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The prevalence of obesity and type 2 diabetes, two closely 
linked metabolic disorders, is increasing worldwide. Over the 
past decade, the connection between these disorders and the 
microbiota of the gut has become a major focus of biomedical 
research, with recent studies demonstrating the fundamental 
role of intestinal microbiota in the regulation and pathogenesis 
of metabolic disorders. Because of the complexity of the 
microbiota community, however, the underlying molecular 
mechanisms by which the gut microbiota is associated with 
metabolic disorders remain poorly understood. In this review, 
we summarize recent studies that investigate the role of the 
microbiota in both human subjects and animal models of 
disease and discuss relevant therapeutic targets for future 
research. [BMB Reports 2016; 49(10): 536-541]

THE MICROBIOTA IN THE GUT MUCOSA

The human gut is populated with as many as 100 trillion (1014) 
cells, including bacteria, fungi, viruses, and other microbial 
and eukaryotic species (1, 2). These complex, heavily diverse 
communities provide tremendous enzymatic capability and 
thus play a fundamental role in manipulating host physiology 
(3, 4). It is well established that five bacterial phyla, Firmicutes, 
Bacteroidetes, Actinobacteria, Proteobacteria, and Verruco-
microbia, are dominant components of the human gut 
microbiota (5). More than 90% of the bacterial populations are 
gram-negative anaerobes and include the predominant genera 
Bacteroides, Eubacterium, Bifidobacterium, and Fusobacterium 
(6). Additionally, the gut microbiota is indispensable for car-
bohydrate fermentation and nutrient absorption (1), protection 
of pathogenic bacteria (7), and regulation of metabolic 
disorders (8). 

The host intestine is unique with respect to its constant 
exposure to a plethora of antigens from daily food intake and 

exogenous bacteria. The resident gut microbiota contains a 
number of components able to activate both innate and 
adaptive immunity responses (3, 9). For example, the majority 
of intestinal bacteria are gram-negative anaerobes equipped 
with diverse agents, such as lipopolysaccharide (LPS) and 
flagella, allowing for innate signaling to intestinal epithelial 
cells through toll-like receptors (TLRs) (10). Segmented 
filamentous bacteria (SFB) embedded in the ileum can also 
stimulate adaptive, T helper 17 (TH17) responses and induce 
the production of mucosal immunoglobulin A (IgA) antibody 
(11). In addition, commensal microbe-derived butyrate is 
associated with regulatory T (Treg) cell differentiation in the 
colon (12). 

THE GUT MICROBIOTA AND METABOLIC DISORDERS

According to the World Health Organization, more than 1.9 
billion adults were overweight in 2014, with over 600 million 
of those adults classified as obese. Obesity results from energy 
imbalance and is associated with other metabolic complications 
such as type 2 diabetes. The relationship between gut 
microbiota and metabolic diseases was first reported by the 
laboratory of Jeffrey Gordon at Washington University. 
Specifically, the Gordon laboratory demonstrated that leptin- 
deficient mice, notable for their excessive appetite and 
profound obesity, contained fewer Bacteroidetes and more 
Firmicutes than control mice (13). This study provided the first 
direct evidence of differences in the microbial communities of 
lean vs. obese animals. In support of this finding, a follow-up 
study from the Gordon laboratory observed fewer Bacteroidetes 
and more Firmicutes in obese human subjects than in lean 
subjects (14). Furthermore, the proportion of Bacteroidetes 
increased with either fat- or carbohydrate-restricted diet and 
subsequent weight loss. In people who lost weight after a 
gastric bypass procedure, increased levels of Bacteroides and 
Prevotella were negatively correlated with energy intake and 
adiposity (15). Other studies, however, have not observed a 
shift in the ratio of Bacteroidetes and Firmicutes in human 
subjects with weight loss (16-18). Thus, although it is possible 
that certain microbial species in the human gut contribute to 
weight gain and others contribute to weight loss, it is also 
possible that any observed changes in the gut microbiota are 
the result of weight shifts.

To address this concern, microbiota transplantation ex-
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periments have since been adopted. An initial study conducted 
by Gordon et al. demonstrated that conventionalization of 
germ-free mice with a normal microbiota resulted in increased 
body fat content and insulin resistance within 14 days, despite 
reduced food intake (19). This study provided the first 
mechanistic evidence that gut microbes can increase the host’s 
ability to store body fat. Furthermore, germ-free mice that 
received gut microbes from an obese twin donor showed an 
increase of total body and fat mass as well as obesity- 
associated metabolic phenotypes compared with those that 
received a lean twin’s microbiota (20). Interestingly, the gut 
microbiota from a lean mouse could invade the microbiota of 
an obese mouse and provide protection from weight gain, but 
this influence was dependent on diet. Other studies have 
demonstrated that germ-free mice transplanted with obesity- 
associated microbiota gained weight, but not to an excessive, 
obese level (21). Thus, the role of diet and other factors need 
to be considered. 

DIET ALTERS THE GUT MICROBIOTA

Diet is a major factor in obesity, and it also helps shape the gut 
microbiota. Human studies from the past decade have 
revealed that the gut microbiota responds rapidly to large 
changes in diet; in many cases, the composition and function 
of the gut microbiota shifts within 1-2 days (22, 23). Despite 
these rapid dynamics, long-term dietary habits are still critical 
in determining the gut composition of an individual (24), and 
the effectiveness of a specific diet largely relies on the initial 
composition of the gut microbiota (25). 

Extensive research has shown that the gut microbiota of a 
traditional rural population (i.e., high-fiber, low-fat diet) is 
more diverse and contains distinct taxa than the microbiota of 
Western populations (i.e., low-fiber, high-fat diet) (26). Pre-
servation of microbial diversity by a high-fiber, low-fat diet 
allows individuals to maximize energy intake from fiber while 
also protecting them from inflammation and noninfectious 
colonic diseases. Although it is unclear whether increased 
microbial diversity contributes to protection from metabolic 
diseases, several metagenomics studies indicate that improved 
outcomes in metabolic diseases are associated with increased 
microbial diversity (27, 28). For example, a team of researchers 
sequenced the microbiomes of 169 obese and 123 non-obese 
individuals and observed that individuals fell into two groups: 
a group with a low amount of microbial gene diversity and 
another group with high diversity (27). Those with fewer genes 
tended to have more pronounced adiposity, insulin resistance, 
and dyslipidemia than individuals containing more diverse gut 
microbiotas. Furthermore, obese individuals with lower bacterial 
diversity showed more weight gain over time. These data 
imply that manipulation of microbial diversity in the gut could 
be a promising avenue for amelioration of metabolic disorders.

MICROBIAL REGULATION OF METABOLITES 

The gut microbiota produces numerous amounts of metabolites. 
For example, the microbiota contributes to host metabolic 
efficiency by increasing energy availability via the production 
of short-chain fatty acids (SCFAs), such as acetate, butyrate and 
propionate (29). Previous studies demonstrated that SCFA 
levels were elevated in obese human subjects and animal 
models, consistent with the fact that SCFAs provide extra 
calories to the host (8, 16). Most recently, researchers observed 
that amplified production of acetate increased the likelihood of 
obesity by triggering secretion of ghrelin, the appetite-inducing 
hormone (30). By contrast, other studies have demonstrated 
that SCFAs directly contribute to host protection from 
metabolic diseases. For example, SCFAs are an important 
energy source for gut epithelial cells through activation of 
G-protein-coupled receptors, such as GPR41 and GPR43, 
which influence enteroendocrine regulation (31, 32). Butyrate 
acts as a main energy source for colonocytes (33), and pro-
pionate can induce intestinal gluconeogenesis, thus protecting 
the host from diet-induced obesity via the gut-brain neural axis 
(34). Interestingly, consumption of a complex diet resulted in 
increased levels of SCFAs and increased diversity within the 
gut microbiota (26). Reduced dietary intake of carbohydrates 
for obese humans, however, resulted in decreased butyrate 
levels in their feces and correlated with a reduced abundance 
of butyrate-producing bacteria (i.e., Roseburia spp. and 
Eubacterium rectale) (17). Furthermore, levels of propionate 
specifically correlated with the amount of Bacteroidetes in the 
gut (35). 

In addition to the production of SCFAs, the microbiota forms 
bile acids from host cholesterol. Bile acids are a family of 
steroid acids synthesized from cholesterol in the liver and 
mostly secreted into the lumen of the intestine to control the 
digestion and absorption of dietary fat and fat-soluble vitamins 
(36). Commensal microbiota plays a pivotal role in the 
conversion of primary bile acids in the lower part of the small 
intestine and the colon to generate secondary bile acids (37, 
38). Although it has become clear that bile acids act as 
signaling molecules for metabolic pathways, fundamental 
questions remain concerning whether additional administration 
of specific commensal bacteria can regulate bile acid 
metabolism and the potential role of these altered bile acids in 
metabolic diseases, such as obesity and type 2 diabetes (39, 
40). A recent study demonstrated that the bile acid profiles in 
the gut and serum of control mice were quite distinct from 
those of germ-free mice (41), while another animal study 
reported that taurine-conjugated bile acids were dominant in 
germ-free and antibiotic-treated mice (42). Furthermore, ad-
ministration of probiotics altered gut microbiota composition 
and enhanced bile acid deconjugation and fecal excretion 
(43). Notably, the increased probiotic bacteria were associated 
with the induction of hepatic bile acid synthesis via the 
farnesoid X receptor (FXR) (43). The gut microbiota also 
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Fig. 1. Interactions between the gut mic-
robiota and host metabolism. The gut 
microbiota can be influenced by a 
number of external factors, including 
host background, diet type, and medical 
treatments. Imbalance of the intestinal 
microbiota can lead to severe metabolic
disorders (e.g., obesity) by altering host 
insulin sensitivity or energy homeostasis.

regulates the G-protein-coupled bile acid receptor 1 (known as 
TGR5) (44). Our group has detected increased levels of bile 
acids in fecal tissue as well as TGR5 in adipose tissue from B. 
acidifaciens-fed mice (45). Additional studies have suggested 
that bile acid-TGR5-cAMP signaling pathways enhance energy 
expenditure in adipose tissue (46, 47). In total, specific 
commensal microbiota may regulate host metabolic actions 
through modulation of bile acid synthesis or reabsorption and 
by interaction with receptors such as FXR and TGR5. 

Gut microbiota ultimately contribute to the regulation of 
incretin hormone secretion through the interaction between 
the aforementioned metabolites (SCFAs, bile acids) and their 
receptors (GPR1 and GPR43, TGR5), which are expressed on 
enteroendocrine L cells (48-52). The stimulated enteroendocrine 
L cells secrete incretin hormone peptides, such as glucagon- 
like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), and 
peptide YY (PYY), which in turn stimulate insulin release and 
decrease blood glucose levels (48). These secreted peptides 
affect a wide range of organs and tissues to improve insulin 
sensitivity, glucose tolerance, and energy homeostasis (Fig. 1), 
thereby contributing to protection in metabolic disorders such 
as obesity and type 2 diabetes. 

MICROBIAL REGULATION OF INFLAMATION

Several lines of evidence point to a role for gut microbiota in 
the induction of systemic and adipose tissue inflammation (49, 
50). For example, the gut microbiota produces substantial 
amounts of inflammation-inducing factors, including LPS and 
peptidoglycan. Additionally, monocolonization of Escherichia 
coli into germ-free mice promoted macrophage accumulation 
in white adipose tissues and polarized macrophages toward 

inflammation, suggesting that gut microbiota-derived endo-
toxins, such as LPS, play a role in obesity regulation (10). 
Furthermore, food-derived microbiota exacerbated C-C motif 
chemokine ligand 2 (CCL2)-dependent macrophage infiltration 
in white adipose tissues through TLR signaling (51). In mouse 
models, obesity is associated with increased numbers of 
effector T cells and decreased numbers of Treg cells (52, 53). 
Because many studies have demonstrated that microbiota- 
generated SCFAs promote anti-inflammatory responses in 
mucosal and systemic tissues through Treg cells (12, 54, 55), it 
is tempting to speculate that gut microbiota may control 
obesity through the generation of Treg cells. 

SYMBIONTS IN METABOLIC DISEASES

There are several strategies to control metabolic diseases by a 
single species of the gut microbiota (Table 1). One such 
strategy is the consumption of beneficial bacteria as prebiotics 
or probiotics. For example, Akkermansia (A.) muciniphila, 
known as the mucin-degrading bacterium (56), can be admi-
nistered as a prebiotic to reduce the likelihood of obesity and 
diabetes. This microbe commonly constitutes 3-5% of the 
human gut microbial community and is more abundant in 
healthy individuals than in obese/diabetic patients or animals 
(57-59). In one study, treatment of high-fat diet (HFD)-fed mice 
with metformin, a widely prescribed type 2 diabetes therapeutic 
agent, improved the glycemic profile and resulted in a higher 
abundance of A. muciniphila (60). Moreover, oral admini-
stration of A. muciniphila to HFD-fed mice without metformin 
treatment led to antidiabetic effects. Interestingly, exposure to 
the cold resulted in significant changes to gut microbiota 
composition, and reconstitution of cold-suppressed A. muci-
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Microbes Mechanisms References

Bacteroidetes /Firmicutes ratio↓ Enhance dietary energy recovery Ley et al (2005, 2006)
Methanobrevibacter smithii↓ Increase energy harvest Samuel et al (2007)
Bacteroidetes /Firmicutes ratio↑ Increase SCFA levels Schwiertz et al (2010)
Bacteroides (B.) cellulosilyticus↓
B. vulgatus↓ B. thetaiotaomicron↓
B. caccae↓ B. uniformis↓

High invasiveness into the gut Ridaura et al (2013)

Akkermansia muciniphila↓ Improve glucose homeostasis Santacruz et al (2010)
Bacteroides acidifacients↓ Activate lipid oxidation Yang et al (2016)

Table 1. Gut microbiota associated with obesity

Fig. 2. Proposed mechanism for modula-
tion of host insulin sensitivity by Bacte-
roides acidifaciens (BA). The selected 
commensal bacterium (i.e., BA) causes 
intestinal epithelial cells to secrete lower
amounts of dipeptidyl peptidase-4 (DPP-4)
in the gut and increased levels of 
glucagon-like peptide-1 (GLP-1), which 
may contribute to glucose homeostasis. 
At the same time, increased levels of bile
acids (i.e., cholate and taurine) may 
contribute to GLP-1 activation in the 
intestine and to peroxisome proliferator-
activated receptor  (PPAR) activation 
through TGR5 in adipose tissues, ulti-
mately resulting in fat oxidation and 
improved insulin sensitivity. 

niphila reduced caloric uptake (61). 
Gordon et al. reported lean phenotypes in mice that were 

correlated with Bacteroides species, such as B. cellulosilyticus, 
B. uniformis, B. vulgatus, B. thetaiotaomicron, and B. caccae 
(20). Oral administration of the B. uniformis CECT 7771 strain 
ameliorated HFD-induced metabolic dysfunction in obese 
mice (62). Our group has recently reported that HFD-fed mice 
given B. acidifaciens for 10 weeks gained less fat mass and 
body weight than those given PBS alone (45). We have 
suggested that peroxisome proliferator-activated receptor  
(PPAR)-mediated fat oxidation in adipose tissues and an 
expanded half-life of GLP-1 are involved in the regulation of 
host adiposity and insulin resistance by B. acidifaciens. 
Furthermore, metabolites secreted by B. acidifaciens may play 
a critical role in maintaining low levels of dipeptidyl 
peptidase-4 (DPP-4) in the gut (45) (Fig. 2). It would be in-
teresting to conduct a follow-up study to identify underlying 
mechanisms how beneficial symbionts working on and soluble 
factors produced by those bacterium and their cross-talks.

CONCLUSIONS AND PERSPECTIVES

It is likely that nothing is simple when considering the link 
between diet, gut microbes, and metabolic diseases. Although 
mechanistic studies in animal models have produced valuable 
insight and revealed potential therapeutic targets, future 
studies are challenged with translating these findings into the 
human patient. 
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