells
Similarly to our derivation for place cells, we decompose the input to grid cells into a contribution

from map 1 (in which we assume a bump state), and to inputs from all other interfering maps:

r
�
i ¼f

Xn

j¼1

Wi;jr
�
j þgp

XN

k¼1

M
1;�T

i;k Rk þ
XL

l¼2

XN

h¼1

M
l;�T

i;h Rh

 !

þ I�gc

" #

þh
�
i (31)

The quenched noise inputs to grid cells originate solely from place cells. Thus, we are interested

in the mean and variance of the third term, compared to the sum of the first two terms in the argu-

ment of f. We denote

g� ¼
XL

l¼2

XN

h¼1

M
l;�T

i;h Rh (32)

We note that

XN

i¼1

m
l;�T

i;j � ~E� ; 8 j (33)

and thus

XN

i¼1

M
l;�T

i;f ¼ a~E�þbN � E� ; 8 f (34)

From here on, the derivation is similar to the previous calculation and it is straightforward to see

that the mean of the quenched noise input to grid cell is equal to

gp g�h iper¼ gp L� 1ð ÞE��R (35)

and the variance is

g2

pVar g�ð Þ ¼ g2

p L� 1ð Þ
XN

h¼1

M
l;�T

i;h Rh

" #2* +

per

� E�ð Þ2�R2

0

@

1

A (36)
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Compensating for the mean of the quenched noise

In order to sustain a constant mean input to place cells and grid cells as L is varied, we adjust the

external current to compensate for the mean of the quenched noise, Equation 29 and Equation 35.

Thus, the external input to place cells is

Ipc Lð Þ ¼ Ipc;0 � L� 1ð Þ C�Rþgg
�

X

D��r�
� �

(37)

and the external input to each grid cell module � is

I�gc Lð Þ ¼ I
�
gc;0 � L� 1ð ÞgpE

��R (38)

where Ipc;0 and I
�
gc;0 are independent of L.

Scaling of the variance of inputs with N; n; and assessing Lc

We now consider how the variance of inputs scales with the number of neurons in the system, when

the fraction of active cells and their typical firing rates are kept fixed with addition of new spatial

maps.

To maintain a fixed distribution of place cell and grid cell firing rates at steady state under the

assumption that N � 1 place cells and n � 1 grid cells in each module cover uniformly and densely

the environment, the synaptic connectivity should scale as follows under re-scaling of N and n:

Ji;j /
1

N
; Wi;j /

1

n
; gg /

1

n
; gp /

1

N
(39)

We focus first on the inputs to place cells: the signal conveyed to place cells in Equation (16),

which we denote by S, is composed of the contribution from terms 1 and 3. The noise conveyed to

place cells, denoted by N , is composed of the contribution from terms 2 and 4. With the scaling of

Equation 39, S is independent of the number of neurons when N and n are large.

The mean of the noise N is canceled by the adjustment of the external current (Equation 37),

Nh iper¼ 0 (40)

and the variance of the noise is given in Equation (30):

Var Nð Þ ¼Var Pð Þþg2

g
�

X

Var G�ð Þ (41)

In all these terms, the variance is across random choices of the place cell permutations and grid cell

phases. Due to the random shuffling of place cells under random permutations, it is straightforward

to show (see also Appendix 1—figure 2a) that

Var Pð Þ / L� 1ð Þ
N

(42)

Therefore, in a system composed only of place cells, Lc /N.

However, the variance of place cell inputs arising from grid cell activities (Var G�ð Þ ) is constant

(for n � 1 ) and does not depend on the the number of neurons (Appendix 1—figure 2b). This is

due to the fixed phases between pairs of grid cells that belong to the same module in each of the

maps. Therefore, increasing the number of grid cells would not increase Lc. Overall, as the total

number of neurons increases, Lc increases until the variance of place cell inputs is dominated by the

variance arising from grid cell activities.

As for the grid cells: similarly to place cells, the signal (first two terms in Equation 31) is indepen-

dent of the number of neurons when N and n are large, and the mean of the noise (third term in

Equation 31) is canceled by the adjustment of the external current (Equation 38). Similarly to place

cells, the variance of the noise of each grid cell module input (Equation 36), which arise from place

cell activities, is inversely proportional to the number of place cells (see also Appendix 1—figure 3):

Var g�ð Þ / L� 1ð Þ
N

(43)
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To qualitatively assess Lc numerically, Appendix 1—figure 4 shows the bump score as a function

of L when initial rates were set as bumps (consistent condition) in map 1 (without loss of generality),

for the fixed number of neurons used throughout this manuscript and for three different values of

gg. The bump score decreases sharply at a certain characteristic value of L, which provides an assess-

ment of Lc. As expected and based on (Equation 41), the capacity increases when decreasing gg

(the coupling parameter that determines the strength of connectivity from grid cells to place cells).

Appendix 1—figure 1. Covariances of place cell inputs across sub-populations vanish. (a) Simulation

results (blue dots) showing the covariance of place cell inputs arising from activities of pairs of

different grid cell modules. A common scaling factor a determines the number of place cells and

grid cells in each module where a ¼ 1 was used throughout this manuscript. Red dashed lines show

the zero-identity line for reference. Top: covariance between first and second modules. Middle:

covariance between first and third modules. Bottom: covariance between second and third modules.

Simulation results include 2000 random map realizations bootstrapped into 40 batches of 50

realizations to obtain multiple covariance measurements. Error bars are 1.96 times the standard

deviations obtained from each simulation, divided by the square root of the number of realizations

(corresponding to a confidence interval of 95%). (b) Same as (a) but for the covariance of place cell

inputs arising from activities of place cells and each of the grid cell modules. Top: covariance

between place cells and first grid cell module. Middle: covariance between place cells and second

grid cell module. Bottom: covariance between place cells and third grid cell module.

Appendix 1—figure 2. Variance of place cell inputs. (a) Simulation results (blue dots) showing the

variance of place cell inputs arising from place cell activities. A common scaling factor a determines

the number of place cells and grid cells in each module where a ¼ 1 was used throughout this

manuscript. Simulation results include 2000 random map realizations bootstrapped into 40 batches

of 50 realizations to obtain multiple variance measurements. Error bars are 1.96 times the standard

deviations obtained from each simulation, divided by the square root of the number of realizations
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(corresponding to a confidence interval of 95%. Some error bars are too small to be visible). Dashed

red line shows the curve c1a
�1 with optimal fitted c1 ¼ 9:543 for reference, R2 ¼ 0:999. (b) Same as

(a) but for the variance of place cell inputs arising from grid cell activities.

Appendix 1—figure 3. Variance of grid cell inputs. (a) Simulation results (blue dots) showing the

variance of grid module 1 inputs arising from place cell activities. A common scaling factor a

determines the number of place cells and grid cells in each module where a ¼ 1 was used

throughout this manuscript. Simulation results include 2000 random map realizations bootstrapped

into 40 batches of 50 realizations to obtain multiple variance measurements. Error bars are 1.96

times the standard deviations obtained from each simulation, divided by the square root of the

number of realizations (corresponding to a confidence interval of 95%. Some error bars are too

small to be visible). Dashed red line shows the curve c2a
�1 with optimal fitted c2 ¼ 0:01203 for

reference, R2 ¼ 0:999. (b) Same as (a) but for grid module 2. Dashed red line shows the curve c3a
�1

with optimal fitted c3 ¼ 0:01369 for reference, R2 ¼ 0:999. (c) Same as (a) but for grid module 3.

Dashed red line shows the curve c4a
�1 with optimal fitted c4 ¼ 0:01488 for reference, R2 ¼ 0:999.

Appendix 1—figure 4. Capacity dependence on grid to place coupling parameter. Bump score vs

the total number of embedded maps for three different values of gg (circle, triangle and square)

when starting from a ‘consistent’ initial condition in map #1. Blue curves show the bump score for

map #1 and overlapping red curves show the average bump score for the rest of the embedded

maps (whenever L > 1). Each plotted value is the average bump score obtained from 100 randomly

chosen realizations for each specific value of L (and including 5 randomly chosen initial conditions

within each realization). Error bars are 1.96 times the standard deviations obtained from each

simulation, divided by the square root of the number of realizations (corresponding to a confidence

interval of 95%. Some error bars are too small to be visible).
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