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To understand dynamic changes in polyamines (PAs) forms and components of

polyamine metabolism in zoysiagrass (Zoysia japonica Steud.) response to salt stress

with exogenous spermidine (Spd) application, two Chinese zoysia cultivars, z081 and

z057, were exposed to sodium chloride stress for 2, 4, 6, and 8 days. The z057

cultivar possesses higher salinity tolerance than the z081 cultivar. Salt stress decreased

the zoysiagrass fresh weight (FW) and increased free Spd and spermine (Spm) levels

and soluble and insoluble putrescine (Put), Spd and Spm levels in both cultivars.

Moreover, salt stress enhanced the activities of arginine decarboxylase (ADC), ornithine

decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), and diamine

oxidase (DAO). Exogenous Spd increased PA metabolism and ADC, SAMDC, and

DAO activities and decreased free Put levels under salt stress conditions in both

cultivars. In addition, structural equation modeling (SEM) showed that ODC, SAMDC,

and DAO contributed to PA metabolism, and endogenous Spd levels also contributed to

endogenous Spm levels. Free PAs may be the primary factor influencing the variation of

other PA forms. SEM also indicated that ADC and polyamine oxidase (PAO) play a limited

role in enhancing zoysia salt tolerance via PA metabolism under salt stress.

Keywords: zoysiagrass, components, polyamine metabolism, dynamic variation, exogenous spermidine, salinity

stress

INTRODUCTION

Salinity stress is a major factor limiting plant growth and restricting the production of high-
quality plants. Potential and actual plant yields differ considerably under salt stress. Salinity stress
may cause a greater than 50% reduction in major perennial and annual crops worldwide (Wang
et al., 2003). Plants have evolved highly coordinated and complex systems to adapt to salt stress
using a variety of physiological and biochemical responses. A range of physiological, biochemical,
morphological and molecular changes occur in response to salinity stress. Richards and Coleman
(1952) determined that polyamine (PA) metabolism is involved in protecting and maintaining the
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structure and function of cellular components under salt
stress. Many studies have implicated PAs in plant growth and
development (Pál et al., 2015).

PAs are low-molecular-weight aliphatic cations that are widely
present among organisms (Hussain et al., 2011). In plants, PAs
are mainly present as three types: the diamine putrescine (Put),
the triamine spermidine (Spd), and the tetraamine spermine
(Spm). All three major PAs are present in freely soluble forms
or bound insoluble forms. The PA biosynthetic pathway bas
been extensively studied in plants (Kusano et al., 2008; Vera-
Sirera et al., 2010; Pegg and Casero, 2011; Gupta et al.,
2013). In plants, ornithine decarboxylase (ODC) and arginine
decarboxylase (ADC) catalyze Put production in three steps.
Spd synthase (SPDS) catalyzes the formation of Spd from
Put and an aminopropy1 moiety donated from decarboxylated
S-adenosylmethionine (dcSAM). Spd or thermospermine is
synthesized from Spm by Spm synthase (SPMS) using dcSAM
as an aminopropyl donor. In addition to the de novo synthesis
of PAs, PA catabolism involves two classes of enzymes: diamine
oxidases (DAOs) and FAD-containing polyamine oxidases
(PAOs) (Cona et al., 2006; Alcázar et al., 2010; Moschou et al.,
2012).

PAs are involved in various processes in plant growth and
development, such as biofilm formation (Lee et al., 2009), xylem
differentiation (Tisi et al., 2011), fruit ripening (Gil-Amado
and Gomez-Jimenez, 2012), programmed cell death (Kim et al.,
2013), and embryogenic competence (Silveira et al., 2013). PAs
are involved in salt tolerance, as evidenced by changes in PA
concentrations in response to salt stress. The three major PAs
(Put, Spd, and Spm) increase in abundance under salt stress
(Yang et al., 2007). However, in most cases, only one of the three
PAs increases significantly under salt stress (Liu et al., 2006).
Wang and Liu (2009) reported that the Spd content increased
significantly in response to salt stress, and Ikbal et al. (2014)
observed the accumulation of Spd and Spm in response to salt
stress. Similar results were observed in 18 rice species under
drought stress (Do et al., 2014). In most cases, PA accumulation is
higher in tolerant genotypes than in sensitive genotypes (Hatmi
et al., 2015). The increased de novo synthesis of free PAs is
primarily responsible for PA accumulation under salt stress. To
understand the regulation of PAs at the transcriptional level,
many studies have evaluated steady-state transcript levels of PA
biosynthetic genes. The expression of PA biosynthetic genes such
as ADC, SPDS, SPMS and SAMDC is increased upon exposure
to salt stress (Urano et al., 2004; Liu et al., 2006; Wang et al.,
2011; Majumdar et al., 2013; Guo et al., 2014). These studies
suggest that the accumulation of PAs is an adaptive mechanism
in response to salt stress and that PA dynamics is complex.

The dynamic variation of PA content is considered a response
to salt stress. To better understand the roles of PAs in the
response to salinity stress, three approaches, including the
application of exogenous PAs and PA synthesis inhibitors and the
overexpression of biosynthetic genes, have been used. Exogenous
Spd application has been shown to enhance the salt tolerance
of different plants (Duan et al., 2008). A recent study by Li
et al. (2016) demonstrated that application of 0.15 mM Spd
alleviated the damage caused by salt stress in zoysia (Zoysia

japonica Steud.). Exogenous Spd application also enhanced the
salt tolerance of sorghum (Sorghum bicolor) seedlings (Yin et al.,
2016). Hu et al. (2012) also found that exogenous application of
0.15 mM Spm reduced salt injury under salt stress in tomato.
Several transgenic techniques for overexpressing genes encoding
PA biosynthetic enzymes have been widely applied in rice and
Arabidopsis thaliana (Roy and Wu, 2001; Kasukabe et al., 2004,
2006).

There is substantial evidence that PA (Put, Spd, Spm) levels
undergo extensive changes under salinity stress with exogenous
Spd application. However, these PAs (Put, Spd, Spm) are present
in three forms (freely soluble, insoluble bound forms, and
soluble forms). There have been few reports to date on dynamic
variations in different forms of PA to salt stress with exogenous
Spd application and components of polyamine metabolism. Our
objective was to characterize the forms (freely soluble, insoluble
bound forms, soluble forms) of PAs present under the salt stress
and the components of PA metabolism in zoysiagrass.

MATERIALS AND METHODS

Plant Materials and Treatments
In this study, two zoysia (Zoysia japonica Steud.) cultivars
(z057 and z081) were used. z057 is tolerant to salinity stress,
whereas z081 is comparatively sensitive to salinity stress (Li
et al., 2012). The cultivars were collected from China (Table 1)
and cultivated under hydroponic conditions with 1/2 Hoagland
solution (pH 6.6 ± 0.1, EC 1.8–2.0 dsm−1) with pump aeration
(China Agricultural University, Haidian, Beijing, China). The
air temperatures at day and night in the greenhouse were 17–
20◦C and 25–28◦C, respectively. The air relative humidity in the
greenhouse was 60–70%.

Zoysia roots were pruned to 5 cm before treatment. Four
treatments were then applied: (1) control, consisting of 1/2
Hoagland solution alone; (2) 1/2 Hoagland solution + 0.15 mM
Spd; (3) 1/2 Hoagland solution + 150 mM NaCl; and (4) 1/2
Hoagland solution+ 150 mM NaCl+ 0.15 mM Spd.

Root samples were collected with three replicates on days 0, 2,
4, 6, and 8 after salinity treatment.

Root Growth
The dry weight was determined after drying at 75◦C for 72 h.

PA Analysis
The PA extraction method is based on Sharma and Rajam (1995),
with some modifications. Cold perchloric acid (PCA, 4 mL, 5%
v/v) was added to the fresh root homogenates and incubated for
1 h at 4◦C. 1,6-Hexanediamine was added to the homogenates
as an internal standard. The homogenates were centrifuged at

TABLE 1 | Zoysia japonica cultivars used in the study, growth conditions

and plant sources.

Cultivar Species Source sponsor Source location

z081 Z. japonica Qingdao, Shandong 36◦05′N, 120◦20′E

z057 Z. japonica HuaguoShan, Lianyungang 34◦36′N, 119◦12′E
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12,000 × g at 4◦C for 30 min. The supernatants were used to
determine free and soluble conjugated PAs, and the residue was
used to determine insoluble bound PAs. To determine soluble
conjugated PAs, the PCA extract (1 mL) was mixed with 5 mL
of 6 N HCl and hydrolyzed at 110◦C for 18 h in a flame-sealed
glass ampule. After acid hydrolysis, the HCl was evaporated at
70◦C, and the residue was suspended in 2 mL of 5% PCA after
centrifugation at 12,000 × g for 30 min at 4◦C. The solution
contained acid-soluble PAs, including those liberated from PA
conjugates and free PAs. To determine insoluble bound PAs, the
pellets were rinsed four times with 5% PCA to remove any traces
of soluble PAs, followed by suspension in 5 mL of 6 N HCl. The
same procedure above was used to hydrolyze this solution.

PAs recovered from the hydrolyzed supernatants,
nonhydrolyzed supernatants and pellets were benzoylated
as follows. An aliquot of supernatant mixed with 2 mL of 2 N
NaOH and 15µL of benzoyl chloride was vortexed vigorously
and incubated for 30 min at 37◦C. Then, the reaction was
terminated via the addition of 4 mL of saturated NaCl solution.
Finally, 1.5 mL of the ether phase was dried and redissolved in
1mL of methanol.

PAs were assayed by high-performance liquid
chromatography (HPLC). Ten microliters of methanol solution
containing benzoylated PAs was injected into a 20-mL loop and
loaded onto a 5-µm particle-size C18 reverse-phase, 4.6-mm ×

250-mm column (Eka Chemicals, Bohus, Sweden). The column
temperature was maintained at 25◦C. Samples were eluted with
64% methanol, and a flow rate of 0.8 mL min−1 was maintained
using a Dionex P680 Pump. PA peaks were detected with a UV
detector at 254 nm. The concentrations of soluble conjugated
PAs were calculated by subtracting free PA concentrations from
acid-soluble PA concentrations.

Analysis of PA Biosynthetic Enzyme
Activity
Fresh samples were homogenized in 100 mM potassium
phosphate buffer (pH 8.0) containing 0.1 mM
phenylmethylsulfonyl fluoride, 1 mM pyridoxal phosphate
(PLP), 5 mM EDTA, 25 mM ascorbic acid and 0.1%
polyvinylpyrrolidone. After centrifugation at 12,000 × g
for 40 min at 4◦C, the supernatants were dialyzed at 4◦C against
3 mL of 100mM potassium phosphate buffer (pH 8.0) containing
1 mM pyridoxal phosphate (PLP), 0.05 mM PLP, 0.1 mM DTT,
and 0.1 mM EDTA for 24 h in the dark. The dialyzed extracts
were used for enzymatic assays.

The activities of ODC, ADC, and SAMDC were determined
according to the procedure described by Zhao et al. (2003), with
some modifications. The reaction mixtures were activated after
adding 0.3 mL of the dialyzed enzyme extract and 100 mm Tris-
HCl buffer (pH 8.0), 50µM pyridoxal phosphate, 5 mM EDTA,
and 5 mM DTT. Then, the reactions were incubated at 37◦C for
2 min, followed by the addition of 0.2 mL of 25 mM L-ornithine,
0.2 mL of 25 mM L-arginine (pH 7.5) or 0.2 mL of 25 mM SAM.
Then, the reaction mixtures were incubated at 37◦C for 30 min,
followed by the addition of PCA to a final concentration of 5%.
Reaction mixtures were centrifuged at 3,000 × g for 10 min, and

the supernatants (0.5 mL) were mixed with 1 mL of 2 mMNaOH
and 10µL of benzoyl chloride. The mixtures were stirred for 20 s.
After incubation at 37◦C for 30 min, 2 mL of NaCl solution and
3 mL of ether were added and stirred thoroughly, followed by
centrifugation at 1,500 × g for 5 min and extraction with 3.0
mL of ether. Then, 1.5 mL of the ether phase was evaporated to
dryness and redissolved in 3 mL of 60% methyl alcohol. Finally,
the solutions were exposed to a UV light at a wavelength of
254 nm to measure enzymatic activity.

Diamine and PA Oxidase Activity Assay
PAO and DAO activities were determined by measuring the
generation of H2O2, a PA oxidation product, according to the
procedure of Su et al. (2005), with some modifications. Fresh
samples were homogenized in 100 mM potassium phosphate
buffer (pH 6.5). Then, the homogenates were centrifuged at
10,000 × g for 20 min at 4◦C. The supernatants were used
for the enzyme assay. Reaction mixtures contained 25 mL of
potassium phosphate buffer (100 mM, pH 6.5), 0.2 mL of 4-
aminoantipyrine/N,N-dimethylaniline reaction solutions, 0.1mL
of horseradish peroxidase (250 units mL−1), and 0.2 mL of
enzyme extract. The reactions were initiated by adding 15µL of
20mMPut to analyze DAO determination and 20mMSpd+Spm
to analyze PAO. One unit of enzyme activity was defined as 0.001
absorbance units of the change in the optical density.

STATISTICAL ANALYSIS

Growth measurements were performed with 10 replicates. The
results are expressed as the mean ± standard error (SE). One-
way analysis of variance (ANOVA) combined with an LSD test
was used to determine the significance of the differences between
treatments. Structural equation modeling (SEM) was used to
explain the direct effects of related components and PA types on
PAmetabolism according to Grace (2006). Each arrow represents
a causal relationship, i.e., a change in the variable at the tail
of an arrow is a direct cause of the change in the variable at
the head. Nonsignificant paths are indicated by dotted arrows.
Larger standardized coefficients (listed beside each significant
path) indicate that the variable at the tail has a stronger effect
on the variable at the head. The original SEM was based on
the complete theoretical knowledge. The X2-test was used to
determine whether covariance structures suggested by the model
adequately fit the actual covariance structures of the data. A
nonsignificant X2-test (P > 0.05) indicates adequate model fit.
The model modification indices provide a strong tool for data
exploration and hypothesis generation if the initial model does
not adequately fit.

RESULTS

Plant Growth
The root fresh weight (FW) decreased significantly in response to
salinity stress in both zoysia cultivars. The addition of exogenous
Spd alleviated salinity-mediated growth reduction to a certain
extent. Losses in FW due to salt stress under the NaCl treatments
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were 23.4% in z081 and 17.8% in z057, respectively, indicating
the higher salt tolerance of z057 (Table 2).

Free PA Contents
Free PA levels showed a great difference in response to salinity
stress with exogenous Spd application (Table 3). Spd treatment
had almost no effect on free PAs in plants that were not exposed
to salt stress. Free Put, Spd, and Spm exhibited similar trends in
both cultivars, but certain differences were observed (Table 3).
Free Put, Spd and Spm in the roots of z057 demonstrated an
upward trend for 4 days after salt stress. In z081, free Spd, Spm,
and Put levels increased for 6 days after salt stress, followed by a
decline. However, the increase in PA levels wasmaintained longer
in z057 than in z081. Exogenous Spd enhanced PA levels in both
cultivars in response to salt stress except free Spd. The upward
trend in free Put observed during salt stress was suppressed to
a certain extent by the application of Spd, whereas the upward
trends in free Spd and Spm upward were enhanced (Table 3).

Soluble Conjugated PA Contents
Soluble conjugated PA levels are reliable indexes of salt tolerance.
In this study, we observed that only exogenous Spd application
slightly reduced instead of enhanced conjugated PA levels under
normal conditions (Table 4). Soluble conjugated PA contents
increased under salt stress in both species but decreased as time
progressed. However, the peaks occurred at different times in the
two cultivars (Table 4). Exogenous Spd application enhanced PA
levels to different extents under salt stress in both species, and
root PA levels were higher in z081 than in z057 (Table 4).

Insoluble Bound PA Contents
As molecules involved in osmotic adjustment, the content of
insoluble bound PAs is lower than those of other PA forms.
However, many studies have indicated that insoluble bound PAs
are important for plant salt tolerance. Exogenous Spd influenced
insoluble bound PAs slightly under normal conditions (Table 5).
Insoluble bound PAs showed a similar tendency as soluble
conjugated PAs under salt stress. Exogenous Spd application

TABLE 2 | Fresh weight of Zoysiagrass grown under salt stress with or

without treatment with Spd for 8 days.

Cultivar Treatment Root fresh weight (g/cm2)

z057 Control 0.431 ± 0.007a

Spd 0.434 ± 0.004a

NaCl 0.354 ± 0.01c

NaCl+Spd 0.409 ± 0.01b

z081 Control 0.397 ± 0.003a

Spd 0.399 ± 0.002a

NaCl 0.304 ± 0.004c

NaCl+Spd 0.356 ± 0.006b

The data represent the means ± SEs from three independent experiments. Values in a

single column sharing the same letters are not significantly different (p < 0.05; Duncan’s
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increased PA levels significantly at different times in both
cultivars exposed to salinity stress (Table 5).

PA Biosynthetic Enzyme Activity
ODC activity in the roots of both cultivars increased after 2 days
of salinity and peaked on day 4 (Figure 1). The increase in ODC
activity was elevated by the application of exogenous Spd during
salt stress. ODC activity levels induced by exogenous Spd were
greater in z057 than in z081 (Supplementary Table S2). ADC
activity in the roots increased rapidly after 2 days and peaked at 4
and 6 days in z081 and z057 under saline conditions, respectively
(Supplementary Figure S1). Furthermore, very high levels of

FIGURE 1 | Effects of Spd, salt and salt+Spd on activities of ADC, ODC, and SAMDC in roots of zoysia grass under 150 mM NaCl stress. The data

represent the means ± SEs of three replicates. Values in a single column sharing the same letters were not significant difference (p < 0.05) (Duncan’s multiple range

tests).

ODC and ADC activity were maintained in the Spd+salt-
treatment (Supplementary Figure S1). Exogenous Spd had almost
no effects on the two cultivars under normal conditions except
ADC activity on day 6 in z057 (Supplementary Table S1).

Salt stress caused a significant increase in SAMDC activity in
the roots of both cultivars (Figure 1). This increase in SAMDC
activity was enhanced and peaked on day 4 under salt stress,
although the activity in z057 was higher than that in z081.
Exogenous Spd led to higher and more persistent levels of
SAMDC activity in z057 than in z081 under salt stress. In both
cultivars, exogenous Spd had almost no effects on PA biosynthetic
enzyme activity under nonsaline conditions (Figure 1).
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PA Degradative Enzyme Activity
During salt stress, PAO activity increased rapidly in both cultivars
(Figure 2). However, it decreased rapidly in z057 and gradually
in z081. Exogenous Spd led to higher PAO activity in the roots of
z081 under salt stress.

Salt stress induced a rapid increase in DAO activity in z081
roots but had little effect on z057 roots. Exogenous Spd enhanced
DAO activity in both cultivars under salt stress (Figure 2).

Pathway Analysis of Polyamine
Metabolism
SEM was used to explain the direct effects of related components
and PA types on PA metabolism. The original SEM was based on
the complete theoretical knowledge. SEM showed that ODC was
the main enzyme with a direct effect (0.691) on Put synthesis, and
DAO showed direct effects (0.335) on Put catabolism (Figure 3).
In addition, SAMDC and the endogenous Spd level showed direct
effects of 0.532 and 0.213 on endogenous Spd and Spm levels,
respectively. Furthermore, the endogenous Spm and Spm levels
also affected the endogenous Spd and Put levels, respectively.
As for the different PA forms, the free forms showed direct
effects on the soluble conjugated forms among the major PAs
(Figure 3).

DISCUSSION

Salt stress involves a combination of osmotic stress and
dehydration due to excess sodium ions and adversely limits
plant growth and development (Rossetto et al., 2015). It has
been widely reported that PA metabolism is one of the defense
mechanisms that plants invoke in response to salt stress (Kusano
et al., 2008). In this study, salt stress reduced the zoysia FW,
and exogenous Spd application protected the FW from salt-
induced injury (Table 1). This study found a similar pattern
of results as previous research that exogenous PAs reduced the
decline in plant FW upon exposure to salt stress (Hu et al.,
2012).

Many studies have reported changes in PA levels under salt
stress (Marco et al., 2011). PA contents differ following short-
term and long-term exposure to salinity. Hu et al. (2012) reported
the disturbance of PA homeostasis under short-term salt stress
in tomato roots. In general, high Spd and Spm values are
considered salt tolerance indices, as demonstrated by Li et al.
(2016) in salt stress-sensitive and salt stress-resistant zoysiagrass
varieties. In a previous study, PA levels changed under salt
stress: Put levels decreased and Spd and Spm levels increased
in all species examined (Zapata et al., 2004). In other species,
an increase in the (Spd+Spm)/Put ratio was observed under

FIGURE 2 | Effects of Spd, salt and salt+Spd on activities of DAO and PAO in roots of zoysia grass under 150 mM NaCl stress. The data represent the

means ± SEs of three replicates. Values in a single column sharing the same letters were not significant difference (p < 0.05) (Duncan’s multiple range tests).
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FIGURE 3 | The structural equation model linking Zoysia japonica Steud. polyamine metabolism to related components. Each arrow represents a causal

relationship, i.e., a change in the variable at the tail of an arrow is a direct cause of the change in the variable at the head. Nonsignificant paths are indicated by dotted

arrows. Larger standardized coefficients (listed beside each significant path) indicate that the variable at the tail has a stronger effect on the variable at the head. F,

free; S, soluble conjugated; I, insoluble bound; Put, diamine putrescine (nmol/g−1 FW); Spd, triamine spermidine (nmol g−1 FW); Spm, tetraamine spermine (nmol

g−1 FW); ADC, arginine decarboxylase (nmol(Agm)·g−1(FW)·h−1); ODC, ornithine decarboxylase (nmol(Put)·g−1 (FW)·h−1); SAMDC, S-adenosylmethionine

decarboxylase (nmol(SAM)·g−1 (FW)·h−1); PAO, polyamine oxidase (U g−1 FW); DAO, diamine oxidase (U g−1 FW).

salt stress, and Spd and Spm contributed to osmotic stress
tolerance in wheat seedlings (Liu et al., 2004). In addition, the
concentrations of different PA forms (free, soluble, and insoluble)
differ greatly under salt stress conditions with exogenous Spd
application (Jia et al., 2010; Hu et al., 2012). In the present
study, we determined the variation of the dynamic levels of
different PA forms exposed to different conditions. Our results
indicated that the three PA forms increased in the first stage
and then decreased with increasing time following exposure
to salt stress. Exogenous Spd application enhanced the levels
of all PAs except free Put (Table 3). These data suggested
that exogenous Spd might improve zoysia growth and play
a role in the regulation of PA forms in response to salinity
stress.

ADC, ODC, and SAMDC activities change during
environmental stress tolerance in most plant species, indicating
that these enzymes are regulated by PA metabolism (Bagni and
Tassoni, 2001; Liu et al., 2007). Diamine Put is synthesized
by ADC or ODC, and triamine Spd is synthesized by
SPDS from Put via the addition of an aminopropyl moiety
donated by decarboxylated S-adenosylmethionine (dcSAM)
formed by SAMDC (Hanfrey et al., 2002). The elevated
activities of ADC, ODC, and SAMDC were a response to the
enhancement of PA levels. In the present study, ODC and
SAMDC activity were increased in both cultivars exposed
to salt stress, and the pattern of change was consistent
with the levels of certain PAs (Tables 3–5 and Figures 1,
2). Furthermore, exogenous Spd enhanced ADC activity,
ODC activity as well as SAMDC activity in both cultivars
(Figure 3).

DAO, which is localized to the plant cell wall, facilitates Put
catabolism and is important for cross-linking reactions under
stress conditions (Eller et al., 2006). Exogenous Spd increased
DAO activity due to the concomitant decrease in free Put content.
The application of exogenous Spd induced significant increases
in Spd and Spm contents, which were attributable to increased
SAMDC activity. Despite the large increases in ADC and ODC
activities in both cultivars, little free Put accumulated in the roots
due to the large increase in DAO and PAO activity and the
conversion of free Put to conjugated and bound Put and free Spd
and Spm (Ndayiragije and Lutts, 2006).

PA metabolism is a very complex multistep process that
is affected by many factors. PA levels are a quantitative
characteristic of the salt-stress response. The effect of enzymes
on Put levels depends on the activities of ODC and DAO,
which are involved in Put catabolism (Figure 3). The SEM
indicated that the activity of SAMDC contributed to Spd
and Spm levels, whereas endogenous Spd contributed more
to Spm than SAMDC activity (Figure 3). Many studies have
reported that the three major PAs are present in three
forms, and the three forms all showed dynamic changes to
different extents under salt stress conditions with exogenous
Spd application. Our current results indicate that the level
of free PAs contributed to soluble and insoluble PA level
among the major PAs, whereas soluble PAs (put and Spm) did
not contribute to the levels of the corresponding PA forms
(Figure 3).

In summary, salt stress decreased the zoysiagrass FW and
increased free Spd and Spm and soluble and insoluble Put,
Spd and Spm levels in both cultivars. Moreover, salt stress
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enhanced the activity of ODC, SAMDC, and DAO. Exogenous
Spd improved PA metabolism in response to salt stress. In
addition, ODC, SAMDC, and DAO are the main enzymes of PA
metabolism, and endogenous Spd levels also for endogenous Spm
levels. Free PA forms may be the primary factor influencing the
variations of other PA forms.
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