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Sensitivity of the Spatial Distribution
of Fixations to Variations in the Type
of Task Demand and Its Relation to
Visual Entropy
Piero Maggi and Francesco Di Nocera*

Department of Psychology, Sapienza University of Rome, Rome, Italy

Ocular activity is known to be sensitive to variations in mental workload, and recent
studies have successfully related the distribution of eye fixations to the mental load.
This study aimed to verify the effectiveness of the spatial distribution of fixations as a
measure of mental workload and its sensitivity to different types of demands imposed
by the task: mental, temporal, and physical. To test the research hypothesis, two
experimental studies were run: Experiment 1 evaluated the sensitivity of an index of
spatial distribution (Nearest Neighbor Index; NNI) to changes in workload. A sample
of 30 participants participated in a within-subject design with different types of task
demands (mental, temporal, physical) applied to Tetris game; Experiment 2 investigated
the accuracy of the index through the analysis of 1-min epochs during the execution
of a visual-spatial task (the “spot the differences” puzzle game). Additionally, NNI was
compared to a better-known ocular mental workload index, the entropy rate. The data
analysis showed a relation between the NNI and the different workload levels imposed
by the tasks. In particular: Experiment 1 demonstrated that increased difficulty, due to
higher temporal demand, led to a more dispersed pattern with respect to the baseline,
whereas the mental demand led to a more grouped pattern of fixations with respect to
the baseline; Experiment 2 indicated that the entropy rate and the NNI show a similar
pattern over time, indicating high mental workload after the first minute of activity. That
suggests that NNI highlights the greater presence of fixation groups and, accordingly,
the entropy indicates a more regular and orderly scanpath. Both indices are sensitive to
changes in workload and they seem to anticipate the drop in performance. However,
the entropy rate is limited by the use of the areas of interest, making it impossible to
apply it in dynamic contexts. Conversely, NNI works with the entire scanpath and it
shows sensitivity to different types of task demands. These results confirm the NNI as
a measure applicable to different contexts and its potential use as a trigger in adaptive
systems implemented in high-risk settings, such as control rooms and transportation
systems.
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INTRODUCTION

In high-risk environments characterized by highly dynamic,
unpredictable, and uncertain events, many visual elements
displayed in the complex control interfaces (e.g., monitoring
sensors and warning indicators) tax operator’s attention causing
cognitive overload. The restricted attentional capacity of the
human being constitutes a well-known ‘‘bottleneck’’ that has
been the object of many studies on human information
processing (Marois and Ivanoff, 2005; Wolfe et al., 2006;
Tombu et al., 2011) and on operator functional state, that is
‘‘the intrinsic relationship between human task performance
and the background state of the individual’’ (Hockey et al.,
2003). The topic is relevant in those environments where
the presence of the human operator is essential for the
management and the evaluation of unpredictable critical events.
Indeed, it is important that the operator is always in the
best psychophysical condition to reduce the risk of errors
and accidents. The main objective of studies on human
performance and information processing is to reduce the
possibility of cognitive overload as much as possible. In the early
90s, Wickens (1992) highlighted the importance of achieving
the highest compatibility between the operator’s capabilities
and the characteristics of the surrounding environment. A
mismatch between the machine and the operator can lead
to a deterioration of performance and an increase in the
workload (Hockey, 1986; Gaillard and Wientjes, 1994). To
avoid this, finding real-time indexes of the operator functional
state has become crucial. Also, this should be accomplished
by using effective and non-intrusive tools to be applied in
high-risk environments.

Psychophysiological-Indexes as Mental
Workload
Several psychophysiological measures have been studied for
identifying new real–time indicators of operator functional
state. Mehler et al. (2009) conducted a research study on a
sample of 121 participants with the aim of examining the
sensitivity of parameters such as heart rate variability, skin
conductance, and respiratory rate as continuous measures of
workload in a simulated driving environment. The analysis
showed a significant effect of the difficulty level in all the
psychophysiological parameters. Amore recent study (Pakarinen
et al., 2018) examined the relationship between the mental
workload and the response to the physiological stress of
nuclear power plant operators, who were assigned the task
of managing the simulation of a large–scale accident through
the control room. Records of heart rate and heart rate
variability (respectively) were used to measure stress on a
sample of 22 volunteer operators. The results showed a relation
between the psychophysiological measures and the increase in
workload experienced during a high accident risk scenario. In
addition, these findings confirmed the data from self-report
measures (NASA-TLX) and corroborated previous research
results (Bernardi et al., 2000; Hwang et al., 2008; Reimer and
Mehler, 2011). More specifically, many studies in the literature
have investigated the relationship between neurophysiological

measures and mental workload, such as electroencephalography
(EEG; Brookings et al., 1996; Gevins and Smith, 2003; Borghini
et al., 2014), functional Near-InfraRed Spectroscopy (fNIRS),
and functional Magnetic Resonance Imaging (fMRI; Gabbard
et al., 2017; Liu et al., 2017; Ranchet et al., 2017). In a
study by Aricò et al. (2016), a workload index based on
EEG measurements was used as a trigger in an adaptive
automation system implemented in a realistic Air Traffic
Control Environment.

Ocular Metrics as Mental Workload
Indicators
The need to apply sensors on the operator’s body during the
execution of a task poses a major limitation for the use of the
previously mentioned psychophysiological parameters (i.e., skin
conductance, respiratory rate, and heart rate variability).
Indeed, the invasiveness of these tools does not facilitate their
implementation in the operative setting. Among the real–time
measures of mental workload, ocular activity is the least invasive
andmost promising (Ellis, 2009; Singh and Singh, 2012; McIntire
et al., 2014). Eye trackers can measure different eye parameters
including the direction of gaze, changes in pupil diameter,
and eye-blinks. Several metrics can be computed (e.g., number
and duration of fixations, saccades amplitude), to obtain a
graphic representation of the individual behavior. Moreover, it
is important to underline that research in this field has continued
to evolve thanks to continuous technological innovation, which
has led to increasingly advanced, less intrusive, and more
accurate instruments for monitoring eye activity (Wang et al.,
2017).

Pupil Diameter
Since the seminal studies by Beatty and Kahneman (1966),
several authors have shown that pupil dilation may be
related to cognitive processing and to the mental effort
required to perform a given task (Othman and Romli, 2016;
Kosch et al., 2018; van der Wel and van Steenbergen,
2018). This relation has been analyzed in various tasks
including short–term memory (Peavler, 1974) and visual
search tasks (Porter et al., 2007), but also in air traffic
control (Hilburn et al., 1997) and driving (Rezaei and
Klette, 2011). Just and Carpenter (1993) identified changes
in pupil diameter when understanding single sentences with
different degrees of difficulty. Iqbal et al. (2004) confirmed a
correlation between pupil variation and mental workload when
participants were asked to perform various tasks including
text comprehension, mathematical reasoning, target stimulus
research, and object manipulation.

The pupil diameter has been reported to be very promising
as a measure of mental workload. However, an important
limitation of this measure is the difficulty of keeping constant the
brightness of the environment in which the task is performed.
The amount of light reaching the eye causes rapid changes in
pupil diameter and this can limit the benefits of this metric
in working environments. In fact, unlike controlled laboratory
settings, the brightness of the working environment (e.g., the
brightness of the displays or the room) is variable. Changes in
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pupil diameter may be due partly to physical components in the
environment and partly to workload, making it difficult to isolate
a valid and reliable measure of cognitive effort.

Fixations and Saccades
The highest visual acuity is limited to the foveal area and fixations
represent the point in time and space of focus, whereas saccades
are eye movements that are necessary to bring image portions on
the fovea, therefore vision is obtained by moving the focus from
one point (fixation) to another. These two elements together (and
their properties like frequency, duration, amplitude) make up the
entire visual search strategy adopted by the individual to examine
a scene.

Since the seminal studies by Yarbus (1967), many authors
have investigated visual exploration strategies showing a
systematic relationship between fixation duration and saccadic
amplitude (Antes, 1974; Findlay and Gilchrist, 2003; Pannasch
et al., 2008). These results are also explained as an adaptation in
the exploration strategy used to perform a task (Underwood et al.,
2011). The relationship between fixation duration and saccadic
amplitude is of particular interest for its possible diagnostic value
(Velichkovsky et al., 2000, 2002; Unema et al., 2005).

Scanpath Analysis
Regarding scanpath, namely the sequence of fixations and
saccades, few studies have investigated its features in relation
to other factors, such as mental workload. The topography of
the visual scanning, as well as its dynamics, was quantitatively
approached in two studies by Tole et al. (1983) and Harris et al.
(1986) who suggested to using the entropy rate of the visual
scanning for discriminating between different levels of mental
workload. Their results suggested that the scanpath tends to
be cluttered and random when the workload is low. Instead, it
would become regular and predictable as the demand increases.
Although very appealing, entropy has seldom been used as
a measure of workload and therefore its properties have not
been properly tested. Moreover, entropy is limited by the need
to rely on predefined Areas of Interest (AOIs) in order to
compute transitions between them: in many operational settings
visual scanning happens outside specific AOIs, or the AOIs
change dynamically. To overcome this limit, Di Nocera et al.
(2007) introduced an alternative approach based on the spatial
distribution analysis of fixations using the Nearest Neighbor
Index (NNI). The spatial distribution showed sensitivity
to changes in mental workload. Studies on its functional
significance suggest that scanpath may be more scattered when
the temporal demand increases (i.e., time pressure), whereas
the visuo-spatial demand would be responsible for higher
concentration of fixations in specific areas (Camilli et al., 2008a).
The clustering of fixations in specific areas is similar to the
concept of an ordered scanpath that was underlain by the entropy
rate. Indeed, entropy is based on transitions between AOIs and it
was applied to scenarios within which changes in the task load
were due to changes in the visuospatial demand. However, the
two metrics have never been compared. The analytical details of
the two approaches will be described in the following sections.

Entropy Rate
Entropy can be defined as a measure of the disorder found in any
physical system and this concept was then applied by Tole et al.
(1983) to eye movements. When the individual looks at all the
quadrants in the scene and crosses all the potential combinations
of stimuli with a stable frequency, the entropy will increase.
Instead, the entropy value will be lower when the individual
focuses attention on a narrower range of possible areas of
interest. That happens because the frequency of transitions from
one area to another decreases. A regular and systematic visual
exploration strategy is shown in a condition of low entropy,
which corresponds to a more orderly passage to other areas. The
principal benefit of this analysis is the possibility to ‘‘summarize’’
the visual strategy using a single value. The first step in estimating
the amount of entropy is to identify the areas of interest in the
visual field, and then computing the proportion of time taken by
the participant to look at each of these areas:

Entropy rate =
D∑

i = 1

[(E/E_max) /DTi]

E = −

D∑
i = 1

Pilog2Pi

where E represents the value of the observed average entropy,
Emax is the maximum entropy value computed from the total
number of AOIs in the scene (it constitutes the entropy value
when all AOIs are accessed with the same probability), Pi
represents the probability that the sequence i occurs, DTi is
the average duration of fixation for the i-th sequence when the
individual is visually exploring the scene, and D expresses the
number of the distinct sequences in the scanpath. The index is
indicated in bits/second.

Nearest Neighbor Index
The NNI provides data on the distribution of points in space.
The average distance between the fixations collected during
the execution of a task and the average distance between the
fixations expected in a random distribution are taken into
account in the application of the NNI to eye movements. The
result is represented by a single value where one indicates that
the empirical and the random distribution are not different;
values above one indicate dispersion, while values below one
show clustering. The index can be computed for small epochs
if sufficient fixations are available (about 50 as a rule of thumb)
and then analyzed as a time series, therefore offering information
on the temporal variations of distribution of fixation points.
A methodological study (Camilli et al., 2007) supports the
validity of this algorithm as a measure of mental workload,
highlighting the consistency of the index with subjective and
psychophysiological measures. To estimate the index it is first
necessary to calculate the Nearest Neighbor distance or d(NN):

d(NN) =

N∑
i = 1

[
min

(
dij
)

N

]
, 1 ≤ j ≤ N, j 6= i

where min (dij) represents the distance existing between each
point i and the nearest point j (with the j value between 1 and
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N and different from i), and N corresponds to the number
of points in the distribution. The next step is calculating the
average random distance or d(ran) to obtain the second element
of the equation; this value would represent the value of d(NN),
supposing that the distribution of the points was totally random:

d(ran) = 0.5

√
A
N

where A indicates the polygon area delineated by the most
extreme fixations and N represents the number of points. The
NNI value is then calculated by dividing the Nearest Neighbor
Index distance, d(NN), by the average random distance, d(ran):

NNI =
d(NN)

d(ran)

EXPERIMENT 1

The objective of this experiment was to test the sensitivity and
diagnosticity (see Wierwille and Eggemeier, 1993) of the NNI,
that is how changes in the visual exploration strategy due to
different workload levels and different types of demand imposed
by the task are captured by the distribution of fixations. This
aspect has been previously approached by Camilli et al. (2008b)
in a between-subject design, comparing the effects of the mental
and temporal demands on the distribution of fixations.

Tools and Software
Experimental Software Development
The Tetris game used in this study was coded using Javascript and
Google script. The gaming area consisted of 300 cells deployed
on a grid of 15 columns by 20 rows. Each tetromino (piece)
was randomly extracted from a pool composed of seven different
tetromino types and it descended at a constant speed. With the
aim of creating three experimental conditions, specific variables
have been modified to induce a different type of task demand.
In Condition 1, the speed of falling pieces has been manipulated
to generate time pressure (temporal demand); in Condition 2,
the direction of pieces has been reversed to increase mental
demand (each piece appears in the lower part of the game
area and then rises to the top); in Condition 3, the interaction
with pieces was occasionally blocked, therefore forcing the user
to press the control keys several times to move the pieces
(physical demand).

The manipulations were coherent with the NASA-TLX
definition of mental, temporal, and physical demand. Mental
demand: ‘‘How much mental and perceptual activity was
required? Was the task easy or demanding, simple or complex?’’
Temporal demand: ‘‘How much time pressure did you feel due
to the pace at which the tasks or task elements occurred? Was
the pace slow or rapid?’’ Physical demand: ‘‘How much physical
activity was required? Was the task easy or demanding, slow or
brisk, slack or strenuous, restful or laborious?’’ Therefore, we
consider the visuospatial demand imposed here as an expression
of the mental demand.

In our version of Tetris, the ‘‘game-over’’ consisted of
the exhaustion of the playing area given by the excessive

accumulation of pieces but did not represent the end of
the game. When the event occurs, the program automatically
resets the entire area deleting all the accumulated pieces and
allowing the user to continue the game until the end of the
experiment. The number of pieces accommodated and the
number of completed lines were used as performance measures.
The number and shape of the pieces, the size of the playing
area, and the difficulty between levels were based on the original
version of the Tetris.

Ocular Activity Recordings
The Gazepoint GP3HD eye-tracking system was used to record
ocular activity. This system allows the researcher to collect
ocular data without using invasive and/or uncomfortable
head-mounted instruments. Gazepoint, the eye tracker
manufacturer, claims accuracy within 0.5–1.0 degrees and
reads data at a rate of 150 Hz. The eye tracker was calibrated
using the default 9-point calibration test using Gazepoint’s
included software.

Participants
Thirty university students (19 women and 11males,M = 25 years
old, SD = 3.6) volunteered and participated in the experiment.
All participants had a normal or corrected-to-normal vision
and were naïve as to the aims of the experiment. This research
study was completed with the tenets of the Declaration of
Helsinki and was approved by the Institutional Review Board
of the Department of Psychology, Sapienza University of
Rome. Informed consent was obtained from each participant.
Participants received a e20.00 worth bookstore gift card.

Procedure
Participants were tested in a within-subject design in which
the same task was manipulated-in three different sessions- for
manipulating themental, the temporal, and the physical demand.
Participants played a custom-coded version of the Tetris game, a
commonly known tile-matching puzzle videogame successfully
used in a variety of studies (e.g., Trimmel and Huber, 1998).
For experimental purposes, the game restarted from a blank
screen each time the stack of Tetriminos reached the top of the
gaming area and no new Tetriminos were able to enter. This
condition commonly denotes the end of the game, whereas in
this experiment it was scored as a loss (performance measure).
Participants were instructed to gain as many points as possible
(i.e., complete lines and avoid losses).

Training Session
Before the experimental session started, each participant
performed a training session, whose scope was to familiarize
the participants with the experimental setting. To this aim, each
participant played the Tetris game starting from a low difficulty
level and moving on to Baseline, TD, MD, and PD conditions.
The training had a 5-min duration and did not include the
evaluation of the participants’ performance level in this phase.

The scheme of the training session is reported below:

• One minute of gameplay at Level 1 (drop speed:
1,250 ms per block), with the aim of verifying the
correct understanding of the game rules and allowing
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the participant to familiarize themselves with the use of
directional keys.
• Baseline condition: 1 min, configured at level 6 (drop speed:
208 ms per block). It was used to acquire the baseline for the
experimental session.
• TD condition: 1 min, set at level 8 (drop speed: 156 ms per
block).
• MD condition: 1 min, during which the entire playing area
was rotated by 180◦ and each Tetromino appeared on the
bottom side and went up, accumulating on the top of the
gaming area.
• PD condition: 1 min, in which the participant needed to
press the directional keys repeatedly to move the piece
quickly in the chosen direction (instead of keeping the key
pressed).

Experimental Session
After the calibration of the eye-tracker, participants were
instructed to play the game earning as many points as possible
(i.e., complete lines and avoid losses). Each condition lasted
10 min and the order of presentation was randomized across
participants. After completing each condition (Baseline vs. TD
vs. MD vs. PD), participants were requested to fill in the
NASA-TLX (Hart and Staveland, 1988).

Data Analysis and Results
Performance Data
A performance index was computed based on the number of
lines completed in relation to the maximum number of lines
that could be completed. The maximum value is obtained by
the total number of Tetrominoes that the participant managed
in each condition (For example, with 60 pieces it was possible
to complete a total of 16 lines if managed in an optimal way).
The index goes from 0 to 1, where 1 means that the player has
obtained the maximum achievable score. The performance index

FIGURE 1 | The performance index shows the overall strategy used by
participants. It is the ratio of the number of completed lines to the number of
pieces that appeared during the game. Values close to 1 mean an optimal
game with a high number of lines completed.

FIGURE 2 | NASA-TLX values (weighted scores) separately for the
conditions. Error bars denote 0.95 confidence intervals.

was used as a dependent variable in a repeatedmeasures ANOVA
design, using Condition (Baseline vs. TD vs. MD vs. PD) as
repeated factor. Results showed a main effect of the condition
(F(3,87) = 15.95, p < 0.001). The faster (TD) and Reversal
conditions (MD) were associated with the worse performance
with respect to the baseline (Figure 1).

Subjective Measure
NASA-TLX weighted ratings were used as dependent variables
in a repeated measures ANOVA design using Condition as
repeated factor. Results showed a main effect of Condition
(F(3,87) = 12.3, p < 0.001; Figure 2), consistent with those
obtained for the performance index. Although analyses on the
single items are questionable from a statistical standpoint, it
is worth noting that TD, MD, and PD conditions showed
higher values for temporal, mental, and physical demand
scales respectively (Figure 3). These results show that the
manipulations made with the Tetris have indeed taxed specific
aspects or resources.

Eye Tracking Metrics
Number and Duration of Fixations
The number and duration of fixations were computed on
epochs of 1 min for each participant and then averaged. One
participant was excluded from the analysis due to the low
quality of recorded eye movements. Averaged number and
duration of fixations were used as dependent variables in a
repeated measures ANOVA design using Condition as the
repeated factor. No significant differences between conditions
were found (Figures 4A,B panels).

Amplitude of Saccades
The amplitude of saccades was computed on epochs of 1 min
for each participant and then averaged. The averaged amplitude
of saccades was used as dependent variable in a repeated
measures ANOVA design using conditions as a repeated
factor (Figure 4C). Results showed a main effect of condition
(F(3,84) = 12.84, p < 0.001).
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FIGURE 3 | NASA-TLX subscales values [Temporal (A), Mental (B), and Physical (C) demand] separately for the conditions. Error bars denote 0.95 confidence
intervals.

Nearest Neighbor Index
The NNI was computed on epochs of 1 min for each participant
and then averaged. One participant was excluded from the data
analysis due to the low quality of recorded eye movements.
Averaged NNI values were used as the dependent variable in
repeated measures ANOVA using conditions as the repeated
factor. Results showed a main effect of Condition (F(3,84) = 12.31,
p < 0.001). TD condition showed higher NNI values (i.e., a
more dispersed distribution of fixations) than the baseline
(Figure 5A), while in the MD condition NNI values were the
lowest (Figure 5B).

Discussion
This first study aimed at investigating how the visual
exploration strategy changes both along with the taskload
and with the type of task demand. The results showed an
increase in the NASA-TLX values of the single subscales
(mental demand, physical demand, and temporal demand)
matching the respective manipulation. Overall, we observed
a greater workload in the MD and TD conditions compared
to the control and PD conditions. The latter has shown
higher values in the corresponding NASA-TLX scale, but
the manipulation of the physical demand did not affect

the overall self-reported workload. Finally, and more
important to our aims, the analysis of the fixations pattern
showed high clustering when the taskload increment was
obtained by changing the mental (visuospatial) demand,
and low clustering when it was obtained by changing the
temporal demand.

EXPERIMENT 2

The entropy-based analysis of the scanpath and the spatial
distribution of fixations points are reported to be good indices
of mental workload. However, they have never been directly
compared. The aim of this second study is to perform such
a comparison. A preliminary account on this experiment was
presented at the H-WORKLOAD 2019 workshop (Maggi et al.,
2019).

Participants
The experiment involved 14 university students (nine women
and six males, mean age = 24 years, SD = 2.6) who participated
on a voluntary basis. All participants had a normal or corrected-
to-normal vision and were naïve as to the aims of the
experiment. This study was compliant with the principles of
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FIGURE 4 | Averaged number (A) and duration (B) of fixations, and amplitude of saccades (C), for the conditions compared with the baseline. Error bars denote
0.95 confidence intervals.

the Declaration of Helsinki and the protocol was approved
by the Institutional Review Board of the Department of
Psychology, Sapienza University of Rome. Each participant
provided informed consent.

Tools and Software
Stimuli
In order to induce high visual-spatial demand and to assess
how that affects visual search, a single pair of black and
white pictures (Figures 6, 7) was used. Pictures were rich
in details so that the numerous elements would engage
participants in a long visual exploration session. The size of
each picture was 9.8 × 5.5 inches and both of them featured
35 subtle differences but were otherwise identical. The two
images were aligned horizontally and in fullscreen mode on a
27" display.

Eye Movements Recording
Prior recording, participants performed a 9-point calibration and
then their eye movements were recorded through the Pupil Labs
system with binocular 120 Hz Eye Tracking Camera (Pupil Labs
GmbH, Germany).

Procedure
The experiment was conducted in a dark room and participants
were seated at approximately 2 ft. from a computer screen.
During the task, they had to find as many differences as
they could between the two images in a 24-min session. They
were requested to click with the mouse on each difference
they identified. The differences found were highlighted with a
circle throughout the session. Participants were also asked to
provide a subjective evaluation of mental workload on a 2-min
schedule [Instantaneous Self-Assessment (ISA): Tattersall and
Foord, 1996].

Data Analysis and Results
Performance and Self-reporting Measures
The whole activity was split into 12 periods of 2 min each
in order to match performance and subjective evaluations.
The number of differences identified by each subject in each
epoch was used as a performance indicator. The number
of differences identified and the ISA scores were used
as dependent variables in two repeated measures ANOVA
designs using Epoch as repeated factor. A main effect
of Epoch was found both on the number of differences
(F(11,143) = 16.52, p < 0.001; Figure 8) and the ISA scores
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FIGURE 5 | Average Nearest Neighbor Index (NNI) for the conditions compared with the baseline separately. Error bars denote 0.95 confidence intervals. Baseline
vs. TD (A); Baseline vs. MD (B); Baseline vs. PD (C); all condition (D).

(F(11,143) = 15.50, p < 0.001; Figure 8). Plots reveal Duncan
post hoc testing revealed asymptotic pattern for both the
performance measure and the workload estimates starting from
the 12th min.

Analysis of Eye-Tracking Data
Nearest Neighbor Index
For each participant, the NNI was calculated taking into account
1-min epochs (Di Nocera et al., 2015). Average NNI values were
used as dependent variables in a repeated measures ANOVA
design using Epoch as repeated factor. Amain effect of the Epoch
was found (F(11,143) = 4.41, p< 0.001; Figure 9). Duncan post hoc
testing showed that the visual strategy applied in the first 2 min
significantly differs from all other periods.

Entropy Rate
The whole visual area has been divided into two Areas of Interest
(AOI), namely the two images displayed. For each minute, the
maximum number and duration of fixations made on each AOI
were assessed. For these AOIs, the entropy rate has been adopted
as a measure of scan randomness (Tole et al., 1983). The entropy
rate (H-rate) is expressed in units of bit/s (i.e., the information
given by each observation, assessed in bits over seconds). A

random pattern is represented by a high H-rate. In this study,
all the scanpaths performed by the participants were used to
compute the entropy rate. The entropy rates (H_rate) of the
sequences of one length for the two images used were computed
as a measure of the randomness of the scan. Average H_rate
values were used as dependent variables in a repeated measures
ANOVA design using the epoch as repeated factor. A main effect
of time (F(11.143) = 3.69, p < 0.001) was found. Duncan post
hoc testing showed a steady pattern in the first 2 min of visual
exploration, consistently with that obtained with the NNI.

Discussion
This second study aimed at comparing two scanpath analysis
methods that have been previously reported to be sensitive to
changes in the taskload: Entropy rate and Nearest Neighbor
Index. Results showed an overall increase of difficulty after the
first few minutes of the task. The entropy rate confirms the
presence of a less random and more stereotyped pattern starting
from the second minute of recording. A similar trend was found
for the NNI. The average NNI values in the first 2 min of activity
were significantly higher than in the following epochs, therefore
showing a change towards fixations grouping as the taskload

Frontiers in Human Neuroscience | www.frontiersin.org 8 June 2021 | Volume 15 | Article 642535

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Maggi and Di Nocera Spatial Distribution Analysis of Fixations

FIGURE 6 | Left panel. Artwork by Benoit Tranchet (reproduced with permission).

increased. This study was designed to evaluate the potential
of these two measures under the effect of increasing visual-
spatial demand. The results showed the same trend, therefore
confirming that the two indices are sensitive to changes in
the visuospatial demand. However, unlike the entropy rate, the
NNI is also suitable for estimating changes due to the temporal
demand (see Study 1). This is an aspect that could not be
accommodated by the entropy rate, which is based on the
transitions between AOIs, hence it is completely based on the
visuospatial performance.

GENERAL DISCUSSION AND
CONCLUSIONS

This article reported a set of two studies designed to shed light on
the relationship between mental workload and ocular scanning.
This topic has been covered in the Human Factors/Ergonomics
literature by using different approaches, but a complete
understanding of that relationship is still a long way off. Previous
studies of our laboratory have explored the opportunity to
use the distribution of eye fixations as an indicator of mental
workload. The Nearest Neighbor Index, a spatial statistics

providing information about the distribution of points into a
two-dimensional space, was found to be sensitive to variations in
mental workload. However, results obtained using the NNI were
apparently different from those obtained in accredited studies
using scanning randomness or entropy for summarizing the
scanpath, therefore questioning the value of this approach. Di
Nocera and Bolia (2007) had initially speculated that the two
processes respectively contribute to dispersion and grouping of
the fixations: the temporal demand (that was manipulated in the
NNI studies) and the visuospatial demand (that was manipulated
in other studies, including those featuring entropy). That idea
was partially tested by Camilli et al. (2008b) in a small between-
subject study, but never deepened since then.

Indirect measures of mental workload (they all are) can be
more or less sensitive to variations in the taskload imposed on the
individual. Many of them can provide only a coarse distinction
between taskload levels, others have been reported to be more
fine-grained. Nonetheless, sensitivity to taskload variation is not
the only important property of a successful indicator: sensitivity
to different types of task demands is also important. Indeed, what
we call mental workload (independently of its conceptualization)
may be generated in response to changes in the taskload that
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FIGURE 7 | Right panel. Modified version of the original artwork with 35 differences.

FIGURE 8 | Task performance (number of differences found) and subjective
workload (ratings from 1 to 5) along time. Error bars denote 0.95 confidence
intervals.

may be due to changes in the visuospatial component of the task
(i.e., the task becomes more demanding because the individual
needs to look more, to find more, to discriminate more) or the

FIGURE 9 | NNI and Entropy rate by epoch. Measures have been
standardized (z-scores) to plot them together.

taskloadmay be due to changes in the temporal component of the
task (i.e., the task becomes faster, the interval between incoming
stimuli becomes shorter, the time pressure for responding
increases). The different types of demand are well represented by
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the NASA-TLX that features three scales named mental demand,
temporal demand, and physical demand (while the other three
scales represent the individual reaction in terms of performance,
effort, and frustration).

The first study reported here was designed to test the
diagnosticity of the NNI, that is how the fixations distribution
varied not only along with the taskload but also with the
type of task demand. The results showed high clustering when
the taskload increment was obtained by changing the mental
(visuospatial) demand, and low clustering when it was obtained
by changing the temporal demand. The physical demand,
instead, did not affect the scanpath, possibly because our
manipulation of this dimension was not appropriate or because
the ocular behavior is not sensitive to the manipulation of the
physical component (see Figures 5C,D).

In the second study, instead, the NNI was directly compared
to the entropy approach that is considered one of the most
prominent techniques for studying the scanpath in the HF/E
domain. Results showed an overall increase of difficulty after
the first few minutes of performance that reflected in both
measures of mental workload. After 2 min, the search task
generated both a stereotyped dwell pattern (consistent with the
entropy prediction) and fixations grouping (consistent with the
fixations distribution prediction). In other words, the two indices
were found to be both sensitive to changes in the visuospatial
demand and the plots were highly overlapping. Such a result
sorts out the issue of the differences found between the two
indicators, showing how that exclusively depends on the type
of demand imposed. Also, results demonstrated that a dispersed
fixation pattern (ormoderately grouped) is not equivalent to high
randomness in visual exploration.

Of course, the studies reported here are not without
limitations. As we have already reported one critical aspect
is that related to the manipulation of the physical demand.
Albeit results showed a significant increase in the subjective
estimates of physical demand, the effect did not extend to the
overall workload ratings nor to the analysis of the scanpath.
Likely, the Tetris game involved minimal physical effort and
the manipulation was not effective. To overcome this limitation,
future studies could consider several options. One potential
solution could be to manipulate the game controls producing
frequent keypress failures in the high taskload condition.
Alternatively, the keypress force could bemanipulated in the high
taskload condition to make the task more effortful.

The second study, instead, was designed with the validation
of the NNI in mind. The ‘‘spot the difference’’ task was useful
for providing a common ground to NNI and entropy using the
type of task used in entropy studies (shifting from one AOI to
another). Accordingly, only the sensitivity to the visuospatial
demand was tested for both indicators while the sensitivity of the
entropy measure to the temporal demand was not tested. Future
studies should address also this aspect by keeping constant
the visuospatial demand and increasing only the temporal
demand. Nevertheless, this would be necessary only for sake of
completeness, because the dependency on the AOIs is a strong
limitation of the entropy approach, and the freedom offered by
the NNI in the analysis of the ocular activity during the execution
of any task is much more appealing.

In conclusion, the NNI is suitable for estimating changes due
both to the temporal and the visuospatial demand, therefore
showing diagnosticity, which is an important property for an
effective indicator of mental workload.
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