
Heliyon 10 (2024) e24097

Available online 9 January 2024
2405-8440/© 2024 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Research article 

Automatic tooth periodontal ligament segmentation of cone beam 
computed tomography based on instance segmentation network 

Sha Su 1, Xueting Jia 1, Liping Zhan , Siyuan Gao , Qing Zhang , Xiaofeng Huang * 

Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China   

A R T I C L E  I N F O   

Keywords: 
Periodontal ligament (PDL) 
Deep learning (DL) 
Cone-beam computed tomography (CBCT) 
Convolutional neural networks (CNNs) 
Instance segmentation 
Mask R-CNN 

A B S T R A C T   

Objective: The three-dimensional morphological structures of periodontal ligaments (PDLs) are 
important data for periodontal, orthodontic, prosthodontic, and implant interventions. This study 
aimed to employ a deep learning (DL) algorithm to segment the PDL automatically in cone-beam 
computed tomography (CBCT). 
Method: This was a retrospective study. We randomly selected 389 patients and 1734 axial CBCT 
images from the CBCT database, and designed a fully automatic PDL segmentation computer- 
aided model based on instance segmentation Mask R-CNN network. The labels of the model 
training were ‘teeth’ and ‘alveolar bone’, and the ‘PDL’ is defined as the region where the ‘teeth’ 
and ‘alveolar bone’ overlap. The model’s segmentation performance was evaluated using CBCT 
data from eight patients outside the database. 
Results: Qualitative evaluation indicates that the PDL segmentation accuracy of incisors, canines, 
premolars, wisdom teeth, and implants reached 100%. The segmentation accuracy of molars was 
96.4%. Quantitative evaluation indicates that the mIoU and mDSC of PDL segmentation were 
0.667 ± 0.015 (>0.6) and 0.799 ± 0.015 (>0.7) respectively. 
Conclusion: This study analysed a unique approach to AI-driven automatic segmentation of PDLs 
on CBCT imaging, possibly enabling chair-side measurements of PDLs to facilitate periodontists, 
orthodontists, prosthodontists, and implantologists in more efficient and accurate diagnosis and 
treatment planning.   

1. Introduction 

The periodontal ligament (PDL), a distinct connective tissue that attaches between the tooth roots and the inner walls of the 
alveolar bone socket, is a crucial determinant for making informed decisions regarding dental treatment [1,2]. Morphological changes 
in the PDL serve as an essential indicator for assessing the severity of periodontal and peri-implant diseases [3]. In addition, PDLs 
function as dynamic units that undergo reshaping during orthodontic tooth movement [4]. In accordance with Ante’s law, evaluating 
the PDL surface area of the abutment is typically necessary when considering a fixed denture to restore a missing tooth [5]. Therefore, 
accurate segmentation of a three-dimensional PDL is imperative for effectively planning periodontal, orthodontic, prosthodontic, and 
implant interventions [6–9]. 
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Previous linear assessment of periodontal attachment loss using periodontal probing may lead to potential overestimation or 
underestimation of the remaining PDL area [10,11]. The conventional approach include the membrane technique and weight con-
version for quantifying the root surface area in vitro fails to capture the PDL’s dimensions accurately in vivo [12,13]. In the past 20 
years, cone-beam computed tomography (CBCT) combined with 3D reconstruction software such as 3-matic and Mimics has replaced 
traditional root geometric measurement methods [14]. Many systematic reviews support using CBCT to detect alveolar bone loss 
[15–17], especially root bifurcation lesions [18]. The high accuracy of CBCT has been demonstrated in numerous studies assessing 
geometric objects [19,20], teeth [14,21–23], and alveolar bone defects [24]. 

Currently, segmentation of PDL structures is challenging and laborious without clinically applied systems. Irrespective of purely 
manual or semi-automatic segmentation procedures, the structure of interest needs to be depicted by human observation [25]. This 
requirement leads to subjective evaluations made by different inspectors [26,27] and can result in observer fatigue, affecting the 
technique’s reliability [28]. Over the past decade, segmentation methods based on manually defined features, including level sets, 
graphic cuts, and template fitting, have been investigated extensively [29–31]. Gao et al. [32] proposed an enhanced two-dimensional 
level set layered model that uses shape and intensity priors to segment tooth roots in the alveolar bone. However, these methods 
require complex manual initial intervention and corrections; further, they exhibit limited learning, high sensitivity to noise and 
complex cases, and low robustness when dealing with clinical environments. 

In recent years, deep learning (DL) based on convolutional neural networks (CNNs), has gained widespread adoption in detecting, 
diagnosing, and classifying medical images owing to its exceptional image-processing capabilities [33,34]. CNNs, which are a 
particular type of machine learning models, are trained with data that is provided in form of pairs of imagery data and a corresponding 
outcome for the image [35].Over the past five years, networks based on image classification [36,37], object detection [38,39], se-
mantic segmentation [40–43], and instance segmentation [44] have excelled in the dental field [45]. Although a considerable amount 
of literature is dedicated to automatic recognition and segmentation of tooth position, research on PDL segmentation is limited [46, 
47]. Lee et al. [48] attempted to provide information about alveolar bone loss in two-dimensional radiographs. Li et al. [49] and Gao 
et al. [32] explored different approaches for automated tooth root segmentation, including a U-Net neural network and improved level 
set method; however, clear differentiation between tooth root structures and the PDL was not achieved. 

Therefore, this study aimed to employ the advanced Mask R-CNN deep learning network for automated segmentation of PDL 
structures in CBCT images. When a patient undergoes CBCT imaging, direct 3D measurement of the PDL for each tooth is enabled, 
facilitating chair-side diagnosis and treatment planning for periodontists, orthodontists, prosthodontists, and implantologists. 

2. Materials and methods 

The processing flowchart of the methodology is shown in Fig. 1. 

2.1. Data acquisition for the segmentation model 

We randomly selected CBCT image data from the outpatient database of Beijing Friendship Hospital affiliated with Capital Medical 
University, covering 389 patients between January and September 2022. The patient cohort comprised 205 males and 184 females 
aged 18–78 years (median age: 26.0 years). 

CBCT images were acquired from a CBCT scanner (NewTom CT, Cefla QR Verona; Verona, Italy) with a viewing field of 12 × 8 cm2, 
voxel spacing of 0.3 mm (an isotropic voxel size of 0.3 mm), exposure parameters of 110 kV, 2.1–4.4 mA (depending on subject size), 

Fig. 1. The entire framework for the PDL segmentation methodology.  
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Fig. 2. This diagram illustrates the images and labelling of the various artefacts we included, encompassing implants (A and B), silver–mercury 
filling body (C), artefact generated by metal and movement around the maxillofacial region (D), and metal crown (E). 
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and 3.6 s. CBCT scanning was rotated 360◦. The 2D images were obtained by reformatting them along the plane perpendicular to those 
of the axial (or tilted) slice. The output CBCT images and their corresponding parameters were stored in the Digital Imaging and 
Communications in Medicine (DICOM) file format which is an international standard that defines a format for storing medical images 
for further analysis [50]. 

Cases of image blurring caused by artefacts, fillings, metal posts, and head rotation and displacement were included [Fig. 2(A–E)]. 
A composite of 1734 2D images, ranging from maxillary to mandibular levels, was generated by selecting 4–5 images randomly from 
the DICOM data of each patient; 80% (1387) of the data was allocated for model training; the remaining 20% (347) was allocated for 
model validation. 

2.2. Data pre-processing 

The clinical dental data collected comprises 16-bit CBCT images, necessitating conversion to 24-bit RGB images using computer 
vision algorithms. The initial step involves establishing a threshold of 6000, followed by truncating and uniformly assigning all CBCT 
image pixels that surpass this value. Subsequently, the pixels of each CBCT slice image are normalized to a range of 0–255, resulting in 
an 8-bit grayscale map. Finally, three duplicates of the grayscale image are merged onto the channels to generate a 24-bit RGB image. 

2.3. Data labeling 

The doctors who participated in the labelling included an attending physician with 5 years of experience, an imaging technician 
with 7 years of experience, and an associate chief physician with 10 years of experience. We utilized LabelMe (version 3.6; MIT, 
Computer Science and Artificial Intelligence Laboratory, USA), an open-source annotation tool, to manually label the edges of the teeth 
and the margins of the upper and lower alveolar bone on 2D images [Fig. 3A, B]. After completing the labelling, we identified areas 
where alveolar bone overlaps with teeth as the ‘PDL’. Through thorough discussion and double verification, we ensure the utmost 
accuracy in labeling such intricate images. 

2.4. Segmentation model building and post-processing 

This study employed a CNN to detect the ‘alveolar bone’ and ‘tooth’ regions automatically in CBCT images. We formulated this task 
as an instance segmentation problem and utilized the advanced Mask R-CNN [44] for its solution. As our CNN backbone, we adopted 
ResNet-50 [51], a widely used image classification network in the field of computer vision. Parameters pre-trained on ImageNet (Deng 
et al., 2009) were used to initialize the model, which was subsequently trained for 12 epochs using an NVIDIA Tesla P100 GPU. The 
entire training took approximately 1.5 h. An overview of our implemented Mask R-CNN framework can be seen in Fig. 4. 

After segmenting the teeth and alveolar bone in the model, we identified the ‘PDL’ region. Each tooth was depicted as a connected 
component in 3D space. The surface region was made up of edge pixels within the connected component. The edge pixel was classified 
as a ‘PDL’ pixel if at least one of the eight adjacent pixels in a 2D image belonged to the ‘alveolar bone’ category. 

2.5. PDL segmentation results 

CBCT images of 8 patients were randomly selected from a database that did not include labelled patients. The CBCT workstation 
and data processing method remain consistent with the aforementioned description. In the experimental group, the established PDL 
segmentation model was employed to identify the ‘PDL’ region in each 2D image, and the recognition results of all images were in-
tegrated to obtain 3D-level recognition outcomes. Due to segmentation errors, counting connected blocks in the bone’s tooth region 
resulted in noise points. To address this issue, we comprehensively counted the connected blocks in all PDL regions and implemented a 

Fig. 3. The labelling process is illustrated in a schematic diagram. One of the original 2D CBCT images is shown with the corresponding labelled 
image. Green markings indicate the alveolar bone; red markings indicate tooth. 
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volume threshold (set at 1000 in our experiment) to filter out any connected blocks with volumes below this threshold, thereby 
retaining only the remaining areas. In the control group, the ground truth for the ‘PDL’ region of each tooth on every 2D image was 
labelled manually (Fig. 5). 

2.6. Evaluation metrics for segmentation 

A voxel-wise comparison was used to compare the predictions of the AI segmentation model with the ground truth based on four 
variables: true positives (TPs), true negatives (TNs), false positives (FPs), and false negatives (FNs). TPs are the correctly segmented 
voxels of a PDL, while TNs are the correctly not-segmented voxels. FPs are incorrectly segmented voxels, and FNs are missed from 
segmentation voxels. The following metrics were used for segmentation evaluation: 

(1) The intersection over union (IoU) [52] is the number of voxels overlapping between the predicted model and the ground truth. 
An IoU >0.6 indicates that the model attained a satisfactory level of training effectiveness [47]. 

IoU =
TP

TP + FP + FN
.

(2) The dice similarity coefficient (DSC) [53,54] measures the similarity between the segmented region and the ground truth. 
DSC>0.700 indicates a statistically significant overlap effect. 

DSC=
2 ∗ TP

2 ∗ TP + FP + FN
=

2 ∗ IoU
1 + IoU 

Fig. 4. Overview of the Mask R-CNN [44] framework. The input image is first fed into a ResNet-50 [51] backbone using a feature pyramid network 
(FPN) [41] to extract the image feature. The Region Proposal Network (RPN) [39] takes image features as input and generates region proposals. The 
region proposals and the image feature are fed into the region of interest (ROI) Align [44] layer to produce fixed-sized region features. The region 
features are further used to predict the category, bounding box offset, and binary category mask of the region proposals. 

Fig. 5. The red markings indicate the PDL structure. The left image indicates the maxilla; the right image indicates the mandible.  
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3. Result 

3.1. 2D visualization of model segmentation results 

The visualization results of tooth and alveolar bone segmentation in CBCT images, based on the Mask R-CNN segmentation model, 
are presented in Fig. 6. The region where the tooth and alveolar bone intersect corresponds to the “PDL” area. 

3.2. 3D visualization of PDL segmentation results 

The 3D visualization of the segmentation and reconstruction outcomes of the patient’s PDL is depicted in Fig. 7(A–E). We selected 
five representative cases to evaluate the performance of our PDL segmentation model. Fig. 7A shows a 2D image of a four-walled 
osseous defect surrounding the right maxillary second molar. The alveolar bone is absorbed up to 1/3 apical of the tooth root. In 
the 3D visualization image, the PDL of the right maxillary second molar is shown to be significantly shorter than its root length. Fig. 7B 
indicates the accuracy segmentation of a mesio-impacted wisdom tooth in the left mandible that deviates from normal dental 
alignment. Fig. 7C indicates the well performance when alveolar bone resorption extends below the molar bifurcation. The 3D 
visualization images indicate that the multiple roots of the tooth are independent and cannot be connected automatically. Fig. 7D 
indicates the segmentation accuracy when alveolar bone resorption is beneath the molar bifurcation. Multiple roots of molars and 
premolars can be segmented and automatically connected and identified as a unified entity. Fig. 7E indicates the accuracy segmen-
tation of three implants in the posterior mandible. 

3.3. Qualitative evaluation of model segmentation performance 

Table 1 shows the PDL segmentation results of different types of teeth. The segmentation accuracy of incisors, canines, premolars, 
wisdom teeth, and implants reached 100%. The segmentation accuracy of molars was 96.4%. The segmentation of two of the seven 
molars in Patient 6 was found to be inaccurate, as highlighted in bold font. Further, the proximity of the distal buccal root of the 
patient’s right maxillary first molar to the mesial buccal root of the patient’s right maxillary second molar resulted in incorrect 
connection and segmentation [Fig. 8(A–C)]. Among the eight patients enrolled in the randomized trials, patient No. 3’s CBCT images 
exhibited artefacts and slight blurring attributed to metallic interference and patient motion. The segmentation results, however, 
demonstrate robust performance unaffected by blurring or artefacts. In Patient 7, an additional misclassification occurred where the 
mandibular alveolar bone dysplasia image was identified erroneously as a PDL structure (Fig. 9). 

Fig. 6. 2D visualization of tooth and alveolar bone segmentation using distinct coaxial bits as representatives. Dark grey represents the teeth; light 
grey represents the alveolar bone. The highlighted area where the tooth and alveolar bone overlap is the PDL. 
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Fig. 7. 3D visualization of the PDL segmentation results. The 2D images of patients are displayed on the left; the PDL segmentation and recon-
struction visual images are displayed on the right. A) Maxillary molar with severe alveolar bone resorption. B) mesio-impacted wisdom teeth. C) 
Alveolar bone absorption below the molar root bifurcation. D) Alveolar bone absorption beneath the molar root bifurcation. E) Implant. Red circles 
show the positions of representative teeth or implants. 
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3.4. Quantitative evaluation of model segmentation performance 

The mean intersection over union (mIOU) values for tooth, alveolar bone, and PDL were 0.894, 0.836, and 0.667, respectively. The 
mean dice similarity coefficient (DSC) values for tooth, alveolar bone, and PDL were 0.934, 0.908, and 0.799, respectively. The mIoU 
values for alveolar bone, tooth, and PDL exceeded 0.6; the mDSC surpassed 0.7 (Table 2). 

4. Discussion 

In this study, we designed a tooth, alveolar bone, and PDL segmentation network based on the advanced Mask R-CNN, and devised 
an ingenious PDL segmentation methodology. By segmenting the boundaries between teeth and alveolar bone precisely, the over-
lapping region of each tooth and alveolar bone was identified as the PDL area. The qualitative assessment showed that the PDL 
segmentation accuracy of the incisor, canine, premolar, wisdom tooth, and implant achieved a perfect score of 100%; molars exhibited 
a 96.4% accuracy rate. The mDSC values for tooth, alveolar bone, and PDL were 0.934, 0.908, and 0.799, respectively. 

The results demonstrate that the model exhibits excellent segmentation performance in tooth and alveolar bone, achieving high 
mDSC values of 0.934 and 0.908. Numerous prior studies have employed diverse 2D or 3D deep learning networks for teeth 

Table 1 
Tooth segmentation and segmentation accuracy rates (unit: %).  

Patients AI/Control (Number) Additional error 

Incisor Canine Premolar Molar Wisdom tooth Implant 

1 8/8 4/4 8/8 8/8 2/2 0 0 
2 8/8 4/4 8/8 4/4 2/2 0 0 
3a 8/8 4/4 8/8 8/8 3/3 0 0 
4 8/8 4/4 8/8 8/8 4/4 0 0 
5 7/7 4/4 8/8 8/8 4/4 0 0 
6 7/7 4/4 8/8 5/7 4/4 0 0 
7 8/8 4/4 8/8 5/5 0/0 3/3 1 
8 8/8 4/4 8/8 8/8 4/4 0 0 
Accuracy rate (%) 100 100 100 96.4 100 100   

a The CBCT image of this patient exhibits mild motion-related artefacts. 

Fig. 8. The diagram illustrates the segmentation error observed in the 2 M. A) The model segmentation visualization: the pink region represents the 
three roots of the patient’s right maxillary first molar; the yellow region represents the patient’s right maxillary second molar. The red circle in-
dicates an erroneous segmentation of the roots of two teeth into a single root. B) The unaltered original 2D image: the red circle indicates the precise 
location of the patient’s two maxillary molars of different axial levels. C) Visualization of the PDL 3D segmentation results: the red circle indicates 
that the two maxillary molars were incorrectly interconnected and integrated with the same colour. 
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segmentation, yielding DSC ranging from 0.880 to 0.962. Wu et al. [55] (2020) proposed a 3D neural network called GH + BAD-
ice-DenseASPP-UNet + LO for tooth segmentation, which currently achieves the highest precision in tooth segmentation with a Dice 
similarity coefficient (DSC) of 0.962. Similar to our study, Wang et al. [56] (2021) employed a 2D neural network called MS-D to 
systematically segment teeth and alveolar bone, yielding an impressive mDSC of 0.934 for teeth and 0.945 for alveolar bone. 

However, empirical research on the segmentation network for PDLs is scarce. Li et al. [49] constructed the AttU-Net + BDC lstm 
network to segment the “tooth root” in CBCT images; DSC reached 0.955. This study categorized all teeth into roots based on a common 
horizontal plane. However, upon examining the labelling diagram of the model training, it became evident that such an approach for 
selecting root segments was inappropriate. The study, however, failed to distinguish between the root and PDL as distinct structures 
accurately. The PDL differs from the root structure; its dimensions vary with the extent of alveolar bone resorption over an individual’s 
lifespan. Inflammation of periodontal tissue, such as from chronic periodontitis or traumatic stimulation like occlusal trauma, results in 
complications, including gingival recession, alveolar bone resorption, and diminished bone support and mechanical stress resistance, 
ultimately leading to tooth mobility and potential loss [3]. The simple surface area of the root cannot serve as a representative measure 
for the PDL. 

In addition, segmenting the tooth’s PDL is a challenge in CBCT image segmentation. Since the PDL’s thickness typically measures 
0.15–0.38 mm [57], it is often indiscernible in CBCT images, resulting in blurred edges [29]. The cementum and alveolar bone of teeth 
have similar threshold values; owing to their comparable densities, differentiating the root from the alveolar bone by adjusting the 
grey threshold range is not feasible. 

In this study, the mIOU and DSC values for PDLs were 0.667 and 0.799, respectively. The PDL segmentation accuracy was not as 
good as that of teeth and alveolar bone. This may have been due to the following reasons: (1) the overlap of the girth model poses a 
greater challenge than that of the cross-sectional model. Each horizontal two-dimensional section identifies a circle within the “PDL” 
corresponding to the ellipse’s perimeter rather than its cross-sectional area. Therefore, the model’s task is to accurately segment 2D 
lines, posing challenges in achieving a significantly high level of segmentation accuracy; (2) the accuracy of PDL segmentation is 
influenced by the segmentation accuracy of teeth and alveolar bone, thereby leading to an increase in segmentation error; (3) labelling 
PDLs accurately is a challenging task for clinicians with expertise. Linear marking necessitates greater precision compared to frame and 
circle marking, consequently diminishing the accuracy of the ground-truth value itself. 

However, the IoU score serves as a standardized performance metric for object class segmentation problems, and the model un-
dergoes rigorous evaluation, with even minor discrepancies in pixel values being deemed inadequate. Therefore, a value >0.6 in-
dicates the model achieved a satisfactory level of training effectiveness [47]. The voxel-wise matching accuracy of each label was 
computed by a similar DSC, which evaluated the degree of overlap between algorithmic segmentation and manual segmentation. A 
DSC score >0.7 indicates a significant level of overlap effect [52]. Therefore, the segmentation model of PDL is acceptable. 

The database cohort in this study comprised a diverse range of complex data, including impacted teeth, metal restorations, and 
implants, as well as instances where the image data was blurred due to motion artefacts. The aim is to enhance the network’s 
generalization and robustness, thereby improving its practical applicability. The test model demonstrated robust performance, 

Fig. 9. The red circle in the left image highlights an alveolar bone dysplasia structure located in the anterior region of the mandible. In the right 
image, this structure is misclassified as a PDL structure. 

Table 2 
Evaluation of alveolar bone, tooth, and PDL segmentation performance.  

Segmentation mIoU mDSC 

Air 0.990 ± 0.008 0.995 ± 0.004 
Tooth 0.894 ± 0.017 0.934 ± 0.005 
Alveolar bone 0.836 ± 0.020 0.908 ± 0.032 
PDL 0.667 ± 0.015 0.799 ± 0.015 

mIoU: mean intersection over union; mDSC: mean dice similarity coefficient. 
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successfully segmenting complex case scenarios in the eight test patients, including impacted wisdom teeth, implants, and cases 
affected by artefacts. In the future, this model can provide valuable data for studying impacted wisdom teeth and peri-implant 
inflammation. In addition, the study segmented the root portion located within the alveolar bone, minimizing the effect of the 
metal crown on the results and thereby enhancing the network’s practicality. 

The segmentation errors identified in this study included misclassifying mandibular bone dysplasia as “dental” structures. This 
error may be attributed to including complex cases of heterotopic impacted teeth in the study’s learning labelling samples, resulting in 
the misidentification of high-density images in unconventional dentition as “tooth” structures. However, oral clinicians can easily 
identify and correct this segmentation error through manual post-processing. 

In the qualitative analysis of the eight patients, one patient was found to have segmentation errors caused by the connection 
between the two adjacent molar teeth on the upper right side. Such cases are common due to the root and apical area proximity. 
Therefore, addressing this challenge becomes crucial in our study, since we aim to enhance PDL segmentation accuracy with a more 
advanced 3D segmentation network in the future. 

Another limitation of this study is that the method is new, although the qualitative and quantitative analysis of eight patients 
verified the accuracy of the results. Increasing the reliability of the PDL results obtained by radiographic segmentation and pixel 
counting requires more diverse data and greater sample sizes. Each patient may have a different configuration; thus, anatomical 
variation can also constrain calculations. Therefore, in the future, we will continue to expand the sample size of patient measurements 
and add quantitative data from real PDL areas for comparative validation. 

5. Conclusion 

This study presents a novel AI-driven approach for automatically segmenting the PDL on CBCT imaging, laying the foundation for 
future deep-learning models to calculate the PDL area or volume directly in CBCT 3D images. The research team aims to further 
enhance and develop the PDL segmentation system, facilitating more efficient and accurate diagnosis and treatment planning for 
periodontists, orthodontists, prosthodontists, and implantologists. 
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