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Abstract
Although relationships between networks of different scales have been observed in macroscopic brain studies, relationships
between structures of different scales innetworks of neurons are unknown. To address this,we recorded fromup to 500neurons
simultaneously from slice cultures of rodent somatosensory cortex. We then measured directed effective networks with
transfer entropy, previously validated in simulated cortical networks. These effective networks enabled us to evaluate
distinctive nonrandomstructures of connectivity at 2 different scales.We have 4main findings. First, at the scale of 3–6 neurons
(clusters), we found that high numbers of connections occurred significantly more often than expected by chance. Second, the
distributionof the numberof connections per neuron (degree distribution) had a long tail, indicating that the network contained
distinctively high-degree neurons, or hubs. Third, at the scale of tens to hundreds of neurons, we typically found 2–3
significantly large communities. Finally, we demonstrated that communities were relatively more robust than clusters against
shuffling of connections. We conclude the microconnectome of the cortex has specific organization at different scales, as
revealed by differences in robustness.We suggest that this informationwill help us to understand how themicroconnectome is
robust against damage.
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Introduction
Multiscale structure is a hallmark of many complex systems
(Simon 1962; Bar-Yam 2004; Werner 2010) and has been sug-
gested to confer adaptability (Simon 1962), robustness (Carlson
and Doyle 2002), and ease of information exchange (Dodds
et al. 2003). As the brain is perhaps the epitome of a complex sys-
tem, one naturally would expect to find multiscale structure
there (Leergaard et al. 2012). Indeed, functional magnetic reson-
ance imaging (fMRI) data have provided evidence for multiscale
(Bassett et al. 2006) and hierarchical (Meunier et al. 2009) func-
tional networks in the human cortex. Furthermore, simultan-
eous evaluation or comparison of structures at multiple scales
has also been attempted in macroscopic brain studies (Sporns
et al. 2007; Bassett et al. 2011; Shen et al. 2012; Shimono 2013).
Within a typical fMRI voxel, however, there are hundreds to

thousands of neurons. It has remained an open question as to
how structures at multiple scales relate to each other at this
smaller level of neuronal networks.

Broadly speaking, functional connectivity can be either undir-
ected or directed. Undirected functional connectivity is typically

used to denote a correlation or co-activation between 2 nodes in a

network (e.g., Biswal et al. 1995; Schneidman et al. 2006). Directed

functional connectivity, sometimes called “effective” connectiv-

ity, denotes a temporal sequence of activation or a direction of

causality between nodes (Friston 1994; Bonifazi et al. 2009; Taka-

hashi et al. 2010). To determine effective connectivity among sev-

eral hundred spiking cortical neurons, it is therefore necessary to

record data simultaneously atmillisecond temporal resolution to

match the synaptic delays of 1–20 ms reported in cortex (Mason

et al. 1991; Swadlow 1994). As we explain below, recent advances
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in multielectrode array technology have now made this possible
(Litke et al. 2004; Field et al. 2010). We sought to apply this tech-
nology to answer 2 questions. First, are there structures at mul-
tiple scales (hubs, clusters, and communities) in the effective
connectivity of hundreds of cortical neurons? Second, if struc-
tures at multiple scales exist, how do these structures relate to
each other?

To pursue these questions, we used a 512-electrode array sys-
tem to record spontaneous activity at 20 kHz sampling rate in 25
slice cultures ofmouse somatosensory cortex. On average, we re-
corded 310 ± 127 [mean ± standard deviation (SD)] neurons from
each culture for 1 h or more. Although many metrics of effective
connectivity have been proposed (Aertsen et al. 1989; Garofalo
et al. 2009; Pajevic and Plenz 2009; Friston 2011), we selected
transfer entropy (TE; Schreiber 2000) because several studies
found it to compare favorably in accuracy with other metrics
(Lungarella et al. 2007; Garofalo et al. 2009; Ito et al. 2011; Stetter
et al. 2012; Vincent et al. 2012; Orlandi et al. 2013).

With this metric, we sought to answer the questions above
and to verify that our findings were robust with respect to pos-
sible errors in spike sorting, and to criteria for accepting an effect-
ive connection. Portions of this work have been previously
presented in abstract form (Shimono and Beggs 2011a, 2011b,
2014).

Materials and Methods
Culture Preparation

All neural tissue from animals was prepared according to guide-
lines from the National Institutes of Health and all animal proce-
dures were approved by the Animal Care and Use Committees at
IndianaUniversity and at theUniversity of California, Santa Cruz,
CA, USA. For these studies, we used organotypic cultures because
they preserve many of the features characteristic of cortex, in-
cluding neuronal morphology (Klostermann and Wahle 1999),
cytoarchitecture (Caeser et al. 1989; Gotz, Bolz 1992), precise in-
tracortical connectivity (Bolz et al. 1990), and intrinsic electro-
physiological properties (Plenz and Aertsen 1996). In addition,
they produce a variety of emergent network activity patterns
that have been found in vivo, including precisely timed responses
(Buonomano 2003), UP states (Johnson, Buonomano 2007), oscil-
lations (Baker et al. 2006; Gireesh and Plenz 2008), synchrony
(Beggs and Plenz 2004; Baker et al. 2006), waves (Harris-White
et al. 1998), repeating activity patterns (Beggs and Plenz 2004; Ike-
gaya et al. 2004), and neuronal avalanches (Beggs and Plenz 2003;
Friedman et al. 2012).

When cortical slice cultures are grown with subcortical target
structures, as done here, it has been shown that they form appro-
priate connections that are not exuberant (Leiman and Seil 1986;
Baker and van Pelt 1997).We prepared organotypic cultures using
methods previously reported (Tang et al. 2008). Briefly, brains
from postnatal day 6 (P6) to P7 black 6 mouse pups (Harlan,
RRID:Charles_River:24101632) were removed under a sterile
hood and placed in chilled Gey’s balanced salt solution (Sigma)
for 1 h at 0 °C. After 30 min, half the solutionwas changed. Brains
were next blocked into 5-mm3 sections containing somatosen-
sory cortex (Paxinos and Watson 2007). Blocks were then sliced
with a thickness of 400 μm.

Each slice was placed on a small circular cutout of permeable
membrane (Millipore, Billerica, MA, USA) that was then placed on
top of a larger membrane that spanned a culture well. Culture
medium consisted of Hank’s balanced salt solution (Sigma;
H9394) 1:4, Minimum essential medium (Sigma; M4083) 2:4,

horse serum (Sigma; H1270) 1:4, and 4 mL -glutamine, with
penicillin/streptomycin 1:1000 volume of media (Sigma; P4083).
Slices were maintained at an interface between medium below
and atmosphere above.

The plates of wells were incubated at 37 °C in humidified
atmosphere with 5% CO2.

Recording and Spike Sorting

After 2–3 weeks, the cultures were then gently placed on amicro-
electrode recording array by lifting the small circular cutout of
membrane with tweezers. Each culture was placed tissue side
down, with the membrane facing up. We attempted to place
the tissue such that somatosensory cortex was on the electrode
array (Fig. 1a). During recording, cultures were perfused at
1 mL/min with culture medium that was saturated with 95%
O2/5% CO2. The perfusate was thermostatically kept at 37 °C.
Spontaneous activity was recorded for 1.5 h. The first 0.5 h was
not used in analysis. Spikes were recorded with a 512-electrode
array system that has been used previously for retinal (Shlens
et al. 2006; Field et al. 2010) and cortical (Tang et al. 2008; Fried-
man et al. 2012) experiments. The outline of the array was rect-
angular (1.8 mm× 0.9 mm) and electrodes were arranged in a
hexagonal lattice with an interelectrode distance of 60 μm
(Fig. 1b). Spike sorting was done offline as previously described
(Litke et al. 2004; Tang et al. 2008). Briefly, signals that crossed a
threshold of 8 SDs were marked, and the waveforms found on
themarked electrode and its 6 adjacent neighbors were projected
into 5D principal component space. A mixture of Gaussians
model was fit to the distribution of features based on maximum
likelihood. Only the neurons that had well-separated clusters in
principal components space and had no refractory period viola-
tions were used in further analysis. The close 60-μm spacing
between electrodes allows an action potential from one neuron
to be detected by 7 electrodes with this 512 array. Because action
potential amplitude falls off with distance, it is possible to use
the unique combination of amplitudes from the 7 electrodes to
triangulate the locations of the neurons (Litke et al. 2004).

The quality of the data collected for this study had a unique
combination of features thatmade it particularly useful for unco-
vering effective connectivity in neural networks at this scale. The
high temporal resolution of the recordings allowed the sequence
of spike activations to be identified in many cases, letting us
measure directed, rather than undirected, connections. The
close electrode spacing (∼60 μm) was within the radius of most
synaptic contacts between cortical pyramidal neurons (Song
et al. 2005), and enhanced the probability that recorded neurons
would share direct synaptic contacts. The large number of neu-
rons simultaneously recorded, aswell as the long recording dura-
tions (1 h or more) enhanced statistical power, allowing many
connections to be identified that would have otherwise gone un-
detected. Very fewprevious studies have been able to combine all
of these features simultaneously.

Effective Connectivity Metric

There is a large and growing literature on metrics for effective
connectivity (e.g., Hlavackova-Schindler et al. 2007); we selected
TE because several previous studies (Lungarella et al. 2007; Garo-
falo et al. 2009; Ito et al. 2011; Stetter et al. 2012; Vincent et al.
2012), indicated that it compared quite favorably with other me-
trics in terms of accuracy. As an information-theoretic measure,
TE is also capable of detecting nonlinear interactions between
neurons (Schreiber 2000). More generally, TE is a directed

3744 | Cerebral cortex, 2015, Vol. 25, No. 10



(asymmetric), measure of influence that can be applied to 2 time
series—here we used spike trains binned at a resolution of 1 ms.
In neuroscience terms, TE is positive if including information
about neuron J’s spiking activity improves the prediction of neu-
ron I’s activity beyond the prediction based on neuron I’s past
alone (Fig. 1c). The original definition of TE (Schreiber 2000) was
given as:

TEJ!I ¼
X

pðitþ1; i
ðkÞ
t ; jðlÞt Þlog2

pðitþ1jiðkÞt ; jðlÞt Þ
pðitþ1jiðkÞt Þ

: ð1Þ

Here, it denoted the status of neuron I at time t, and could be
either 1 or 0, indicating a spike or no spike, respectively; jt de-
noted the status of neuron J at time t; it+1 denoted the status of
neuron I at time t + 1; p denoted the probability of having the sta-
tus in the following parentheses; and the vertical bar in the par-
entheses denoted the conditional probability. The sum was over
all possible combinations of it+1, i

ðkÞ
t , and jðlÞt . The parameters k and

l gave the order of TE, meaning the number of time bins in the
past that were used to calculate the histories of systems I and J,
respectively. Here, we used k = l = 1, so that only single time bins
were considered. This was because the connectivity matrix pro-
duced from higher-order TE was very similar to that produced
by first order TE (results for k = 3, l = 2 are shown in Supplemen-
tary Fig. 2c). Further comparisons were also essentially similar.
We used logarithms with base 2 so that our units would be bits,
although in some figures we used base 10 so as to cover a wider
range of data. Given that synaptic delays between cortical neu-
rons could span several milliseconds (Bartho et al. 2004; Sirota
et al. 2008), we adopted a version of TE that allowed delays be-
tween neuron I and J. To continue to consider the system’s own

history, we kept a 1-bin delay for neuron I, assuming that neuron
I depended mostly on its closest previous state. To account for
synaptic delays between neurons, the time bin of neuron J was
delayed by d bins, as described below. Taking thesemodifications
into account, we used a delayed version of TE, given by:

TEJ!IðdÞ ¼
X

pðit; it�1; jt�dÞlog2
pðitjit�1; it�dÞ
pðitjit�1Þ : ð2Þ

Here other termswere as defined in Equation (1).When TE be-
tween 2 neurons was plotted as a function of different delays d, it
often showed a distinct peak (Fig. 1d).We took this peak TE value,
TEPk, to be the single number that represented effective connect-
ivity between 2 neurons. Below in the results, we discuss the spe-
cific values of delay that we examined. Please note that the
directionality of TE comes from the fact that the past of neuron
J is used to predict the future of neuron I. Thus, connections
will be directed from past to future. For calculating TE rapidly
over multiple delays, we used the freely available TE toolbox
developed by our group, posted at: http://code.google.com/p/
transfer-entropy-toolbox/. Another toolbox by Linder et al.
(2011) also uses TE.

TE by itself has been shown to associate directed functional
connections with synaptic connections that account for 85% of
the total synaptic weight in a cortical network model (Ito et al.
2011; see also Garofalo et al. 2009; Stetter et al. 2012). While this
performance is very competitive with present methods of deter-
mining directed functional connections, we wanted to further
improve this approach. To do this, we sought away to remove di-
rected functional connections that were produced by network
bursts that would not reflect real interactions. Peaks in the TE
curve caused by network bursts are very broad (∼50–200 ms).

Figure 1. Experimental setup. (a) Micrograph of cortical slice culture on a 512-electrode array. Array is∼1 × 2 mm, outlined for visibility. Small dots are electrodes, arranged

hexagonally with 60 μmspacing. (b) Representative raster of activity. Dots represent spikes from 260 sorted neurons, shown for 300 s. (c) Schematic of transfer entropy (TE)

showing 2 binned spike trains. TE evaluates howmuchneuron J’s past spiking activity improves the predictionof neuron I’s activity beyond theprediction based onneuron

I’s activity from the previous time bin. Here, delay indicates time lag chosen for the spiking activity of neuron J. (d) Definition of the Coincidence index (CI). When TE was

plotted as a function of delay, CI was the ratio of area under the peak (A) to total area under the curve (A + B).
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Furthermore, it is known that monosynaptic connections show
smaller variance of spike timings than polysynaptic connections
(e.g., see Berry and Pentreath 1976). Both of these facts suggest
that interactions with sharp peaks would be more likely to be as-
sociated with true connections than interactions with broad
peaks. Therefore, to remove the wide components on the TE
curve, we used the coincidence index (CI). Intuitively, the CImea-
sured the tendency for TE values to peak sharply at a particular
synaptic delay between neurons (Fig. 1d). The CI has been used
to identify connections in the context of cross-correlation studies
(Juergens and Eckhorn 1997; Tateno and Jimbo 1999; Chiappalone
et al. 2006). We defined the CI as:

CI ¼

Pd¼τ

d¼0
TEðdÞ

Pd¼T

d¼0
TEðdÞ

: ð3Þ

where TE(d) was the TE measured at delay d, and τ was the
coincidence window size, T was the entire window size of the
measure (Fig. 1d). We used a value of T = 20 ms for the entirewin-
dow size, as this encompassed the range of monosynaptic delays
reported in cortex (Mason et al. 1991; Swadlow 1994). We used a
value of τ = 4 ms, as this reflected the typical width of peaks
found in the data (Supplementary Fig. 1c,d).

Establishing Significance of Connections

Using both CI and TE, wewere able to distinguish significant con-
nections from those produced by chance. First, we compared CI
and TE values from actual data with those from randomized ver-
sions of the data. To do this, we plotted CI values against log10-
(TEPk) values for all possible pairs of neurons within an actual
data set (Fig 2a, “Actual”). Because TE intensity showed a robust
log normal distribution in all 25 datasets (Supplementary Fig. 2a),
we found it easier to visualize the full range of TE values when
using a log10 scale. We then generated sets of randomized data
by taking the actual data and jittering every spike time of only
preconnection neurons [neuron i in Equation (2)] by an amount
randomly drawn from a uniform distribution of a window size
T. This method only changed firing times, leaving firing rates
unchanged. This approach also preserved the auto-prediction
component of the postconnection neuron in the TE measure,
randomizing only the component produced by the preconnec-
tion neuron. We explored T = 0–30 ms, and generated 20 rando-
mized datasets for each value of T from each actual dataset.
The jitter value from which most of the results in this paper
were producedwas T = 19 ms.We chose this value becausewe ob-
served a significant decay in the intensity of TE after 15 ms,
which then plateaued at 19 ms (Supplementary Fig. 1a). We
also note that direct synaptic connections in cortex have delays
that typically range from 1 to 20 ms (Mason et al. 1991; Swadlow
1994), and are likely to produce causal interactions in a similar
temporal range (Gourevitch and Eggermont 2007). Thus, jittering
spike times by 19 ms was expected to disrupt timing from direct
synaptic connections. Because spikes from preconnection neu-
rons were not jittered, the Inter-Spike Interval histograms from
preconnection neurons and their autocorrelations were exactly
preserved.

Second, we plotted CI values against log10(TEPk) values for all
possible pairs of neurons within the jittered datasets. When this
was done, the jittered data did not extend into the region where
both CI and log10(TEPk) were simultaneously high (Fig. 2a, “Jit-
tered”), whereas some of the actual data did occupy this region.

Intuitively, this region of the plot was populated only by connec-
tionswith tall and narrowpeaks in TE thatwere unlikely to be the
result of common drive (Supplementary Fig. 2b). The upper right-
most portion of the jittereddata thus formed adecision boundary
that allowed us to distinguish significant connections from those
produced by chance. We found that when this CI versus log10-
(TEPk) plot was divided at a resolution of 25 × 25 bins in 2D

Figure 2. Approach for determining significant connections. (a) First, CI was

plotted against log(TEmax) for all neuron pairs from actual data (dots represent

pairs). Second, CI was plotted against log(TEmax) for jittered data. Third, both

plots were combined to construct a filter that indicated the ratio of jittered dots

to all dots in each of the 25 × 25 2D bins (white: many jittered; black: few

jittered). Fourth, filter was used to indicate actual connections where jittered

pairs were few. Several lines in the distributions occur because when coincident

firing happens only once or twice, the TE values become disretized. (b)

Connectivity map with actual directional connections plotted as arrows.

Thickness indicates strength. Circles represent presumed neuron locations on

array. (c) The concept of error rate. The red and blue balls, respectively,

represent data samples of jittered data (n = 100) and original data included in a

bin. Because error rate is defined as ratio of the number of red balls to the

number of all balls, the error rate becomes higher toward the left side in this

figure.
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space, this decision boundary was smooth and closely followed
the contours of the jittered data distribution (Fig. 2a, “Separated”).
As seen in the figure, the decision boundary between the jittered
and actual data forms a curve that is not merely a straight line in
either the CI or the log10(TEPk) space. Rather, the decision bound-
ary shows a smooth co-variation between these variables,
emphasizing that this decision requires 2 variables. The number
of 2D bins in this plot was chosen to minimize the squared error
between the actual data and the binned histogram, following
(Terrell and Scott 1985). Because we observed 2D space, the
number of bins needed to be greater than (2n)1/3 (where n is the
number of connections). Because the maximum value of this
variable in our data was <20, we selected 25 as the number of
bins in each dimension.

In all network studies where actual data are compared with
shuffled datasets, it is necessary to select a threshold for signifi-
cance. Todo this,wehad to decidewhich bins in the log10(TE) ver-
sus CI plot to include. We did this by measuring what fraction of
connections in each bin would come from shuffled data. As we
sought to exclude shuffled data, we called this measure the
error, E, given by:

EðCI;TEpkÞ ¼
NjittðCI;TEpkÞ

NactualðCI;TEpkÞ þNjittðCI;TEpkÞ
: ð4Þ

where the number of data samples at each bin was denoted by
Nactual for actual data, and by Njitt for 100 jittered datasets. This
error rate gave the fraction of connections in any bin that came
from randomized data. An intuitive, and accurate, explanation
is shown in Figure 2c. We identified connections as significant if
they occurred in a bin that had an error rate below a chosen
threshold. Two criteria motivated the choice of threshold
(Fig. 2a, “Filtered”). First, we wanted an error rate that was suffi-
ciently low. As most statistical tests are set with an error rate of
0.05 or lower, we sought a threshold that would be consistent
with this. Second, we sought to report network features that
were robust with respect to changes in threshold. Thismotivated
us to choose a threshold that was in the middle of a range over
which the fraction of significant connections remained relatively
constant.We used E = 0.03 as the threshold error rate because the
connectivity density is robustly stable around this region (Sup-
plementary Fig. 1e,f ). To demonstrate robustness, we also exam-
ined how threshold values of E = 0.02 (33% decrease in threshold)
and E = 0.04 (33% increase in threshold) affected some network
features. Finally, we eliminated connections if TEPk was smaller
than TE0 (TE at t = 0) because if TE0was bigger than TEPk the result
indicated that the real peak of TE existed before t = 0. In this case,
a causal interaction would have existed from the postconnection
neuron to the preconnection neuron, which would be clearly
incorrect. This method allowed us to construct networks of
effective connectivity from the spike train data (Fig. 2b). We
used TE to identify peaks as described above; near these peaks
(−3∼−1,1∼3 ms), we looked at whether the cross-correlation
was positive or negative. It is known that the shapes of the
cross-correlation can sometimes indicate whether a connection
is excitatory or inhibitory (Bartho et al. 2004). This analysis
showed that 98 ± 1% of the connections showed positive peaks,
indicating excitatory connections. Thus, all of the networks pre-
sented here are estimated as almost entirely composed of excita-
tory neurons. Notice that our method is able to infer both
excitatory and inhibitory connections; however, due to the skew-
ness of the TE method in detecting excitatory connections, most
of the connections considered as significant will belong to

excitatory neurons. Further experiments would be required to
separate excitatory from inhibitory connections. Although TE
can detect inhibitory connections (Ito et al. 2011), this is only pos-
sible if excitatory neurons have very high firing rates, so that a re-
duction in spiking can be detected against a background of high
activity. With the firing rates we have here, well below 10 Hz, it is
difficult to detect any significant drop in spiking that may be
caused by an inhibitory connection. Note that this problem
does not exist for TE in detecting excitatory connections, as the
addition of a spike is more easily detected against a background
of relative silence. Using TE, the number of connections that we
identified as coming from inhibitory neurons was very small,
and had no appreciable effects on network topology (clusters,
communities, hubs).

Clustering

Once significant connections were established, we used several
measures to characterize the resulting networks. At the scale of
several neurons, we evaluated network clustering properties
based on the methods of Perin et al. (2011). Because patch-
clamp experiments observe interactions betweenneurons direct-
ly, we expected this comparison would help in making relative
comparisons to TE measures. Original figures were provided by
Perin et al. (2011). The first comparison involved the histogram
of the number of connections for all clusters included in the en-
tire network. The second comparison involved the common
neighbor effect (Perin et al. 2011). Common neighbors are nodes
simultaneously connecting to 2 already connected neurons. We
observed how connectivity probability changed depending on
the number of common neighbors.

Network Community

In graph theory terms (Newman 2009), each neuron was consid-
ered a node and a connection from one neuron to another was
considered a directed edge; themeasures we used were for direc-
ted graphs. The in-degree of a node was given by the number of
connections to the node; the out-degreewas given by the number
of connections from the node. Hubs were defined as nodes show-
ing high total degree (explained in detail below). The path length
was the number of nodes traversed in the shortest path between
2 nodes. The local clustering coefficient was given for nodes in
the network, and the average path length was taken over all pos-
sible pairs of nodes in the network.

To detect community structures at the scale of tens of neu-
rons, we used modularity (Girvan and Newman 2002; Newman
2004, 2006). The best grouping of community structures was
achieved by maximizing the value of modularity, Q, which was
given by:

Q ¼ 1
4m

X
ij

Aij �
kikj
2m

� �
δðci; cjÞ: ð5Þ

Here, Aij gave the connection matrix between nodes i and j.
This matrix was symmetrized as Aij ¼ ðBij þ BT

ijÞ=2 if we express
the originalmatrix as Bij. In what follows, all variables in commu-
nity detection analysis were determined from the symmetrized
matrix. Here, ki and kj were the degree of nodes i and j, and
m ¼ 1=2

P
i ki was the total number of edges in the network. If

nodes i and j belonged to the same community, c, then the
delta function δ(ci,cj) was 1; otherwise, it was 0. Note that different
groupings would affect the value ofQ through this delta function.
The term kikj=2m gave the expected weight of a connection

Functional Clusters, Hubs, and Communities Shimono and Beggs | 3747

http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu252/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu252/-/DC1


between node i and node j if the network were randomized.
Therefore, the term (Aij−kikj/2m) indicated how much more
strongly the actual graph was connected than a random graph.
This modularity Q has been successfully applied in whole-brain
datasets to understand brain connectomic architecture (Sporns
2013; Shimono 2013), and also applied in spike trains (Humphries
2011). Although there aremanymethods for detecting communi-
ties, this one has been widely used (Fortunato 2010). Note that, in
this formulation, eachnode could only belong to one community.
The computational algorithm was based on (Blondel et al. 2008).

Similarity Index of Community Architecture

To quantitatively compare modular structures in unshuffled and
shuffled versions of a network, we developed a Similarity index.
This index expressed the fraction of nodes placed in the same
communities in the original network and in its shuffled counter-
part. We defined the similarity index as:

Similarity index ¼ 1
NðN� 1Þ

X
i;j

δðδNC1ði; jÞ; δNC2ði; jÞÞ: ð6Þ

Equation (6) consists of 2 parts: First, we evaluated whether 2
nodes belonged to the same community using δNC1ði; jÞ and
δNC2ði; jÞ, where δði; jÞ was the Kronecker delta function. Accord-
ingly, δNCnði; jÞðn ¼ 1; 2Þ was 1 when node i belonged to the same
community as node j, and was 0 otherwise. We evaluated this
for each network architecture. Next, we compared 2 network
architectures using another δ function. This δ function was 1 if
δNC1ði; jÞ ¼ δNC2ði; jÞ, and this δ function was 0 if δNC1ði; jÞ ≠
δNC2ði; jÞ. Briefly, this second delta function checked if the co-
participation of node i and jwere same or not between unshuffled
and shuffled networks. N was the total number of nodes in the
network. Thus, the Similarity index normalized the number of
co-participating nodes by the total number of pairs of nodes.
An example of how this worked is given below (Fig. 3). Network
1 has 2 communities, as does Network 2. The dark gray commu-
nity has 4 shared nodes between the networks, and the white
community has 3 shared nodes between the networks. The

total number of pairs where δNC1ði; jÞ ¼ δNC2ði; jÞ is given by the
number of white boxes in Figure 3b. Thus, the similarity index
in this case is [(4 × 4 − 4) + 2 × 3 × 4 + (3 × 3 − 3))/(8 × (8 − 1)] = 42/
56 = 3/4. We also analyzed the data using the participation dis-
tance instead of similarity index, and obtained similar results
(Meila 2007).

Results
The results are composed of 4 sections. First, we describe general
features of cultured cortical slice network activity. Second, we re-
port nonrandom features in connectivity among clusters of up to
6 neurons. Third, we report on community structure and hubs at
the scale of tens or more neurons. Fourth, we show how struc-
tures at these 2 scales (cluster and community) are related.

General Description of Network Activity

Data were taken from 25 organotypic cultures of cortex recorded
for 1.16 ± 0.17 h (mean ± SD). The average number of sorted neu-
rons per culturewas 310 ± 127 (mean ± SD), and the average firing
rate per neuronwas 0.79 ± 0.65 Hz.Network activity typically con-
sisted of a relatively constant background firing rate, punctuated
by bursts in which many neurons participated, as previously
reported (Tang et al. 2008).

A raster plot of activity illustrating this is shown in Figure 1b.
Firing rates remained approximately constant over the duration
of the recordings.

Clusters at the Small Scale of up to 6 Neurons

In the next few sections, we use some of the statistical methods
developed by Perin et al. (2011) in their patch-clamp studies of
connectivity at the scale of up to 6 neurons. These methods
allow us to observe structures not only between 2 or 3 neurons
(correlations or motifs) but also among clusters of 3 to 6 neurons
in a unified framework. In addition, by using these methods, we
can compare our connectivity results with those obtained from
previous patch-clamp experiments.

Figure 3.Definition of Similarity index. Themain purpose of the Similarity index is to quantify the extent towhich 2 community architectures are similar. (a) An example

comparing 2 network architectures, 1 and 2. In this case, δNC1(i,j) = 0 because nodes i and j participate in 2 different communities in network architecture 1, and δNC2(i,j) = 1

becausenodes i and j participate in 2 different communities in network architecture 2. Therefore, δ(δNC1(i,j),δNC2(i,j)) is 0. However, betweennodes j and k, δ(δNC1(i,j),δNC2(i,j))

is 1 because nodes j and k participate in the same community in both network architectures. By summing all pairs of nodes i and j, we can obtain the final value of the

Similarity index. (b) A scheme of how to calculate the Similarity index. The x-axis represents network architecture 1, and the y-axis represents network architecture

2. Colors (dark gray or white) correspond to communities shown in (a). Regions where δNC1(i,j) = δNC2(i,j) are shown as white boxes, and regions where δNC1(i,j)≠δNC2(i,j)

are shown as black boxes. The diagonal components would be self-connections, and are not considered in calculating the Similarity index. Graphically, the Similarity

index is defined as (total number of white boxes except diagonal components)/(total number of boxes except diagonal components).
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Figure 4a shows the number of connections actually observed
(sold lines) plotted with the number of connections expected by
chance (dotted lines) in clusters of 3 neurons. The expected value
was calculated from the number of separated pairs, monodirec-
tional connections, and bidirectional connections included in
the network organization (Perin et al. 2011).

Clusters of 3 neurons were found to have 4 connections
among them significantly more often than expected by chance.
For larger clusters of neurons, the differences between actual
and expected numbers of connections were even greater at high-
er numbers of connections (Fig. 4b,c,d) (*P < 0.01, **P < 0.001; z test).
For comparison, we have shown the results from the patch-
clamp study by Perin et al. (2011) in Figure 4d,e,f. Despite the
fact that these 2 datasets were collected in markedly different
preparations (organotypic cultures or acute slices), therewas sub-
stantial qualitative similarity. In both datasets, dense connectiv-
ity in clusters of neurons occurred more often than expected by
chance, and this tendency increasedwith the number of neurons
in the cluster.

We next examined how the probability of an effective connec-
tion between pairs of neurons was influenced by the presence of
common neighbors. Perin et al. found 2 main things: First, at all
distances, the probability of a unidirectional connection between
2 neurons was greater than the probability of a bidirectional con-
nection. Second, the probability of connectivity increased ap-
proximately linearly with the number of common neighbors.
The histogram in Figure 5a shows the effective connection prob-
ability for pairs of neurons that shared (open bars) and did not
share (filled bars) a common neighbor. Results are binned in 50-
μm intervals as a function of distance between the 2 connected
neurons. Neurons with a common neighbor had significantly
higher connection probabilities than neurons without a neighbor
at all distances (Fig. 5a, *P < 0.01, t-test). Furthermore, when there
was more than one common neighbor, the connection probabil-
ity was also significantly increased (*P < 0.01, t-test). The plot in
Figure 5b shows both the observed (open circles) and expected
(filled circles) connection probability between pairs of neurons
for different numbers of common neighbors. The probability of
an effective connection also increased approximately linearly
with the number of common neighbors, and this effect was stat-
istically significant for all numbers of common neighbors exam-
ined (R = 0.94, P < 0.01). For comparison, the results from the

patch-clamp studies of Perin et al. are also plotted in Figure 5c,
d. Here, therewas a significant common neighbor effect at all dis-
tances tested, and there was qualitative similarity with the ef-
fective connectivity results (R = 0.94, P < 0.01). In addition, for
both this patch-clamp method and our effective connectivity
method, connection probability increased almost linearly with
the number of common neighbors. In addition, we have exam-
ined whether or not the results reported here are robust with re-
spect to errors in spike sorting, and found that randomly injected
or deleted spikes did not influence common neighbor effects
(Supplementary Fig. 4). In addition, these results did not depend
sharply on the error threshold, as common neighbor effects and
connectivity statistics among clusters of 3–6 neurons remained
qualitatively similar for different thresholds (Supplementary
Fig. 5). To what extent do our results implicate hubs beyond the
fact that they have a large number of connections? Indeed, we
found that shuffling the same number of connections among
nonhub neurons also disrupted structure at both scales exam-
ined. However, this process involved a much larger number of
neurons. Because of their concentrated connections, the loss of
only a few hub neurons would substantially disrupt structure at
both scales. Our findings indicate that this is only a result of
their large number of connections.

Larger Scale Network Structures: Communities and Hubs

Wenext shifted our focus to results at the scale of tens of neurons
simultaneously recorded. Here we were no longer able to com-
pare our effective connectivity findings with those obtained
from patch-clamp experiments, as the maximum number of
neurons reported to have been simultaneously sampled with
patch-clamp techniques was about 12 (Perin et al. 2011). The
large samples of 100 or more neurons that we recorded with
extracellular electrodes allowed us to apply a community detec-
tion algorithm (Blondel et al. 2008). With this algorithm, nodes
were provisionally integrated into different numbers of commu-
nities. The integration that maximized the modularity score was
used to determine the number of communities. Recall that
modularity measured the extent towhich neurons within a com-
munity were more connected than expected by chance.

Figure 6a shows how the neurons in 3 representative net-
works (of 25) were spatially located, with the outline of the 512

Figure 4. High numbers of connections occur more than chance in clusters of up to 6 neurons. Each plot shows how often a given number of connections occurred for

clusters of up to 6 neurons. Curves of dotted lines show connections expected by chance. In chance shuffling, the numbers of directed inputs, directed outputs, and

bidirectional connections was preserved. Curves of sold lines show connections observed in data. In general, solid lines tended to depart from dotted lines at high

numbers of connections, suggesting nonrandomness of connections. Top row (a–d) shows results for networks constructed from effective connectivity (TE); bottom

row (e–h) shows results for networks constructed from patch-clamp experiments (synaptic connections; Perin et al. 2011). Small networks inset in (a–d) show

schematic example clusters. Number of neurons in each cluster goes from 3 (left) to 6 (right). Note qualitative similarity between effective connections measured by

TE and synaptic connections assessed by patch-clamp. Larger groups of neurons tended to have more connections than chance (*P < 0.01, **P < 0.001; z-test).
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electrode array indicated by the black rectangles. Different mar-
kers of nodes indicate different communitymemberships. Effect-
ive connections are shown as colored arrows. Visual inspection
immediately suggested that network architecture could range
from 2 separated communities (the rightmost example in
Fig. 6a or Fig. 7f ) to large integrated communities (the leftmost ex-
ample in Fig. 6a or the left panel of Fig. 7e). Similar figures, includ-
ing more information, are shown again in Figure 7e,f. Figure 6b
shows how each of the networks in Figure 6a were partitioned
into communities. The y-axis indicates the percentage of neu-
rons that were included in each community, and the x-axis indi-
cates the community number, arranged in descending order of
size. For the leftmost network, nearly 80% of the neurons were
contained in one community; the remaining communities each
included nomore than 7% of the neurons. This was a highly inte-
grated network. For the rightmost network, the largest communi-
ties each contained roughly 40% of the neurons and the second
largest community contained 20% of the neurons. The most typ-
ical result was the network in the middle panel, which showed
one large community and one medium or small community.

Continuing with large-scale network structure, Figure 6d
shows the average degree distribution of all 25 datasets. It was
clearly not Gaussian and had a long tail, consistent with findings
inmacroscopic brain networks. This resultmade it reasonable for
us to identify hubs as a very small subpopulation of nodes with
degrees much higher than average. Figure 6e shows the relation-
ship of physical distance betweenneurons and their average path
lengths for all data. Recall that the path length between2 neurons

is the least number of connections that must be traversed in
going from one neuron to the other. There was a clear trend for
physical distance to monotonically increase with path length.
These results indicated that the long-tailed degree distribution
was actually embedded in the spatial extent of themultielectrode
array. This is in contrast to many degree distributions that have
little or no spatial embedding (e.g., Shiffrin and Börner 2004;
Ugander et al. 2011). In addition, how the distance changed de-
pending on relative delay is shown in Supplementary Figure 7.
These large-scale network features could only be observed from
data collected simultaneously from hundreds of closely spaced
recording sites, processed at high temporal resolution. There
was a weak correlation between degree and firing rate (CC ∼0.2,
P > 0.1).

Influence of Hub Nodes on Structure at 2 Different Scales

After nonrandom structure at 2 different scales had been identi-
fied, we next sought to explore factors that could affect structure
at these scales. A natural candidate for this role was hub neu-
rons because of their many connections to small groups of neu-
rons as well as to larger communities of neurons. Our approach
was to swap connections of the highest degree (hub) neurons
with connections of the lowest degree neurons. We would
then examine whether or not this swapping significantly chan-
ged structure observed at the 6 neuron scale as well as structure
observed at the scale of tens or more neurons. We started out
swapping with a small percentage of hub neurons, 1%, and

Figure 5. Common neighbors increase probability of further connections. (a) Probability of an effective connection (fromTE) as a function of distance for pairs that share a

commonneighbor (filled bars) and those that do not (open bars). Error bars are SEMs of 10 data samples (*P < 0.01, t-test). (b) Probability of an effective connection (fromTE)

between 2 neurons as a function of different numbers of common neighbors. Solid line is the best fit line from data. Dotted line is best fit line for chance expected values.

The expected values were given howmany common neighbors will be observed just when given the connectivity probability of the real data. Error bars are SEMs of 9 data

samples. For comparison, (c) and (d) show same analyses applied to synaptic connectivity assessed by patch-clamp (Perin et al. 2011).
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increased up to 10%. In each of these swaps, we also counted the
total number of connections thatwere exchanged. The results of
this swapping are presented in Figure 7. Panels (a) and (b) show
the effects of swapping on connections in clusters of up to 6 neu-
rons, whereas panels (c) and (d) show the effects of swapping on
the existence of communities at the scale of tens or more neu-
rons. The overall result is that swapping eventually destroys
the nonrandom structure observed at each scale. However, the
amount of swapping needed to destroy structure differs de-
pending on scale.

Wewill first describe the results of swapping on cluster struc-
ture. The dashed lines in Figure 7a show the number of connec-
tions expected by chance in clusters of 6 neurons, and the colored

lines show the number of connections observed for swapping in
different percentages of high-degree nodes. Note that as the per-
centage of high-degree nodes that experienced swapping was in-
creased, the blue lines shifted downward, eventually becoming
indistinguishable from the dashed line. This showed how swap-
ping gradually made the observed structures fade away to only
chance levels. The statistical tests in the lower panels of Figure 7a
showed the contour map of P-values when changing the shuf-
fling percentages. Recall that high P-values indicate structures
not different from chance. In order to observe the trend easily,
we plotted the representative change of P-values under red dot-
ted lines in the lower panels of Figure 7a as Figure 7b. We selected
these points because the P-values were minimal there before

Figure 6. Large-scale structure of networks. (a) Spatial locations of neurons recorded from the rectangular electrode array, with effective connections shown. The 3

networks represent the breadth of community structures found. These 3 networks are shown at figure 7(e) and (f ) with colored and zoomed. (b) Percentage of neurons

included in communities plotted against number of communities, for the 3 networks. (c) Average percentage of neurons included in communities plotted against

number of communities. Note that, on average, only 2 communities were needed to encompass over 95% of neurons (*P < 0.01, **P < 0.001). (d) Distribution of neuron

degrees, plotted in log–log space. The dotted line is for out-degree, the solid line is for in-degree. Note fat tail of distribution, different from chance expectation. (e)

Distance between neurons plotted against path length. Path length tended to increase with distance linearly. The error bars are standard deviation among slices.
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shufflingwas done.We sought to determine if this degradation of
structure in clusters was produced by hubs specifically, or by the
number of connections that hubs had. Figure 7b shows how in-
creased amounts of exchanging connections from high-degree
nodes gradually caused P-values to climb to chance levels.
From these results, we found that structure in clusters of up to
6 neurons was dependent on only 1% of the highest degree neu-
rons. However, the percentage of connections that were involved
in this manipulation was surprisingly small, because <10% of all
connections were associated with the top 1% of hub neurons.

Turning now to larger scale structure, Figure 7c summarizes
the effects of exchanging connections from high-degree nodes
on communities. To assess how much community structure
changed after exchanging connections, we used the network
similarity metric described in the methods section. This told us
how similar the resulting community structure was to that ori-
ginally found in the data. Note the downward slope in Figure 7c,
indicating that larger percentages of exchanges caused similarity
to decline Figure 7d is another view of this result, here given as a
plot of P-values for increasing amounts of shuffle. The curve

Figure 7.Hubs and their connections can affect connectivity statistics at small and large scales. (a) Upper 4 panels show frequency distributions of connections for clusters

of 3–6 neurons (as in Fig. 4) after exchanging connections from 1 to 6% of high-degree nodeswith connections from 1 to 6% of low-degree nodes. Line color indicates extent

of shuffling. Colored lines are above dashed lines, indicating that number of connections in small neuron groups exceeded chance levels. Note that increased amounts of

shuffling (lighter colors) caused the curves to fall toward chance levels. The shaded panels below these graphs show the probability of observing each number of

connections for a given neuron group size. Percentage shuffled is on the y-axis, number of connections is on the x-axis, and probability is given by shading, with

darker representing less probable. Note that least probable connections tend to occur with lowest amounts of shuffling, and that larger numbers of connections are

less probable. The red dashed line indicates the number of connections that was found to be least probable for a given neuron group size. (b) A comparison of P-values

obtained from shuffling connections of hub neurons. These P-values were given at sections shown by red dotted lines in lower panels in (a). Curves in all cases move

upward for larger amounts of shuffling, indicating loss of structure. Note that significant loss of small-scale structure is occurs after shuffling only 1% of hub neurons.

(c) Dissolution of community structure by shuffling of hubs. y-Axis is similarity of shuffled community structure to that found in data; x-axis is percentage of hubs used for

shuffling. (d) P-values for community structure as a function of shuffling. Again, note that both curvesmove upward for increased amounts of shuffling, indicating loss of

structure at large scale. Note that the percentage at which the large-scale structure was significantly lost (6%) was clearly larger than the percentage at which the small-

scale structurewas significantly lost (1%). (e) and (f ) Spatial locations of hub neurons on the rectangular electrode array are shown as yellowmarkers, indicating that they

could be found both in the center of the array as well as on the edges. (f ) The 3 network features (hub, cluster and community) of various scales that we have examined.

Translucent red and blue regions cover 2 large communities, which can also be identified by different node symbols (small orange circles or squares). The translucent

yellow region covers a representative cluster of 6 neurons.
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climbs to nonsignificant levels after connections from6%of high-
degree nodes are exchanged. These results showed that large-
scale community structure was dependent on the connections
from 6% of the highest degree neurons. It is important to note
that the percentage of hub neurons required for disruption here
was clearly larger than the 1% needed to disrupt structures in
clusters at the 6 neuron scale. In addition, we found a similar re-
sult even when we exchanged the same number of connections
at randomly selected locations (not at hubs) throughout the net-
work (Supplementary Fig. 3). This suggested that the difference
in fragility between clusters and communities could not be at-
tributed to the idea that connections aroundhub neurons domin-
ate small clusters. To further examineneurons from theupper 6%
of the degree distribution, we plotted their locations on the elec-
trode array as yellow circles in Figure 7e. The 3 example networks
are representative, and indicate that there was no obvious trend
in their locations. Such hub neurons could occur both in the cen-
tral regions of the array as well as on its edges.

Taken together, these results suggested that the percentages
of hub neurons contributing to connectivity statistics observed at
the 3–6 neuron scale and at the scale of tens of neuronswere rela-
tively small, but clearly different. Because nonrandomness at the
scale of tens or more neurons was sustained even after nonran-
domness at the 3–6 neuron scale was disrupted, it appears that
the structure found at the 36 neuron scale was not necessary
for the structure found at the tens of neurons scale. In addition,
we also observed this trend in clusters of 7, 8, 10, 12, 18 neurons
(Supplementary Fig. 6). Although the percentage of hubs
necessary to disrupt clusters gradually increased, the percentage
necessary was <4% even in clusters of 18 neurons.

Discussion
Summary of Main Findings

Themain findings of this work are fourfold. First, the nonrandom
connectivity structure we observed in clusters of up to 6 neurons
showed qualitative correspondencewith a previous patch-clamp
study, lending validity to our methods. Second, from a technical
standpoint, this work emphasizes the importance of simultan-
eous recordings from hundreds of neurons. Third, simultaneous
recording enabled us to identify nonrandom features of hubs and
communities (Fig. 7f ). Fourth, by using 3 “actors” (hubs, clusters,
and communities), we demonstrated that structure at the scale of
clusters was relatively less robust than structure at the scale of
communities.

Influences Between Scales

Previouswork by Perin et al. (2011) simulatedwhatwould happen
if the patterns of synaptic connectivity observed among clusters
of up to 6 neurons were embedded randomly in much larger
neuronal populations. Their extrapolation showed that nonran-
domness at the 6 neuron scale naturally generated larger scale
groups containing tens of neurons (communities). From this re-
sult, Perin et al. suggested that the existence of small-scale non-
random structure was a sufficient condition to generate larger
scale nonrandom structure. Our findings do not contradict their
simulation results. We observed that structure at the 6 neuron
scale could be disrupted by swapping connections from 1% of
the most well-connected neurons; structure at the scale of tens
of neurons could be disrupted by swapping connections from
6% of the most well-connected neurons. Thus, although small-
scale structure was not a necessary condition for the existence

of large-scale structure, substantial disruption produced at the
small-scale (by swapping connections from 6% of the most
well-connected neurons) would indeed be sufficient to produce
disruption at the large scale. Perin et al. also reported a distribu-
tion of community sizes, with a median near ∼50 neurons (Perin
et al. 2011). Howdoes this relate to ourfindings?We also observed
communities of tens of neurons, but caution should be exercised
before using our results to estimate community sizes. Any esti-
mation of community size from our work is inherently limited
by the size and geometry of our electrode array. For example,
although a community of 200 neurons could be present in a
given network, we would only be able to observe it if the array
happened to be placed over all the neurons in this community.

Definition and Functional Role of “Hub” Neurons

This study used highly connected hub neurons to quantify differ-
ences in fragility between structure at 2 scales. Here, hubs were
defined simply based on their relatively high number of connec-
tions, as quantified by being in the upper 1%–10% of the degree
distribution. In the wider scope of graph theory, we can also re-
gard node degree as one measure that characterizes centrality,
or the extent to which a node is located near a central position
in its relationships to other nodes. In this generalization, it is
also possible to use other centrality measures instead of degree
to characterize the central position of hubs in network
organization (Sporns et al. 2007; Newman 2009). Furthermore,
we can potentially detect “connector hubs” between different
communities, which may play important roles for mediating
communications between nodes participating in different com-
munities. Our definition of “hub” was based on clear commonal-
ities that hubs are among the most well connected in a given
network. The high-degree nodes naturally represent the highly
centralized property of hubs characterizing the specific network
organization because the degree distribution of our data was
long-tailed. As a natural extension, these varieties and subcat-
egories of hubs will be an interesting topic in future studies. Ex-
perimentally, selective excitations or depressions of hub neurons
by external stimulation could also revealmore specific functional
roles for hub neurons in the functional microconnectome.

Validity

An issue of potential concern is that these studies were con-
ducted in organotypic cultures, rather than in acute slices or in
vivo. Although such cultures have been previously reported to
preserve the gross patterns of anatomical connectivity found in
vivo (Gotz and Boltz 1992; Leiman and Seil 1986), as well as
many of the emergent firing patterns (Plenz and Kitai 1996,
1998; Beggs and Plenz 2003; Johnson and Buonomano 2007), cau-
tion should be used before extrapolating our findings to the intact
brain. Despite this caveat, it is interesting to note that the net-
work structures we identified with effective connectivity in
slice cultures at the scale of 3–6 neurons had qualitative similar-
ity to the structures identifiedwith synaptic connectivity in acute
cortical slices by Perin et al. (2011). Another potential concern is
the process bywhichwe selected the parameters for determining
significant connections. As described in the Materials and Meth-
ods and in Supplementary Figure 1, wehave tried to defineneces-
sary parameters from natural features of the neuronal activity
itself (e.g., where peaks occur, where there is a stable region).
We have also sought parameters that would produce results
that are robust with respect to changes. Although we chose to
maintain a high signal-to-noise ratio, we would like to point
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out that lowering this requirement, and therefore admitting
more connections, would still preserve many of the topological
features observed here. Howmuchwe can detect weaker connec-
tions in the “sea” of noise will be an important future topic that
goes beyond the trade-off between the false-positive and true-
negative detections.

Relation to Other Work

Many complex networks exhibit modular organization. Of par-
ticular interest is how structures within a network relate. For ex-
ample, the modules (communities) of structural networks in
monkey cortex have been related to the nonuniform distribution
of neurons (Shimono 2013). Studies of activity in networks con-
taining tens to hundreds of neurons have shown the presence
of hubs in hippocampus (Bonifazi et al. 2009), and suggested
small-world (Yu et al. 2008) or scale-free (Eytan and Marom
2006) topologies of functional connections in cortex. The present
work builds on these previous studies by identifying distinct
functional network structures at different scales and takes a
first step toward understanding how structures at these different
scales relate through hubs.

The present work also offers a new way to view connectivity
in cortical circuits that is not highly labor intensive. Previous
work has explored the pattern of synaptic connections at the
level of a few neurons (Bock et al. 2011; Briggman et al. 2011).
These studies have laid an excellent foundation for our wider un-
derstanding of connectivity patterns in the brain. Because these
structural connectivity studies require intensive labor, they are
typically performed on a select set of neurons, and currently
cannot provide information about how hundreds of neurons
are connected. In this study, we have sought to explore how po-
pulations of a hundred or more neurons share activity. The
knowledge about directed functional connectivity will be also
valuable in revealing ways in which neurons typically share in-
formation on their underlying network of structural connections.

On a different topic, we would also like to point out that the
intensities of TE approximately follow a lognormal distribution
(Supplementary Fig. 2a). Interestingly, this is consistent with pre-
vious studies of synaptic strengths found by patch-clamp studies
in acute slices (Song et al. 2005; Koulakov et al. 2009), as reviewed
in (Buzsaki and Mizuseki 2014). This point of contact will provide
new opportunities for future studies. The present work looks
at only one aspect of what might be called the cortical
microconnectome.

Possible Mechanisms

By what process could hubs come to be situated between struc-
tures at 2 scales? Spike-timing-dependent plasticity (STDP) is a
natural candidate mechanism. At small scales, simulations
have shown that STDP can promote a “rich get richer” dynamics
(Zheng et al. 2013). This could lead to the increased clustering of
connections seen in groups of 3–6 neurons (see also Yassin et al.
2010). At larger scales, simulations have shown that STDP and
Hebb-like (Hebb 1949) plasticity rules can produce competition
between neuronal groups (Song and Abbott 2001; Izhikevich
et al. 2004; Rubinov et al. 2011). For example, when 2 neurons pro-
ject with equal strength to the same postsynaptic neuron, small
differences in coincident firing will, through positive feedback,
cause one connection to become stronger at the expense of the
other (Song et al. 2000). This symmetry breaking is thought to
be at work in competition within cortical somatosensory maps
after nerve sectioning (Merzenich et al. 1983). In this manner,

STDP could lead to the formation of different communities of
neurons, as observed in our data. It is also possible that genetic
factors could play a role in specifying hub neurons, but this is be-
yond the scope of the present paper. Future experiments could
investigate the role of these hub neurons in percolation (Eck-
mann et al. 2008) or in activity initiation (Eckmann et al. 2010).

Concluding Remarks
The present work has demonstrated that networks of spiking
neurons display specific nonrandom structures at different
scales. It has also explored how nonrandomness at different
scales (hubs, clusters, and communities) is related. The investi-
gation of how these structures change after randomization sug-
gests that robustness may differ across scales. How features in
the millimeter scale can be compared and combined with fea-
tures in macroscopic anatomies (Shimono 2013, 2014; Scholtens
et al. 2014) and dynamics to understand cognitive behaviors,
which neuronal substrates were observed in one particular
scale before (e.g., Shimono et al. 2007, 2011, 2012; Shimono and
Niki 2013; Nakhnikian et al. 2014), more completely will be also
essentially important topic for future neuroscience.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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