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Abstract

Objective: To determine whether a small, wearable multisensor device can dis-

criminate between progressive versus relapsing multiple sclerosis (MS) and cap-

ture limb progression over a short interval, using finger and foot tap data.

Methods: Patients with MS were followed prospectively during routine clinic

visits approximately every 6 months. At each visit, participants performed fin-

ger and foot taps wearing the MYO-band, which includes accelerometer, gyro-

scope, and surface electromyogram sensors. Metrics of within-patient limb

progression were created by combining the change in signal waveform features

over time. The resulting upper (UE) and lower (LE) extremity metrics’ discrim-

ination of progressive versus relapsing MS were evaluated with calculation of

AUROC. Comparisons with Expanded Disability Status Scale (EDSS) scores

were made with Pearson correlation. Results: Participants included 53 relapsing

and 15 progressive MS (72% female, baseline mean age 48 years, median dis-

ease duration 11 years, median EDSS 2.5, median 10 months follow-up). The

final summary metrics differentiated relapsing from secondary progressive MS

with AUROC UE 0.93 and LE 0.96. The metrics were associated with baseline

EDSS (UE P = 0.0003, LE P = 0.0007). While most had no change in EDSS

during the short follow-up, several had evidence of progression by the multi-

sensor metrics. Interpretation: Within a short follow-up interval, this novel

multisensor algorithm distinguished progressive from relapsing MS and cap-

tured changes in limb function. Inexpensive, noninvasive and easy to use, this

novel outcome is readily adaptable to clinical practice and trials as a MS vital

sign. This approach also holds promise to monitor limb dysfunction in other

neurological diseases.

Introduction

Accurate assessment of multiple sclerosis (MS) subtype

and detection of disease progression remain clinical chal-

lenges. It is often only in several years retrospect that pro-

viders determine a patient has transitioned from relapsing

to secondary progressive MS.1 The distinction of MS sub-

type is important for clinical management and enrollment

in trials.2,3 There is also need for improved outcome mea-

sures that capture short-term progression to allow rapid

testing of therapeutic agents in progressive MS trials.4

Leveraging biosensors from the gaming industry repre-

sents a novel approach to enhance the neurological exam.

Sensor technology may offer the sensitivity and precision

missing from current approaches to recording levels of

neurological function. The most commonly studied sen-

sor in MS involves use of accelerometers to measure step

count as a marker of physical activity,5 which correlates

with Expanded Disability Status Scale (EDSS) in those

with mild disability.5–7 However, step count accuracy may

be poor with altered gait,8,9 and upper extremity function

is not captured. Gyroscope sensors have been used to
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assess balance,5 whereas surface electromyogram (sEMG)

sensors have not been as well-studied in MS.

The wearable multisensor MYO-bandTM combines three

sensors (accelerometer, gyroscope, sEMG). In a prior

cross-sectional study, we demonstrated algorithms using

this device had excellent reliability (intra-class correlation

coefficients 0.80-0.87) and captured limb dysfunction

with strong correlations with disability (Spearman corre-

lation coefficient with EDSS 0.77 for UE and 0.82 for

LE).10 However, even more important than cross-sectional

associations with gold standard outcomes is demonstrat-

ing a new outcome’s ability to detect change over time.

We aimed to develop a novel, agnostic (gold-standard

independent) longitudinal algorithm to detect MS pro-

gression using the MYO-band sensor data. By not requir-

ing a ground truth, this approach avoids the limitations

of the EDSS. We specifically sought to objectively differ-

entiate progressive from relapsing MS by capturing subtle

progression over 1 year.

Methods

Study design

This is a longitudinal cohort study with prospective col-

lection of demographic, clinical, and biosensor data dur-

ing routine clinic visits approximately every 6 months to

evaluate changes in limb function over time. The study

period was from May 2016 to February 2018.

Study population

Adults 18 years and older with MS were recruited from

the University of California San Francisco (UCSF) MS

clinic with MS diagnosis based on 2010 McDonald crite-

ria11 confirmed by the study neurologist. All MS pheno-

types were included, but individuals were excluded if

limb motor strength was less than antigravity and the

patient was unable to perform finger or foot taps. The

Institutional Review Board at UCSF approved this study

(15-18500). All participants provided written informed

consent.

Procedures and measurements

Participants completed baseline questionnaires on study

tablets to provide demographic and clinical information.

An interval history form was completed at subsequent vis-

its. Data were validated with medical records. Clinical

diagnosis of MS subtype of relapsing remitting MS

(RRMS), secondary progressive MS (SPMS) or primary

progressive MS (PPMS)12 was confirmed by the patient’s

neurologist and was used as the gold standard for MS

subtype. For some analyses, SPMS and PPMS were com-

bined into a progressive MS category, given clinical and

pathological similarities.13,14

As a patient-centered outcome, participants completed

the patient-reported telephone EDSS adapted for digital

questionnaire use, which provides a score from 0 to 10

with higher scores indicating worse disability.15 A Neu-

rostatus-trained MS neurologist completed the physician-

derived EDSS,16 including functional system scores (FSS)

and timed 25-foot walk (T25FW).

Participants wore the MYO-band during neurologic

examination of finger and foot taps. For upper limb

assessment, the small and expandable band was placed at

the widest part of the upper forearm. They completed 20

index finger-thumb taps based on demonstration of 4 Hz

and 4-inch amplitude taps. During seated foot tap testing,

the device was placed at the widest part of the upper calf

and they were instructed to tap the ball of the foot 20

times while leaving the heel of the foot on the ground

based on demonstration of 4 Hz and 4-6-inch amplitude

taps. The bands were placed in the same orientation on

every participant. The tapping task was consistently

demonstrated by the same examiner. The tapping test was

chosen to allow mathematical modeling of repeated

movement and has the advantage of using the same soft-

ware and analytical approach for upper and lower limbs.

Tapping tests have been shown to detect progression in

MS.17,18 The simplicity of tapping also allows the eventual

generalizability of use by medical assistants and nonclini-

cal personnel, as well as future application in other dis-

eases.

Data acquisition

During assessments, the MYO was connected to an

encrypted laptop via Bluetooth connection with immedi-

ate and postprocessing of signals. The data acquisition

C++ code (Thalmic labs) was modified to export sensor

data to text files in ASCII format, as described previ-

ously.10

Signal processing

Raw signals from the eight sEMG, three accelerometer, and

three gyroscope channels were processed to reduce noise.10

Each waveform was segmented to extract individual finger

or foot tap events using a data-labeling algorithm in Mat-

lab. Then, to mathematically characterize the sensor signals,

seven waveform-based textural features were extracted for

each tap for each of the three sensors to quantify limb per-

formance. These included “mean value for each tap,”

“overall energy,” “overall entropy,” “haralick energy,” “har-

alick correlation,” “haralick contrast,” and “haralick
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homogeneity” (see Supplemental Methods).19,20 In individ-

ual limbs of each participant, these seven textural features

were each expressed in heatmaps for the three sensors sepa-

rately, depicting the value of individual textural features

during each tap for each limb. As an example, the Haralick

energy textural feature for the right finger tap EMG data in

a woman with PPMS and limb function worsening is

shown in Figure 1. The change in the energy feature from

blue to yellow represents more irregularity in the signal as

the woman experienced more progression in that limb.

Notably, the time it took to complete 20 taps also increased

with the progression.

Derivation of scalar metrics of progression

Within-patient metrics of longitudinal change in limb

function were created for each limb in each participant

(see Supplemental Methods). To begin, in each partici-

pant and for each of the seven extracted textural features,

the sum of absolute changes for each feature across the

20 tap events during each visit was calculated. Because

this was calculated for each visit, this led to a matrix of

absolute changes in textural features for each individual,

with a matrix size that was the number of visits by the

number of textural features plus the sum of the feature

values. This type of matrix was created for each of the

three sensors for each of the four limbs, leading to 12

matrices in each participant.

Next, to create a single scalar metric of longitudinal

change in limb function, the change in all sensor signal

waveform features across visits were combined. Signal

waveforms were combined with a trapezoidal approach21

in Matlab, which approximates integration over an inter-

val by breaking the area into more easily computable

areas. This takes into account the variable timing of real-

world follow-up visits. These were then normalized by

total follow-up time to take into account the variable

duration of follow-up. This resulted in a limb-specific

metric of change in limb performance over time within

each participant. These metrics were created indepen-

dently of the EDSS.

The limb-specific metrics of change for the right and

left arm were summed to create a metric of UE change in

function over time for each individual. Similarly, the

limb-specific metrics of change for the right and left leg

were summed to create a metric of LE change in func-

tion. The UE and LE metrics were combined to create an

overall metric of change in limb function for each

patient.

Statistical analysis

For descriptive analyses, mean and standard deviation,

median and interquartile range or frequencies were

reported as appropriate. Continuous variables were com-

pared between MS subtypes with Kruskal–Wallis tests,

and categorical variables were compared with chi-squared

or Fisher exact tests.

Discrimination of MS subtype: Standard
trapezoidal approach

UE and LE longitudinal metrics of within patient changes

in limb function were compared between individuals with

RRMS, PPMS, and SPMS using ANOVA. We also com-

pared these metrics between progressive (SPMS and

PPMS) and relapsing MS with t-tests, as well as logistic

regression with calculation of area under the receiver

operating characteristic (AUROC) curve. The metrics

were also compared between SPMS and RRMS with logis-

tic regression with calculation of AUROC. Multivariable

logistic regression models were used to adjust for age, sex,

and disease duration.

Discrimination of MS subtype: Machine learning
generalized linear model (GLM)-based fusion
approach

We next aimed to improve upon the MYO algorithm’s

AUROC performance in differentiating MS subtypes

using the metrics calculated with the standard trapezoidal

approach. This was done through use of generalized linear

model (GLM)22-based fusion in which there was model

Figure 1. Haralick energy heatmap for finger tap EMG data for a

patient with primary progressive MS. Figure legend: Heatmap for

Haralick energy textural feature for the right finger tap EMG data,

with three follow-up visits on the y-axis, with visits about 6 months

apart over a 1-year period. This demonstrates the Haralick energy

feature changes notably with change in heat map colors indicating

more irregularity in tap movements over time in this individual with

primary progressive MS, who developed inability to play piano with

the right hand. EMG electromyogram; MS multiple sclerosis.
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training using the gold standard of clinical MS subtype,

as well as model cross-validation.

Data from each sensor in each limb were combined

over time across visits with a trapezoidal approach nor-

malized by follow-up time, as described above. However,

before combining data from the different sensors, a GLM

model was used to fuse input from all sensors in the right

and left limbs, training the model with a label of MS sub-

type to improve performance. This was done individually

for the UE, LE, and overall. The EDSS was not used in

model training.

Given the small sample size, rather than splitting the

data into test and validation sets and to avoid overfitting,

we used the “leave-one-out” cross-validation approach.23

Given n = 68, 68 separate times the model was trained

on all except one participant, and a prediction was made

for that participant, leading to a validation score for each

individual for UE, LE, and overall from the model in

which their data did not contribute. These scores were

used to determine the AUROC for the UE, LE, and over-

all metrics. This approach was used to assess discrimina-

tion between progressive and RRMS, as well as between

SPMS and RRMS. AUROCs based on this approach were

compared to those derived with the standard trapezoidal

approach.

Association with disability

We compared the digital within patient UE and LE met-

rics of change to baseline and changes in physician and

patient-reported EDSS, pyramidal and cerebellar FSS, and

T25FW with Pearson correlation as distributions were

approximately normal. For exploratory purposes, we also

evaluated the performance of baseline EDSS or change in

EDSS alone in their ability to discriminate MS subtype.

We explored characteristics of patients with no change in

EDSS, but digital signature metrics more than 1 standard

deviation (SD) higher than the mean in either the UE or

LE for exploratory purposes.

All tests were two-sided with an alpha of 0.05. Analyses

were performed using STATA 15 (College Station, TX)

and Matlab. Model diagnostics showed no concerning

departure from model assumptions and model fit was

adequate.

Results

The cohort included 68 patients with mean baseline age

of 48 years (72% female). Other characteristics are

described in Table 1. As expected, those with progressive

MS were older than RRMS, and had higher baseline

EDSS. Those with SPMS had longer disease duration than

other MS subtypes. These differences were accounted for

in the multivariable models below. Median follow-up was

10 months (interquartile range (IQR) 6 to 15) with a

median of three visits each (IQR 2 to 4).

Derivation of scalar metrics of progression
and discrimination of MS subtype

As described in the Methods, calculating change over time

in textural features of sensor waveform data captured

changes in the function of each limb. The final unitless

scalar metric of limb progression ranged from 328 to

1799 in the LE (n = 64) and 590 to 2305 in the UE

(n = 66), with higher numbers indicative of more pro-

gression. The UE and LE longitudinal metrics differed by

MS subtype (LE: RR 823, PP 986, SP 1440, P < 0.001;

UE: RR 1065, PP 1221, SP 1658, P < 0.001) (Fig. 2). The

scalar metrics also differentiated RR from both types of

progressive MS (LE: RR 823, progressive 1126, P = 0.008;

UE: RR 1065, progressive 1396, P = 0.012). The higher

magnitude values in the progressive participants indicate

a greater change across textural features and sensors over

time.

Standard trapezoidal analytical models

Using a trapezoidal function in Matlab that accounted for

different follow-up times for different patients, an

AUROC analysis, and a standard logistic regression

model, we evaluated the performance of the UE, LE, and

overall longitudinal sensor metrics’ abilities to distinguish

between relapsing and progressive MS (SPMS and PPMS).

The metrics discriminated RRMS from the combined pro-

gressive MS group, with AUROC 0.80 (95% CI 0.62 to

0.98) for LE, 0.67 (95% CI 0.47 to 0.87) for UE, and 0.84

(95% CI 0.68 to 0.99) for the overall 4-limb metric

(Fig. 3). In an unadjusted regression analysis, for every 1

standard deviation (SD) unit increase in LE metric, there

was 2.7 times the odds (95% CI 1.4-5.3, P = 0.003) of

progressive MS. In unadjusted analysis, for every 1 SD

unit increase in the UE metric, there was 2.8 times the

odds (95% CI 1.4-5.3, P = 0.002) of progressive MS. The

magnitude of these associations remained similar after

adjustment for age, disease duration and sex (Table 2).

Most relevant to clinical practice, the metrics per-

formed even better in differentiating SP from RR MS,

with an AUROC 0.96 (95% CI 0.90 to 1.00) for LE, 0.93

(95% CI 0.86 to 1.00) for UE, and 0.96 (95% CI 0.90 to

1.00) for the overall metric (Fig. 3). In unadjusted analy-

sis, for every 1 SD unit increase in LE metric, there was

6.7 times the odds (95% CI 1.7-26.7, P = 0.007) of SPMS

than RRMS and for every 1 SD unit increase in UE met-

ric, there was 7.0 times the odds (95% CI 1.9-24.9,

P = 0.003) of SPMS. These associations remained robust
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with adjustment for age, disease duration and sex

(Table 2).

Machine learning GLM-based fusion analytical
models

With “leave-one-out” cross-validation of the GLM-based

fusion approach, the AUROC for discrimination between

MS subtypes improved over the standard trapezoidal

approach, with statistically significant improvement for

the UE metric in differentiating progressive from relaps-

ing MS, which had the poorest AUROC performance with

the standard trapezoidal approach. With the GLM-based

fusion approach, for discrimination of the combined pro-

gressive group from relapsing MS, AUROC was 0.93

(95% CI 0.83 to 1.00) for UE, 0.84 (95% CI 0.69 to 0.99)

for LE, and 0.85 (95% CI 0.71 to 1.00) for the overall

metric. For discrimination of SPMS from RRMS, AUROC

was 0.92 (95% CI 0.75 to 1.00) for UE, 0.99 (95% CI

0.95 to 1.00) for LE, and 0.99 (95% CI 0.95 to 1.00) for

the overall metric (Table 2).

Association with disability

Although the analytical approach was not dependent on a

change in EDSS, we anticipated that those with higher

baseline EDSS would be at greater risk for progression

over time. Thus, we hypothesized that higher baseline dis-

ability would be associated with greater magnitudes of the

new biosensor metrics of progression. Higher values of

both the UE and LE sensor-derived metrics were

associated with baseline disability as measured by the

physician and self-reported EDSS, pyramidal, and cerebel-

lar FSS and T25FW (Fig. 4, Table 3).

As expected, there was little change in EDSS over

the median follow-up of 10 months (only 29% had

any change in EDSS). The median change in EDSS

was 0.0 for RRMS (range = �2.0 to + 1.5), 0.0 (0.0

to +4.0) in SPMS, and 0.0 (�1.0 to 0.0) in PPMS.

These few changes in EDSS were not due to relapses,

as only 1 patient with RRMS had a relapse during the

follow-up period, and that individual had stable EDSS.

With little signal change for EDSS over the short time

interval, it was not expected to see strong longitudinal

associations with the new biosensor metrics. Nonethe-

less, there was a statistically significant correlation

between the LE metric and change in EDSS (Fig. 4,

Table 3).

In this cohort, the baseline gold standard EDSS dis-

criminated between RRMS and progressive MS (AUROC

0.88, 95% CI 0.80 to 0.96) and between RRMS and SPMS

(AUROC 0.90, 95% CI 0.77 to 1.00). On the other hand,

as expected, change in EDSS performed poorly in dis-

criminating between MS subtypes (RRMS versus progres-

sive MS: AUROC 0.54, 95% CI 0.40 to 0.68; RRMS

versus SPMS: AUROC 0.61, 95% CI 0.35 to 0.87).

We explored in more detail those individuals with

stable EDSS, but the UE or LE metric of limb progression

value was ≥1 SD higher than the mean value. Of the eight

individuals with stable EDSS but the UE progression met-

ric ≥1 SD than the mean, the majority had progressive

MS (3 SPMS, 2 PPMS), and the three with RRMS had

Table 1. Baseline characteristics of participants (n = 68)

Characteristic

All

(n = 68)

Relapsing

remitting

MS (n = 53)

Secondary

progressive MS

(n = 6)

Primary progressive

MS (n = 9) P-value

Age, mean years (SD) 48.3 (12.1) 45.7 (11.8) 57.3 (11.8) 57.4 (5.9) 0.0018a

Female sex, n (%) 49 (72.1%) 43 (81.1%) 2 (33.3%) 4 (44.4%) 0.007b

Disease duration, median years (range) 10.5 (0.1-44.0) 10.0 (0.1-44.0) 25.5 (10.0-40.0) 7.0 (3.0-14.0) 0.027a

DMT, n (%) 0.009c

None 19 (27.9%) 10 (18.9%) 3 (50%) 6 (66.7%)

Interferon-beta-1a 4 (5.9%) 3 (5.7%) 1 (16.7%) 0

Glatiramer acetate 12 (17.6%) 12 (22.6%) 0 0

Dimethyl fumarate 12 (17.6%) 12 (22.6%) 0 0

Fingolimod 5 (7.4%) 5 (9.4%) 0 0

Natalizumab 10 (14.7%) 9 (17.0%) 0 1 (11.1%)

Rituximab 6 (8.8%) 2 (3.8%) 2 (33.3%) 2 (22.2%)

EDSS, median (range) 2.5 (0.0-7.0) 2.0 (0.0-7.0) 6.0 (3.0-7.0) 4.0 (3.0-6.5) 0.0001a

Self-reported EDSS, median (range) 2.0 (0.0-7.0) 2.0 (0.0-7.0) 5.5 (2.0-6.5) 4.5 (2.0-6.5) 0.0002a

25-foot walk time, median seconds (range) 4.1 (2.8-30.5) 3.9 (2.8-30.5) 7.8 (5.2-16.5) 5.2 (4.0-19.6) 0.0004a

MS multiple sclerosis; SD standard deviation; DMT disease-modifying therapy; EDSS Expanded Disability Status Scale.

Continuous variables were compared between MS subtypes with the Kruskal–Wallis test,a and categorical variables compared with the chi-squared

testb or Fisher exact testc.
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baseline EDSS scores of 2.0, 3.0, and 6.0. Of the four

individuals with stable EDSS but the LE progression met-

ric ≥1 SD than the mean, the majority had progressive

MS (2 SPMS, 1 PPMS), and the one with RRMS had an

EDSS of 6.0. We suspect the metric suggests subclinical

progression not detected by EDSS in these individuals.

Discussion

We have developed a novel longitudinal algorithm to

capture MS progression in individual limbs over the

short time course of a year. With potential applica-

tions beyond MS, the multisensor hardware is small,

wearable and inexpensive, and the algorithm is inde-

pendent of a disease specific ground truth. Our results

suggest we can detect limb progression not captured

by gold standard MS disability metrics. The testing

paradigm is brief, only taking a few minutes to com-

plete, and fits within the general clinical flow of a

neurology visit. Our algorithm could enhance the

physical exam as a novel neurological vital sign, and

be applied to data collected during routine clinic and

research visits. Further development of commercial

grade software will allow real-time generation of UE,

LE, and overall limb progression scores for the clini-

cian and patient. Analytics could be performed with

immediate output of a vital sign value for each limb

and no need for signal processing on-site. These data

could be used to classify MS subtype objectively and

efficiently for more appropriate clinical management

and clinical trial assignments. This tool could also

provide enhanced adjudication of treatment effects for

therapeutics in development for progressive MS. Our

approach could also be applied to stroke, Parkinson’s

disease, motor neuron disease, and other neurological

conditions to monitor limb function over time.

Conventionally, diagnosis of MS subtype is largely ret-

rospective and based on clinician impression. The distinc-

tion between RRMS and SPMS during the transition is

particularly difficult.1 EDSS-based algorithms can allow
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Figure 2. Final scalar metric for the upper extremity (A) and lower extremity (B) by MS subtype. Figure legend: The final scalar metric differentiated

multiple sclerosis subtype in the upper extremity (P < 0.001) and lower extremity (P < 0.001), with higher scores in those with progressive than

relapsing MS. MS multiple sclerosis; PPMS primary progressive MS; RRMS relapsing remitting MS; SPMS secondary progressive MS.
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earlier diagnosis of SPMS.24 However, these rely on the

EDSS, which is problematic given lack of sensitivity to

short-term change in disability, inter-rater variability,

lengthy assessments, and reliance on ambulatory dysfunc-

tion at higher scores.25,26 Our study was similar to prior

work in that baseline EDSS was higher in progressive MS

than RRMS, but change in EDSS was unable to discrimi-

nate between MS subtypes. In contrast, the longitudinal

MYO progression scores were able to distinguish among

MS subtypes.

Wearable biosensors hold excellent promise to moni-

tor disability in MS. While laboratory biomarkers have

also been proposed to distinguish MS subtype and

monitor progression,27,28 digital biomarkers have the

advantages of immediate feedback on disease state, abil-

ity to employ them directly in clinics, and the potential

to distribute them into patient’s homes for remote

monitoring. Previously, biosensing studies in MS have

primarily included accelerometers to capture walking

disability.5,29 The approach of using sensors to enhance

the exam requires less time commitment from the

patient and provider. The use of the multisensor MYO

device is also novel as it captures upper and lower

extremity disability with the same device and software

and provides a disability estimate for each limb individ-

ually.10 This is in contrast and complementary to other

biosensors that estimate physical activity or gait func-

tion, as we are able to provide a performance metric

for each limb over time. Beyond finger and foot taps,

the MYO device could also be extended to evaluate

other movements assessed during the neurological

examination.

Those with greater disability had higher values of our

longitudinal metric, which is expected as those with

higher EDSS are expected to be more prone to insidious

progression. There was also an association between
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Figure 3. ROC curves discriminating MS subtype with upper and lower extremity metrics, and the overall metric. Figure legend: Discrimination of

all progressive types versus relapsing MS with the upper extremity metric (A), lower extremity metric (B), and overall combined upper and lower

extremity metric (C). Discrimination of secondary progressive from relapsing MS with the upper extremity metric (D), lower extremity metric (E)

and overall combined upper and lower extremity metric (F). These were calculated with the standard trapezoidal approach and the GLM-based

fusion approach. GLM generalized linear model; MS multiple sclerosis; ROC receiver operating characteristic.
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change in EDSS and the LE but not UE biosensor metric.

This is expected as EDSS is strongly dependent on ambu-

latory function, and thus change in EDSS is more reflec-

tive of lower limb function. The EDSS is much less likely

to capture change in upper limb function at higher

scores. On the other hand, the magnitudes of the new

biosensor UE metric appeared to capture worsening of

arm and hand function over the course of the study.

Given the limitations of the EDSS, our individual limb-

based metrics may be more sensitive to progression.

There were several participants with no change in the

EDSS who had high values of the longitudinal metric of

change, mainly with progressive MS, suggesting subtle

progression not captured by EDSS.

Limitations include lack of a perfect or pathology-based

gold standard for MS subtype or change in disability over

short intervals to compare with our new metrics. Many

patients did not demonstrate progression on the EDSS or

T25FW, making it difficult to prove that changes we

detected with the MYO were representative of true patho-

physiological progression or predictive of clinical worsen-

ing. This limitation is not unique to our study, as it

would occur in the evaluation of any new metric devel-

oped to improve upon an imperfect gold standard such

as detection of progression by EDSS. Given these limita-

tions in measuring disability progression over a short

interval, we focused evaluation in this pilot study on the

ability to distinguish the progressive from relapsing MS

phenotype to ensure that the magnitude of the agnostic

longitudinal metrics was meaningful. Given the proof of

concept nature of this study with emphasis on signal pro-

cessing algorithm development and limited time during

routine clinic visits, we did not include other UE-specific

disability measures such as the 9-hole peg test or force

plate motor assessments, or other patient-reported out-

comes to compare with the MYO metrics. These are of

interest in future studies, which will focus on evaluating

the ability of these metrics to capture clinically meaning-

ful disability progression in a larger sample over a longer

time period. This pilot study also did not have the scope

to include MRI lesion load or atrophy measures, optical

coherence tomography metrics, or serum neurofilament

light chain, which could be considered in future larger

studies for biomarker comparisons. Additionally, the

imperfect gold standard of MS subtype based on clinical

assessment could impact the metrics’ performance in clas-

sifying MS subtype. Despite this, we were able to demon-

strate associations between the novel metrics, disability

measures and MS subtype. Additionally, the sample size

was relatively small with a limited number with progres-

sive MS in this pilot study, which is a limitation particu-

larly given our primary aim involved differentiating

progressive from relapsing MS. Despite the small sample

size, we were able to demonstrate statistically significant

differences in the longitudinal metrics between MS sub-

types. Finally, although this was a single-center study, a

broad range of patients were included with all MS sub-

types represented and a wide range of disability and dis-

ease duration.

Strengths of our study include the use of the MYO-

band, which is inexpensive, comfortable, and quick and

easy to use during a standard neurologic exam with mini-

mal additional time required. Ongoing monitoring during

daily activities is not required. Additionally, this single

device and algorithm are used to evaluate both arm and

leg function, and nonclinical personnel could perform the

Table 2. Distinguishing progressive from relapsing multiple sclerosis with the final scalar metrics using the trapezoidal approach and GLM-based

fusion approach

Unadjusted Adjustedb
Trapezoidal approach GLM fusion approach

AUROC

comparison

ORa 95% CI P-value ORa 95% CI P-value AUROC (95% CI) AUROC (95% CI) P-valuec

All Progressive vs. Relapsing MS

All 4 limb metric - - - - - - 0.84 (0.68 to 0.99) 0.85 (0.71 to 1.00) 0.67

Upper extremity 2.8 1.4 to 5.3 0.002 3.0 1.3 to 6.9 0.011 0.67 (0.47 to 0.87) 0.93 (0.83 to 1.00) 0.022

Lower extremity 2.7 1.4 to 5.3 0.003 2.3 0.99 to 5.5 0.053 0.80 (0.62 to 0.98) 0.84 (0.69 to 0.99) 0.084

Secondary progressive vs. Relapsing MS

All 4 limb metric - - - - - - 0.96 (0.90 to 1.00) 0.99 (0.95 to 1.00) 0.20

Upper extremity 7.0 1.9 to 24.9 0.003 15.5 1.4 to 170.6 0.025 0.93 (0.86 to 1.00) 0.92 (0.75 to 1.00) 0.88

Lower extremity 6.7 1.7 to 26.7 0.007 5.7 0.89 to 37.0 0.066 0.96 (0.90 to 1.00) 0.99 (0.95 to 1.00) 0.20

OR odds ratio; CI confidence interval; AUROC area under the receiver operating characteristic curve; GLM generalized linear model.
aPer 1 standard deviation unit increase in the final scalar metric.
bAdjusted for baseline age, sex, and disease duration.
cThese p-values compare AUROC methods, comparing whether there is a difference between the trapezoidal and GLM fusion approach. The

GLM approach improved UE metric performance for the discrimination of progressive and relapsing MS.
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assessment. Furthermore, our algorithm adjusts for vari-

ability in follow-up time, which is important for use in

real-world practice. The algorithm was optimized with a

machine learning approach. The best discrimination was

between RR and SPMS, which is clinically the most rele-

vant comparison given individual patients transition

between these MS subtypes, and it is difficult to deter-

mine when the transition occurs. This distinction will be

more important as therapies become available for

SPMS.3,30 It is important to note that this device does

not differentiate between inflammatory disease activity

and disability worsening due to progression, and as such

may not guide clinical decisions regarding the use of cur-

rently available disease-modifying therapies that primarily

target inflammatory activity.

We have developed an algorithm using a small, nonob-

trusive wearable multisensor device that can detect change

in upper and lower limb function over a short interval.

This algorithm can be used to classify MS subtype and

detect subtle progression not detected by standard disabil-

ity assessments, which could be used to monitor treat-

ment effectiveness. While in this proof of concept study

we performed signal-processing on-site, for widespread

dissemination for clinical practice or trials, commercial

grade software would be utilized for real-time calculation

of limb progression scores. This would allow immediate

output of these MS vital signs, which would be available

for use during clinical evaluation, similar to blood pres-

sure and heart rate as measures of cardiovascular func-

tion. Future studies are required to validate the algorithm

in an independent, larger sample collected at multiple

sites including more individuals with progressive MS.

This is a promising tool to monitor progression in clini-

cal trials. Furthermore, this tool is not limited to use in

MS and could be applied to a broader range of neuro-

logic diseases affecting limb function, including stroke,

Parkinson’s disease, and motor neuron disease. Future

study will involve evaluation of this algorithm for
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Figure 4. Association of the lower extremity metric with baseline (A) and change (B) in disability. Figure legend: The lower extremity metric was

associated with baseline Expanded Disability Status Scale (EDSS) (r = 0.41, P = 0.0007) and with change in EDSS (r = 0.25, P = 0.048) although

several individuals had no change in EDSS, but high values of the metric suggesting progression not detected by the EDSS. Positive values for

change in EDSS indicate worsening disability.
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monitoring limb dysfunction in these other neurological

diseases.
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