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Background: Bonemorphogenetic protein (BMP)-based tissue engineering has focused on inducing new bone ef-
ficiently. However, modeling and remodeling of BMP-induced bone have rarely been discussed. Teriparatide
(parathyroid hormone [PTH] 1-34) administration initially increases markers of bone formation, followed by
an increase in bone resorption markers. This unique activity would be expected to accelerate the modeling and
remodeling of new BMP-induced bone.
Methods:Male Sprague-Dawley rats underwent posterolateral spinal fusion surgery and implantation of collagen
sponge containing either 50 μg recombinant human (rh)BMP-2 or saline. PTH 1-34 (60 μg/kg, 3 times/week) or
saline injections were continued from preoperative week 2 week to postoperative week 12. The volume and
quality of newly formed bone were monitored by in vivo micro-computed tomography and analyses of bone
histomorphometry and serum bone metabolism markers were conducted at postoperative week 12.
Results:Microstructural indices of the newly formed bone were significantly improved by PTH 1-34 administra-
tion, which significantly decreased the tissue volumes of the fusion mass at postoperative week 12 compared to
that at postoperative week 2. Bone histomorphometry and serum analyses showed that PTH administration sig-
nificantly increased both bone formation and resorption markers. Analysis of the histomorphometry of cortical
bone identified predominant periosteal bone resorption and endosteal bone formation.
Conclusions: Long-term intermittent administration of PTH 1-34 significantly accelerated the modeling and re-
modeling of new BMP-induced bone.
Clinical relevance:Our results suggest that the combined administration of rhBMP-2 and PTH1-34 facilitates qual-
itative and quantitative improvements in bone regeneration, by accelerating bone modeling and remodeling.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Bone grafting is commonly used to treat skeletal disorders involving
bone defects or spinal instability (Steinmann and Herkowitz, 1992).
Failure of bony fusion results in pseudarthrosis, pain, and disability
(Arrington et al., 1996; Robertson and Wray, 2001; Steinmann and
Herkowitz, 1992). Bone morphogenetic protein (BMP) may provide an
alternative to bone grafting and is the leading osteoinductive growth
factor used clinically in bone-related regenerative medicine today
(Boden et al., 2000, 2002; Urist, 1965; Wozney et al., 1988).
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Although this therapy is effective, use of high BMP doses can cause
complications including inflammatory responses and unintended bone
formation; these restrict its widespread application (Shields et al.,
2006; Smucker et al., 2006). Improved BMP delivery systems have the
potential to produce efficient and spatially controlled bone formation
(Kaito et al., 2005). However, modeling and remodeling of BMP-in-
duced bone, processes that occur during normal late-phase fracture
healing, have not been investigated thoroughly.

Teriparatide (parathyroid hormone [PTH] 1-34) is the only anabolic
agent that has been approved by the U.S. Food and Drug Administration
for the treatment of osteoporosis. This hormone has a unique mecha-
nismof action; continuous administration of PTH1-34 shows a catabolic
effect, while intermittent administration demonstrates an anabolic ef-
fect (Canalis, 2010; Canalis et al, 2007; Dempster et al., 1993; Jilka,
2007; Tam et al., 1982). Recent studies demonstrated that intermittent
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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PTH 1-34 administration promoted fracture healing (Aspenberg et al.,
2010; Gallacher and Dixon, 2010; Komatsubara et al., 2005; Manabe et
al., 2007; Neer et al., 2001). Another study found that intermittent
PTH 1-34 administration significantly increased fusion rates and
newly formed bone quality, concluding that combined administration
of rhBMP-2 and PTH 1-34 had a synergistic effect in a rat model of
rhBMP-2-induced spinal fusion. Interestingly, at postoperative week 6,
the newly formed bone tissue volume (TV) in rats treated with
rhBMP-2 tended to be lower than in animals treated with PTH 1-34
(Morimoto et al., 2014). These findings suggest the possibility that
PTH 1-34 influences modeling and remodeling of newly formed bone.
However, it is unclear whether the newly formed bone TV was low
from the outset or decreased over time in these rats. The purpose of
this study was to elucidate the time course of change in TV induced by
the administration of PTH1-34 by determining the dimension of the
newly formed bone (TV) using serial in vivomicro-computed tomogra-
phy (CT) and to quantify bone formation and resorption at periosteum
and endosteum of the newly formed bone by bone histomorhometry.

2. Materials & methods

2.1. Animal treatments

A total of 37 male, 8-week-old, Sprague-Dawley rats with an initial
average body weight of 305.9 g (range, 280–330 g) were obtained
from Charles River Laboratories Japan, Inc. (Yokohama, Japan) and
used in the present study. All animal procedures were conducted in ac-
cordance with the guidelines of the Regulations on Animal Experimen-
tation at Osaka University. The study groups are shown in Table 1.

2.1.1. Administration of PTH 1-34
Rats were treated with subcutaneous injections of either PTH 1-34

(60 μg/kg) 3 times a week (180 μg/kg/week) or 0.9% saline vehicle. In-
jections commenced 2 weeks prior to surgery, in order to enhance the
anabolic effect of PTH 1-34 at the time of surgery, and continued until
the animals were euthanized. Animals were weighed every 7–10 days,
and injection volumes were adjusted accordingly.

2.1.2. Surgery
Rats were anesthetized with a combination of 0.15 mg/kg of

medetomidine (Domitol; Nippon Zenyaku Kogyo Co., Ltd., Fukushima,
Japan), 2 mg/kg of midazolam (Dormicum; Astellas Pharma Inc.,
Tokyo, Japan), and 2.5 mg/kg of butorphanol (Vetorphale; Meiji Seika,
Ltd., Tokyo, Japan). In addition, preoperative antibiotic (20,000 U/kg
penicillin G; Meiji Seika) was administered subcutaneously. We then
surgically induced posterolateral lumbar fusion (Kaito et al., 2013;
Morimoto et al., 2014; Wang et al., 2003). A posterior midline skin inci-
sionwasmade, followed by 2 separate paramedian incisions in the lum-
bar fascia 3 mm from the midline, through which the transverse
processes were exposed. The L4 and L5 transverse processes were
decorticated using a high-speed burr.

A commercially available absorbable collagen sponge (CollaCote;
Zimmer Dental Inc., CA, USA) was cut into 5 × 10 mm fragments and
placed in a sterile tube. Phosphate-buffered saline (PBS) or rhBMP-2
(50 μg in PBS) was applied to the sponge just before implantation on
each side of the spine. We chose 50 μg rhBMP-2 because this
corresponded to a high clinical dose (1500 μg/mL) (Morimoto et al.,
Table 1
Treatment groups.

Implanted material Injected material

Group A (n = 9) Collagen carrier Saline
Group B (n = 9) PTH1-34
Group C (n = 10) Collagen carrier +50 μg rhBMP-2 Saline
Group D (n = 9) PTH1-34
2014). The fascia and skin incisions were closed using a 4-0 absorbable
suture. The rats were housed in separate cages and allowed to eat and
drink ad libitum while their condition was monitored daily.

2.1.3. Calcein double labeling for bone histomorphometry
All rats were injected subcutaneously with 10 mg/kg calcein

(Dojindo Laboratories, Kumamoto, Japan) at 5 and 2 days before they
were euthanized.

2.1.4. Euthanasia and tissue collection
Immediately prior to euthanizing the rats by anesthetic overdose

12 weeks after surgery, blood samples were collected for analysis of
bone metabolism markers and stored at −80 °C. Spinal segments and
femurs were harvested and fixed with 10% formalin or 70% ethanol for
further assessments.

2.2. Serial bone TV measurement by in vivo micro-CT

The TV of the L4-L5 fusion segments (from the bottom of the L5
transverse process cranially to the top of L4 end plate) was measured
in vivo at a resolution of 59 μm at time 0 (just before surgery) and at
2, 6, 8, and 12 weeks after surgery.

2.3. Assessment of L4-L5 fusion

L4-L5 fusion was assessed using the two methods described below.
Each was performed in a blinded manner by three independent ob-
servers and unanimous agreementwas required before thesewere con-
sidered to be fused.

2.3.1. Micro-CT
The spines were scanned using high-resolution micro-CT (R_mCT;

Rigaku Mechatronics, Tokyo, Japan) at 90 kV and 200 μA. Visualization
and data reconstruction were performed using the TRI/3D-BON
(RATOC System Engineering, Tokyo, Japan). Coronal and sagittal L4-L5
images at a resolution of 40 μm/voxel were evaluated for clear evidence
of bridging bone formation with cortical continuity between the L4 and
L5 transverse processes.

2.3.2. Manual assessment
The explanted lumbar spinesweremanually tested for intersegmen-

tal motion. Anymotion detected in the anterior-posterior and left-right
direction was considered to indicate a failure of fusion, while the ab-
sence of motion was considered to indicate successful fusion.

2.4. Microstructural analysis

The quality of the newly formed fusionmass between the transverse
processeswas analyzed as described previously (Morimoto et al., 2014).
Fusionmass scanningwas initiated from the lower endplate level of the
L4 vertebral body and continued cranially at 2.0-mm increments (fifty
slices) at a resolution of 40 μm/voxel on each side. The bone volume
(BV)/TV, trabecular thickness (Tb·Th), trabecular number (Tb·N), tra-
becular separation (Tb·Sp), thickness of cortical bone (Ct), and cortical
bone ratio (Cv/Av) were determined.

2.5. Analysis of the systemic effects of PTH 1-34

The BV/TV ratios of the distal femoral epiphysis and L6 vertebral
body were analyzed at 40 μm/voxel. Scanning of the distal femur was
initiated at 1.5 mm proximal to the growth plate and continued at
3.0-mm increments (75 slices) in order to exclude the primary
spongiosa of the femur. Scanning of the L6 vertebral body was initiated
at 1.0 mm cranial to the lower growth plate and continued at 3.2-mm
increments (80 slices) in order to exclude the primary spongiosa of
the vertebrae.
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2.6. Analysis of serum markers of bone metabolism

Serum bone metabolism markers were analyzed using enzyme-
linked immunosorbent assays specific for N-terminal propeptide of
type 1 procollagen (P1NP; Rat/Mouse P1NP EIA), type 1 collagen
cross-linked C-telopeptides (CTX-1; RatLaps ELISA), and tartrate-resis-
tant acid phosphatase-5b (TRACP-5b; RatTRAP Assay) (all from
Immunodiagnostic Systems Limited, Fountain Hills, AZ, USA), and
osteocalcin (Rat Osteocalcin EIA Kit; Takara Bio Inc., Shiga, Japan), ac-
cording to the manufacturers' instructions. Serum from all animals
was measured once for each marker.

2.7. Histologic analysis

Five samples each from group C and group D were prepared for
undecalcified bone histomorphometry analysis; the remaining samples
were prepared for decalcified histological analysis. The dissected and
formalin-fixed spines were demineralized with 50% formic acid and
10% sodium citrate, dehydrated through an ethanol series, and embed-
ded in paraffin wax. Serial 5-μm coronal sections of the operated seg-
ments were cut and stained with hematoxylin and eosin.

2.7.1. Bone histomorphometry
Histomorphometric parameters were analyzed using undecalcified

sections of fusion mass in cortical and cancellous bone. Only samples
from groups C and D were used for the analysis because of the lack of
new bone formation in groups A and B. The dissected lumbar spines
were fixed with 70% ethanol, stained with Villanueva bone stain,
dehydrated through an ethanol series, and embedded in methyl meth-
acrylate. Static and dynamic bone histomorphometrical measurements
of the newly formed bone were performed using a semiautomatic
image-analyzing system (System Supply, Nagano, Japan) and a fluores-
cent microscope at ×320 magnifications. The bone histomorphometric
parameters measured were: osteoid and eroded surface/unit bone sur-
face (OS/BS and ES/BS), double-labeled and single-labeled surface/unit
BS (dLS/BS and sLS/BS), number of osteoblasts and osteoclasts/unit BS
Fig. 1. The images shown of coronal and axial sections of rats in the indicated treatments groups
the non-recombinant human bone morphogenetic protein-2 (rhBMP-2)-treated rats were ob
treated rats without PTH 1-34 administration, the induced fusion mass was composed with a
treated rats with PTH 1-34 administration demonstrated a small fusion mass that was comple
(N·Ob/BS and N·Oc/BS), mineralizing surfaces/unit BS (MS/BS), miner-
al apposition rate (MAR), and bone formation rate/unit BS (BFR/BS) and
bone resorption rate (BRsR) 25.

2.8. Statistical analyses

PASW software (version 18; SPSS, Chicago, IL) was used for all of the
analyses. The Mann-Whitney U test was used to compare variables and
the level of significance was p b 0.05.

3. Results

One rat in group C died just after surgery and another rat in this
group died 2 weeks after surgery, following anesthesia for micro-CT;
thus, 35 rats were included in the final analysis.

3.1. Fusion analysis

All fusion assessments (micro-CT and manual) confirmed L4-L5 os-
seous fusion in 100% of the rats exposed to rhBMP-2 (groups C and D),
whereas no osseous fusion was found in non-exposed groups A or B
(Fig. 1).

3.2. Serial bone TV measurement by in vivo micro-CT

The study group TVs showed no significant differences on day 0. The
TVs of groups C and D markedly increased to a similar extent 2 weeks
after surgery (245.4 ± 74.5 mm3 and 233.1 ± 95.9 mm3, respectively).
However, subsequent TVs in rats exposed to rhBMP-2 differed dramat-
ically in the presence or absence of PTH 1-34. The group D TV decreased
over time until 12 weeks, while the group C TV continued to increase
over this time-period. This resulted in a significant lower TV in the
PTH 1-34-treated group D at 12 weeks (180.4 ± 76.5 mm3), than in
the control group C (323.5 ± 86.3 mm3) (p b 0.01; Fig. 2). Groups A
and B showed a slight increase in TV 12 weeks after surgery, which
were generated usingmicro-CT at postoperative 12weeks. No osseous fusionwas found in
served irrespective of the administration of parathyroid hormone 1-34. In the rhBMP-2
n eggshell like cortical bone and contained scarce trabecular bone inside. The rhBMP-2-
tely filled with thick trabecular bone.



Fig. 2. Serial tissue volume (TV) measurements of newly formed bone by in vivo micro-
computed tomography are shown over the 12-week study in the indicated treatment
groups. rhBMP-2, recombinant human bone morphogenetic protein; PTH 1-34
parathyroid hormone 1-34. **p b 0.01. TV is defined as a total bone tissue volume.
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may reflect age-related skeletal growth (group A: 73.3 ± 11.3 mm3;
group B: 69.5 ± 10.2 mm3; p = 0.79).

The axial reconstructed images of rats exposed to rhBMP-2 clearly
demonstrated that in the saline-treated group C, the contour of the fu-
sion mass gradually enlarged between 2 and 12 weeks postoperatively,
with little bone formation inside this mass. In contrast, the contour of
the fusion mass apparently shrank between postoperative weeks 2
and 12 weeks in the PTH 1-34-treated group D, with robust new bone
formation inside this mass (Fig. 3).
3.3. Microstructural indices of the newly formed bone

Groups C and D were used for this analysis because specimens from
rats thatwere not exposed to rhBMP-2 (groupsA andB) showed little or
nonewbone formation. PTH1-34 administration significantly increased
the trabecular BV, BV/TV, Tb.Th, and Tb.N, while the Tb.Sp significantly
decreased. The cortical bone ratio (Sv/AV [%]) and average thickness
Fig. 3. Representative axial micro computed tomography images at postoperativeweeks 2
and 12 are shown for the indicated study groups. rhBMP-2, recombinant human bone
morphogenetic protein; PTH 1-34 parathyroid hormone 1-34. Arrows indicate shrinkage
of the fusion mass in the groups treated with PTH 1-34.
(Ct [μm]) were also increased by PTH 1-34 administration, while the
TV of the newly formed bone was significantly decreased (Table 2).

3.4. Effect of PTH administration on the adjacent vertebra (L6) and femur

The BV/TV values of both the distal femoral epiphysis and the L6 ver-
tebral bodywere significantly increased by the administration of PTH 1-
34, as compared to those observed in control rats (femur: 28.4 ± 10.7%
vs. 61.4 ± 13.5%, p b 0.0001; L6 vertebra: 22.8 ± 10.6% vs. 44.0 ± 10.8%,
p b 0.00001, respectively).

3.5. Serum bone metabolism markers

Significantly higher levels of osteocalcin (p b 0.001) and CTX-1
(p b 0.01) were observed in rats treated with PTH 1-34, as compared
to the levels in rats treated with saline, whereas these groups showed
no differences in the serum levels of P1NP or TRACP-5b (Fig. 4).

3.6. Histology

Microscopic evaluation of the coronal spinal sections showed that
groups A and B showed minimal new bone formation, irrespective of
PTH 1-34 administration (Fig. 5A and B), whereas those treated with
rhBMP-2 (groups C and D) showed abundant new bone formation,
bridging the transverse processes. Themajority of the newly formed fu-
sion mass in group C, which did not receive PTH 1-34, comprised fatty
marrowwithin a large thin eggshell-like cortical bone (Fig. 5C). Howev-
er, group D had a relatively small fusionmass that was filled with abun-
dant trabecular bone (Fig. 5D).

3.7. Bone histomorphometry

The administration of PTH1-34 significantly increased theMAR, dLs/
BS,MS/BS, andN·Oc/BS of cancellous bone. This indicated that PTH1-34
stimulatedmodeling and remodeling processes within 12weeks of sur-
gery (Table 3). Cortical bone histomorphometry demonstrated that PTH
1-34 administration significantly increased the bone resorption rate at
the periosteum andMAR at the endosteum. This treatment also tended
to increase endosteum BFR/BS and sLs/BS, although this failed to
achieve statistical significance (p = 0.08). These findings revealed pre-
dominant periosteal bone resorption and endosteal bone formation in
PTH 1-34-treated rats (Figs. 6 and 7).

4. Discussion

The present study showed that intermittent administration of PTH
1-34 significantly decreased the TV of new rhBMP-2-induced bone, fol-
lowing the initial formation of a fusion mass equivalent to that of the
Table 2
Microstructural indices of newly formed bone.

Parameter

Injected material

Saline PTH 1-34

Tissue volume (TV, mm3) 19.0 ± 5.6 12.6 ± 8.3a

Bone volume (BV,mm3) 0.7 ± 0.4 2.1 ± 1.8⁎

Bone volume density (BV/TV, %) 3.8 ± 2.1 16.7 ± 7.2⁎⁎⁎

Trabecular thickness (Tb.Th, μm) 162.4 ± 17.2 200.0 ± 41.0⁎⁎

Trabecular number (Tb.N, mm−1) 0.16 ± 0.07 0.52 ± 0.25⁎⁎

Trabecular separation (Tb.Sp, μm) 877.2 ± 301.8 364.2 ± 161.4⁎⁎

Cortical bone ratio (Cv/Av, %) 37.2 ± 5.4 56.4 ± 18.4⁎⁎

Cortical bone thickness (Ct, μm) 360.5 ± 37.7 539.2 ± 193.7⁎⁎

Values are given as the mean and the standard deviation. The values were significantly
higher in the group that received PTH 1-34.

a The value was significantly lower in the group that received PTH 1-34.
⁎ p b 0.05.
⁎⁎ p b 0.01.
⁎⁎⁎ p b 0.001.



Fig. 4. Osteocalcin (bone formation marker) and type 1 collagen cross-linked C-telopeptides (CTX-1; bone resorption marker) significantly increased with the administration of
teriparatide, but tartrate-resistant acid phosphatase (TRACP)-5b and N-terminal propeptide of type 1 procollagen (P1NP) levels were not significantly altered (n.s.). The double
asterisk indicates p b 0.0001, the single asterisk indicates p b 0.01.
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control group. Bone histomorphometry demonstrated predominant
bone resorption at the periosteum and bone formation at the endoste-
um in rats receiving PTH 1-34. These results indicated that PTH 1-34
supported modeling of rhBMP-2-induced bone. Furthermore, the in-
creased bone formation and bone resorption identified by bone
histomorphometry and serum markers indicated that PTH 1-34 had a
remodeling effect on rhBMP-2-induced bone; to definitely distinguish
Fig. 5. Lower-power photomicrographs of coronal sections of the L4-5 transverse spine
processes are shown for rats in the indicated study groups (A–D) at a magnification of
×0.5. See Table 1 for a description of the study group treatments.
between modeling and remodeling, the systemic parameters of bone
turnover were measured.

We believe that the decrease in the TV of the newly formed bone by
PTH1-34 administration is interesting because the effects are applicable
to the modeling process in fracture healing. The modeling effect by
PTH1-34 enables spatial control of the excessively formed BMP-2-in-
duced new bone possibly in response to the mechanical stress. The fol-
lowing three mechanisms may contribute to this accelerated bone
modeling and remodeling. First, the combined administration of
rhBMP-2 and PTH 1-34 produces a synergistic induction and differenti-
ation of osteoblasts and osteoclasts in the rhBMP-2-induced fusion
mass. Previous findings suggest that four processes may underlie
Table 3
Bone histomorphometric parameters of fusion mass.

Parameters Saline PTH 1-34

Cancellous
bone

OS/BS (%) 8.7 ± 5.0 13.2 ± 4.8
ES/BS (%) 13.7 ± 4.7 13.4 ± 4.0
N·Ob/BS (N/mm) 3.6 ± 1.6 7.2 ± 2.9
N·Oc/BS (N/mm) 1.1 ± 0.4 2.0 ± 0.5⁎

MS/BS (%) 10.9 ± 6.3 22.1 ± 6.0⁎

MAR (μm/day) 1.0 ± 0.4 1.8 ± 0.2⁎

BFR/BS (mm3/mm2per y) 0.05 ± 0.05 0.15 ± 0.05⁎

BRs.R (mm3/mm2per y) 0.02 ± 0.02 0.04 ± 0.02
Cortical bone periosteum BFR/BS (mm3/mm2per y) 0.09 ± 0.14 0.34 ± 0.22

BRs.R (mm3/mm2per y) 0.13 ± 0.14 2.04 ± 3.45⁎

dLs/BS (%) 11.1 ± 14.6 40.8 ± 25.9
sLs/BS (%) 9.6 ± 6.0 9.6 ± 6.0
MAR (μm/day) 5.6 ± 4.1 1.9 ± 0.3
endosteum BFR/BS (mm3/mm2per y) 0.22 ± 0.11 0.42 ± 0.20
BRs.R (mm3/mm2per y) 0.33 ± 0.33 1.01 ± 1.30
dLs/BS (%) 36.5 ± 7.6 47.0 ± 19.4
sLs/BS (%) 23.0 ± 15.8 11.1 ± 2.9
MAR (μm/day) 1.2 ± 0.4 2.1 ± 0.5⁎

Values are given as the mean and standard deviation. BFR/BS, bone formation rate, BRs.R,
bone resorption rate; dLs/BS, double-labeled surface; ES/BS, eroded surface; N.Ob/BS,
MAR, mineral apposition rate; MS/BS, mineralizing surface; osteoblast number; N.Oc/BS,
osteoclast number; OS/BS, osteoid surface; sLs/BS, single-labeled surface; PTH: parathy-
roid hormone.
⁎ The value was significantly higher in the group that received PTH 1-34 (p b 0.05).



Fig. 6. Bonemorphohistometorical features of cancellous bone in the fusionmass of the recombinant human bonemorphogenetic protein-2 (rhBMP-2)-treated rats (coronal sections), in
the presence or absence of parathyroid hormone 1-34 (PTH 1-34) treatment, as indicated.
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these effects. (1) PTH 1-34 stimulates T-cell production of the osteogen-
icWnt ligand,Wnt10b, which stimulates bone formation by osteoblasts
(Baron and Kneissel, 2013). (2) BMP signaling upregulates the expres-
sion of SOST, leading to the increased translation of sclerostin, which
negatively regulates the Wnt pathway (Kamiya et al., 2008). PTH 1-34
inhibits osteocyte sclerostin expression and activates Wnt signaling
(Fermor and Skerry, 1995), which promotes the differentiation of mes-
enchymal stem cells to osteoblasts, rather than adipocytes (Takada et
al., 2009). Indeed, we found that the newly formed bone was filled
with adipose tissue in rats exposed to rhBMP-2 without PTH 1-34. (3)
PTH stimulates the endocytosis of the BMP antagonist, thus enhancing
BMP signaling by blocking the negative influence of BMP antagonists,
Fig. 7. Bone morphohistometorical features of cortical bone in fusion mass of the recombinant
presence or absence of parathyroid hormone 1-34 (PTH 1-34) treatment, as indicated.
including noggin (Yu et al., 2012). (4) The osteoblasts induced by
the above pathways also recruit and differentiate osteoclasts by
expressing receptor activator of nuclear factor kappa-B ligand
(RANKL) (Nakashima et al., 2011).

Second, PTH 1-34 has a unique mechanism of action in bonewhere-
by intermittent administration leads to a rapid increase in bone forma-
tion markers, followed by an increase in bone resorption markers
(Canalis, 2010; Canalis et al., 2007; Jilka, 2007; Manabe et al., 2007;
Tam et al., 1982). The present study demonstrated that markers of
both bone formation and resorption significantly increased in the PTH
1-34-treated group 12 weeks after surgery. A high bone turnover,
with predominant bone formation by osteoblasts, can promote bone
human bone morphogenetic protein-2 (rhBMP-2)-treated rats (coronal sections), in the
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modeling and remodeling. The obvious osteon structure visible using
polarization microscopy also confirmed the accelerated remodeling in
the rhBMP-2-induced bone in rats treated with PTH 1-34 (Fig. 6, E).

Third, recent studies suggest that osteocyte PTH/PTH-related pep-
tide type 1 receptor signaling regulates anabolic and catabolic skeletal
responses to PTH (Saini et al., 2013). Osteocytes, the most abundant
cells in bone, have recently emerged as important modulators of bone
modeling (Maycas et al., 2015; Saini et al., 2013; Zhang et al., 2009).
During normal physiological skeletal growth, bone modeling involves
bone formation at the periosteum and bone resorption at the endoste-
um. However, in pathological situations, such as angulated long bone
malunions in children or fracture healing, diverse patterns of bone ar-
chitecture modeling occur in response to mechanical stress; these in-
clude predominant periosteal bone resorption and endosteal bone
formation. PTH has profound effects on cortical bone, stimulating peri-
osteal expansion and accelerating intracortical bone remodeling by acti-
vating osteocyte PTH receptors during normal bone modeling (Rhee et
al., 2011). Intermittent PTH administration stimulates osteocyte-medi-
ated modeling in response to mechanical stress through connexin 43
and osteocyte-mediated RANKL expression (Pacheco-Costa et al.,
2015). Thesemechanismsmight play a role in themodeling and remod-
eling of rhBMP-2-induced bone by PTH 1-34.

All these data suggest that concomitant administration of PTH 1-34
and rhBMP-2 could promote the production of high-quality bone, and
also promote themodeling and remodeling of newly formed bone in re-
sponse to mechanical requirements (Komatsubara et al., 2005).

This study has several limitations. We employed only one dose of
rhBMP-2 (50 μg), although we previously tested 2 μg and 50 μg
rhBMP-2. We anticipated that it would be difficult to compare the ef-
fects of PTH 1-34 on modeling and remodeling in a 2-μg rhBMP-2
group because the fusion rates were previously around 50% in this
group and pseudoarthrosis would affect the micro-CT and bone
histomorphometory results. A further limitation is that the current spi-
nal fusion model in quadrupedal rodents cannot be directly extrapolat-
ed to spinal arthrodesis in humans because of the differences in
biomechanics and biological effects of the agents. Another limitation is
the lack of a biomechanical assessment of fusion because of the size
and complex geometry of the rat spine. However, in this study, 100% fu-
sion was observed in the rhBMP-2-treated rats and the microstructural
indices derived using micro-CT were previously reported to correlate
with biomechanical properties (Leahy et al., 2010). Another limitation
is the lack of verification of influence of mechanical stress on the
PTH1-34 related modeling effect. In this model of spinal fusion, it is dif-
ficult to inhibit the effect of mechanical stress by external fixation or
other methods. A study using the femoral defect model combined
with plate fixation is underway. The results from the study will further
clarify the relationship between the modeling effect of PTH1-34 and
mechanical stress. In conclusion, the present study demonstrated that
intermittent PTH 1-34 administration significantly accelerated the
modeling (volume reduction) of rhBMP-2-induced new bone and sig-
nificantly improved the quality of the newly formed bone by accelerat-
ing remodeling. Our results indicate that the combined administration
of rhBMP-2 and PTH 1-34 may enable the spatial control of newly
formed bone in the presence of mechanical stress.
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