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Abstract
Many colour polymorphisms are present only in one sex, usually males, but proximate

mechanisms controlling the expression of sex-limited colour polymorphisms have received

little attention. Here, we test the hypothesis that artificial elevation of testosterone in females

of the colour polymorphic tawny dragon lizard, Ctenophorus decresii, can induce them to

express the same colour morphs, in similar frequencies, to those found in males. Male C.
decresii, express four discrete throat colour morphs (orange, yellow, grey and an orange

central patch surrounded by yellow). We used silastic implants to experimentally elevate

testosterone levels in mature females to induce colour expression. Testosterone elevation

resulted in a substantial increase in the proportion and intensity of orange but not yellow col-

ouration, which was present in a subset of females prior to treatment. Consequently,

females exhibited the same set of colour morphs as males, and we confirmed that these

morphs are objectively classifiable, by using digital image analyses and spectral reflectance

measurements, and occur in similar frequencies as in males. These results indicate that the

influence of testosterone differs for different colours, suggesting that their expression may

be governed by different proximate hormonal mechanisms. Thus, caution must be exer-

cised when using artificial testosterone manipulation to induce female expression of sex-

limited colour polymorphisms. Nevertheless, the ability to express sex-limited colours (in

this case orange) to reveal the same, objectively classifiable morphs in similar frequencies

to males suggests autosomal rather than sex-linked inheritance, and can facilitate further

research on the genetic basis of colour polymorphism, including estimating heritability and

selection on colour morphs from pedigree data.

Introduction
The study of colour polymorphism, that is, the presence of multiple, discrete, genetically deter-
mined colour forms within one sex and within an interbreeding population [1], has provided
fundamental insights into evolutionary processes and phenomena such as frequency depen-
dent selection, speciation, mimicry and sexual selection [2–8]. Many colour polymorphisms
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are present only in one sex (sex-limited), usually males, presumably because the polymorphic
colour signal is sexually selected. Indeed many polymorphic male colour signals have a demon-
strated function in male-male competition, female mate choice or both, and are associated with
alternative reproductive or life-history strategies [2, 7, 9, 10]. Despite the prevalence of colour
polymorphic species as model study systems in evolutionary biology, proximate mechanisms
controlling the expression of colour polymorphisms have been identified in relatively few spe-
cies [11, 12–24].

The sex steroid testosterone is often critical for the expression of sexually dimorphic colour
signals in males [13, 24–26]. One approach to qualifying the effect of testosterone on colour
expression is to test whether it induces colour expression in females that lack the male colour
signal. For example, artificial elevation of testosterone in females induces expression of the
male colour morphs in colour polymorphic birds [21] and lizards [14]. Testing whether artifi-
cial elevation of testosterone induces sex-limited colour polymorphism in females provides
important insight into the degree to which testosterone has an activational influence on colour
expression and whether this differs for different colours. Furthermore, inducing the expression
of the polymorphism in females is useful to infer underlying patterns of inheritance (e.g. auto-
somal or sex-linked) or heritability of colour signals, which can be estimated from pedigrees
with more confidence when females phenotypically express the underlying genotype [21]. To
reliably score the underlying genotype, however, requires that testosterone consistently induces
females to express the same set of discrete colour morphs that are present in males, in similar
frequencies. Therefore, it is important to quantify changes in female expression of each colour
component in response to testosterone and compare objective classification of observed colour
morphs in males and females.

Here, we artificially elevate testosterone in female tawny dragon lizards, Ctenophorus decre-
sii, to test whether testosterone induces expression of the male colour polymorphism. Cteno-
phorus decresii is a small, sexually dimorphic agamid lizard (mean snout-vent length 80 mm
and 70 mm for males and females, respectively), in which males develop and express four dis-
crete throat colour morphs at sexual maturity: grey, orange, yellow and orange+yellow (an
orange central patch surrounded by yellow) [27]. Females have cream throats, sometimes with
flushes of yellow. In this study, we used silastic implants to experimentally elevate testosterone
levels in mature females to within the normal physiological range of free-ranging males. To
assess the effect of testosterone on colour expression and how this may differ between orange,
yellow and grey throat colour components, we objectively quantified the change in the quality
and extent of colouration over time using calibrated digital photographs and spectrophotome-
try. We tested whether females express the same discrete morphs in similar frequencies to
males to test whether experimental testosterone manipulation can be used to reliably score the
phenotypic expression of the underlying genotype.

Methods and Materials

Animal capture and husbandry
Trials were performed using a captive population of 35 female C. decresii, comprising 16
mature individuals originating fromWarren Gorge, Flinders Ranges National Park, South Aus-
tralia (31.4222° S, 138.7050° E), captured in October and November 2011, and 19 of their off-
spring bred in captivity.

Lizards were transferred to the animal facility at the University of Melbourne where they
were housed individually in 55 L x 34 W x 38 D cm opaque plastic tubs containing a layer of
sand, and provided with a ceramic or terracotta tile hide. The room was maintained at temper-
atures and lighting regimes that mimicked natural seasonal variation. A heat lamp was
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suspended in each enclosure to generate a thermal gradient, and allow animals to attain their
preferred body temperatures (approx. 36°C; Walker unpublished data). Lizards were misted
and fed live crickets three times per week.

Ethics statement
This study was approved by The University of Melbourne Animal Ethics Committee (approval
1011760), and animals collected and transported under a Department of Environment and Pri-
mary Industries (DEPI) Scientific permit (10005980), DEPI Import permits (14087874,
14078381), Department of Environment and Natural Resources (DENR) Export permits
(E22641, E22520), DENR Collection permit (E25861), and South Australian DENRWildlife
Ethics permits (18/2010, 18/2010-M1 and 35/2013).

Testosterone implantation
Prior to implanting, lizards were sterilised dorsally by wiping with 70% ethanol and injected
subcutaneously with 0.2 mL lidocaine (lignocaine hydrochloride 2%; Cenvet, Kings Park,
NSW, Australia). The lizards were then cooled on ice to induce immobility. Sterile silastic
implants (4 mm lengths, 1.47 mm internal diameter, 1.96 mm external diameter; Dow Corn-
ing, Midland, MI, USA) packed with crystalline testosterone powder (no. T1500, Sigma), and
closed with 1 mm silastic adhesive at either end were inserted through a small dorsolateral inci-
sion near the shoulder. The incision was then closed with medical adhesive silicone (Dow
Corning, Midland, MI, USA).

Testosterone assays
Blood samples (~100 μL) were taken from each female at three time points (10 days prior to
implantation, hereafter “pre- T”, and 1- and 4- weeks post implantation) by venipuncture from
the vena angularis (in the corner of the mouth). Plasma was harvested from whole blood by
centrifugation and frozen at -20°C until assayed.

Plasma levels of testosterone were measured using an enzyme immunoassay kit (Cayman
Chemical, Ann Arbor, MI USA). Testosterone assay plates, with standards and samples (in
duplicate), were prepared to manufacturer's instructions and absorbance was measured at 405
nm on a plate reader (BioTek ELx800UV; BioTek Instruments, Winooski, VT USA) using
Gen5 v.2.05 software (BioTek Instruments, VT USA).

Testosterone assay plates, with standards and samples (in duplicate), were prepared to man-
ufacturer's instructions and absorbance was measured at 405 nm on a plate reader (BioTek
ELx800UV; BioTek Instruments, Winooski, VT USA) using Gen5 v.2.05 software (BioTek
Instruments, VT USA).

Quantifying colour development
Colour development was monitored through weekly photographs taken under standardised
light conditions and spectral reflectance measurements of each lizard for twelve weeks. For
photographs, we used a Canon PowerShot SX1-IS digital camera (saved in RAW format). We
calibrated the images with respect to radiance and light intensity [28]. This entailed first apply-
ing a function to linearize camera responses (R, G, B and luminance values) in relation to six
grey-scale squares of a colour checker standard (X-Rite Inc., Grand Rapids, MI, USA) and their
measured reflectance values [28]. Next, we equalised RGB values relative to a grey photo-
graphic standard included in each photo (30% reflectance) to remove any effect of minor varia-
tion in lighting [28]. We then performed a segmentation analysis on calibrated photos to
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quantify the proportion of yellow, red and grey on the throat of each individual, as described in
Teasdale, Stevens [27]. This analysis standardised for luminance, and extracted portions of the
cropped throat area based on the RGB values of each pixel according to set threshold values.
The thresholds we used to determine the colour layers in this analysis were 0.20 for red and
0.15 for yellow, assigned based on an initial analysis of a subset of the images. We set a conser-
vative (higher) threshold for red to ensure that orange and yellow throat colouration could be
clearly distinguished. Although photos only capture information on colour in the human-visi-
ble spectrum (400–700 nm), C. decresii throat colours have minimal ultraviolet reflectance
(300–400 nm; S1 Fig). Image calibration and segmentation analyses were done using modified
scripts written by John Endler and Martin Stevens, executed in MATLAB (The MathWorks,
Inc., MA, USA).

We quantified the spectral properties of female throat colouration at one-week intervals fol-
lowing implantation. We took reflectance measurements using an Ocean Optics USB2000
+ spectrometer and PX-3 Pulsed Xenon light source, both connected to a probe via a bifurcated
fibre-optic cable. Measurements were of an oval point sample 3 mm x 4 mm, and taken relative
to a 99% diffuse white reflectance standard in the range of 300–700 nm, the visual spectrum for
most lizards [29]. Measurements were taken of the throat region and bib (coloured region
under the chin; a fold of skin between the throat proper and the chest [30, 31]) at a 45° angle to
the surface of the lizard. We derived measures of the achromatic (luminance) and chromatic
(colour) contrast of the primary throat colour of each individual against a neutral background
(30% grey) to the likely visual system of C. decresii. Briefly, we applied a model of colour dis-
crimination, which assumes that discrimination is limited by photoreceptor noise [32, 33]. The
model estimates the ‘distance’ between two colours (in this case throat and neutral grey back-
ground) in units of just noticeable differences (JND), where one JND is the threshold of dis-
crimination and larger numbers correspond to increasingly different colours. For this model,
we assumed an irradiance spectrum of full sunlight, a uniform 30% reflectance grey back-
ground and photoreceptor spectral sensitivities of UVS λmax = 365 nm, SWS λmax = 440 nm,
MWS λmax = 493 nm, LWS λmax = 571 nm. These values are those for the closely related ornate
dragon, Ctenophorus ornatus [34], with the addition of a UVS cone, which was not identified
in the microspectrophotometry (MSP) study of Barbour, Archer [34], likely due to the diffi-
culty of isolating individual photoreceptors in lizard retinas using MSP methods ([34], Yewers
et al. in press). These assumptions are validated by our recent analyses of the C. decresii visual
system [Yewers et al. in press], which confirms photoreceptor spectral sensitivity λmax values
within two to four nm for the SWS, MWS and LWS cones and the retinal expression of a UVS
opsin gene as found in all other diurnal lizards [35]. We assumed that photoreceptor noise (ωi)
for the LWS photoreceptor = 0.05 and then derived ωi for remaining photoreceptor classes [33,
36]. We used a ratio of 1: 1: 3.5: 6 for the four single receptor classes based on the relative pho-
toreceptor frequencies in Barbour, Archer [34]. Full model calculations are detailed in Stuart-
Fox, Moussalli [36] and Teasdale, Stevens [27].

Statistical analysis
To quantify the change in circulating testosterone in implanted females, we performed a one-
way ANOVA (PROC GLM, SAS 9.2) on a subset of 18 females for which we had successfully
taken repeat blood samples. Plasma samples were collected from blood taken pre-T implanta-
tion (n = 18), one week post-implantation (n = 11), and four weeks post-implantation (n = 15).
Testosterone concentration (ng/mL) was compared across all three time points within females,
and assessed relative to free-ranging males.
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We visually assigned each female to a morph category based on its peak colour expression
(weeks 3 to 12, depending on the individual). To check whether our visually assigned morphs
could be objectively classified based on seven colour variables (proportion red, yellow and grey,
and chromatic and achromatic contrast of the primary throat colour and bib), we conducted a
discriminant function analysis (DFA; SAS 9.2) with morph category as the classification vari-
able. This analysis generates a linear combination of the canonical variables that maximizes the
probability of correctly assigning observations to their predetermined groups (in this case, the
four colour morphs). Comparison of the frequency of each colour morph by sex was analysed
using Fishers exact test, given the low sample size (STATA 13.1).

To analyse the colour development over time, we used a general linear mixed model
(GLMM; SAS 9.2), with each of the colour variables as the dependent variables, and time
(weeks 1–6, and 10 and 12), visually assigned colour morph and their interaction as the inde-
pendent variables (fixed factors). The inclusion of ‘colour morph’ as a fixed factor tested how
the change in colour expression over time differed for different morphs. We tested for both lin-
ear and quadratic relationships between colour variables and time, as well as the interaction
between quadratic time effects and colour morph. Female ID was included as a random factor
to account for repeated measures on individual females. For significant effects, we applied false
discovery rate corrections [37] to assess pairwise differences between morphs and between
weeks.

Results
Implantation via silastic implants significantly increased circulating testosterone of female
C. decresii through time (F2, 24 = 22.01, p< 0.0001). Testosterone concentration in blood
plasma increased from 55.95 ± 6.4 ng/mL pre-T to 262.16 ± 45.09 ng/mL at one-week post
implantation (pre-implantation versus week 1: t24 = -6.63, p< 0.0001). This then declined to
134.02 ± 25.47 ng/mL at four weeks post-implantation (pre-implantation versus week 4: t24 =
-2.65, p = 0.036, week 1 versus week 4: t24 = 4.03, p = 0.0014) (Fig 1). These values are biologi-
cally relevant, as they are within the normal physiological range of wild caught males of the
same species (mean ± SE = 62.38 ± 7.32 ng/mL; range = 3.69 to 353.59 ng/mL; n = 92; Yewers
and Stuart-Fox, unpublished data). This increase in testosterone induced females to express
throat colour (Fig 2). After testosterone-induced colour expression, females were visually
assigned to one of the four male colour morph categories, with ten females assigned to orange,
seven to yellow, seven to grey and eleven to orange+yellow morphs. There was no significant
difference in the frequency of colour morphs between males and females (Fishers exact
p = 0.98).

The visually assigned morphs were confirmed by a discriminant function analysis (DFA).
Discrimination of the morphs was highly significant (Wilks’ λ = 0.02, F21, 73 = 9.02,
p< 0.0001; Fig 3), and canonical variables 1 and 2 explained 60.8% and 30.9% of the variation
in female throat colouration, respectively. The remaining 8.28% was explained by canonical
variable 3. Canonical variable 1 most clearly differentiated orange+yellow morphs, with high
proportions of red and yellow, a low proportion of grey, and low achromatic contrast of the
throat and bib. Canonical variable 2 primarily differentiates individuals based on the propor-
tion of yellow, with high values indicating a high proportion of yellow, and low proportions of
red and grey. Canonical variable 3 was associated with a low proportion of grey, high propor-
tion of red, and high chromatic contrast of the throat. The correct assignment rate for morphs
in cross-validation was 86% for yellow, 70% for orange, 100% for grey, and 73% for orange
+yellow.
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Analysis of the change in the proportion of red, yellow and grey (from segmentation analy-
sis of weekly photographs) over time showed strong differences between morphs (Table 1).
There was a significant interaction between colour morph and time for both the proportion of
red and proportion of grey (Table 1). There was a marked, quadratic increase in the proportion
of red and decrease in grey over time for the orange and orange+yellow morphs; while there
was no change for the yellow or grey morphs (Fig 4A and 4C; Table 2). For the proportion of
yellow, there was no significant interaction between morph and time (Table 1), and no consis-
tent increase or decrease in the proportion of yellow through time (Fig 4B). However, there
was a significant difference in the proportion of yellow between morphs (Table 1) with the yel-
low and orange+yellow morphs having a higher proportion of yellow than the orange or
grey morphs (yellow vs grey t246 = 5.01, p< 0.0001; yellow vs orange t246 = 5.48, p< 0.0001;
orange+yellow vs grey t246 = 4.02, p< 0.0001; orange+yellow vs orange t246 = 4.50, p< 0.0001;
Fig 4C).

There was a significant interaction between colour morph and time for the chromatic (colour)
contrast of the primary throat colour (Table 1). The chromatic contrast increased over time for
the orange and orange+yellowmorphs; while there was no consistent change for the grey or yel-
lowmorphs (Fig 5A; Table 2). There was no significant interaction between colour morph and
time for the achromatic contrast of the throat, nor the chromatic or achromatic contrast of the
bib (Table 1). Achromatic contrast of the throat and bib decreased over time in all morphs: the
throat reduced overall brightness as it changed from cream to coloured over time, irrespective of
morph (Fig 5B). Chromatic contrast of the bib decreased moderately over time but was consis-
tently higher in the yellow and orange+ yellowmorphs than the orange or grey morphs
(yellow vs grey t218 = 3.01, p = 0.003; yellow vs orange t218 = -2.87, p = 0.0045; orange+yellow vs
grey t218 = -3.50, p = 0.0006; orange+yellow vs orange t246 = -3.43, p = 0.0007).

Fig 1. Effects of experimental elevation of testosterone. Change in mean circulating testosterone (T) concentrations in female C. decresii pre- implant, 1
week post-implant, and 4 weeks post-implant.

doi:10.1371/journal.pone.0140458.g001
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Discussion
Our results demonstrate that testosterone manipulation in C. decresii induces females to
express the same set of morph classes as males (orange, yellow, grey and orange+yellow) and in
similar relative frequencies. We found that the colour morphs in females can be classified with
a similar degree of confidence as in males [27]. Although cross-validation tests showed moder-
ate misassignment frequencies for the orange and orange+yellow morphs, this is mainly due to
the stringent segmentation threshold for the proportion of red on the throat; the orange and
orange+yellow morphs are easily visually distinguished. However, we observed that testoster-
one does not influence yellow colour expression in the same way as orange and grey. While the
proportion of orange and chromatic contrast of the throat increased dramatically in the orange
and orange+yellow morph due to development of a central orange patch, there was little
change in the size or intensity of the yellow component of the throat. As such, the orange+-
yellow morph in females does not have the same characteristic central orange patch sur-
rounded by yellow as males, nor does the yellow colouration of yellow morphs extend across
the whole throat. Rather, the yellow in yellow and orange+yellow females is largely restricted to
the bib and lower throat.

In species with sex-limited colour polymorphism, the phenotypic diversity (i.e. polymor-
phism) is only observable in one sex (usually males), so it is difficult to assess the contribution
of the female genome; the unexpressed alleles she will pass to her sons. Hormone manipulation,
specifically testosterone administration, has previously been used to induce polymorphic col-
ouration in female ruffs, Philomachus pugnax [21] and painted dragons, Ctenophorus pictus
[14]—a close relative of C. decresii. Here, we have demonstrated that it is similarly possible to
induce female C. decresii to express the alleles they possess for throat colouration, which con-
tributes to our understanding of the underlying patterns of inheritance in this species. In the
majority of polymorphic species for which we know the genetic mode of inheritance, colour
expression is controlled by a single autosomal locus or super-gene and shows Mendelian pat-
terns of inheritance [7, 38, 39]. Agamid lizards have a ZZ/ ZW sex determination system (with
temperature dependent sex determination), with females the heterogametic sex [40, 41]. As
both sexes have a Z chromosome, we cannot eliminate the possibility that in C. decresii, genes
coding for throat colour directly (or for modifiers that affect expression indirectly) are sex-
linked if there is dosage compensation. However, the expression of female colouration in
response to the male sex steroid testosterone indicates that the colour polymorphism is most
likely controlled by one or more autosomal loci.

Testosterone influences cellular activity in target tissues [42]; however, the specific mecha-
nisms linking plasma testosterone concentrations and pigment synthesis are poorly understood
[43]. In female C. decresii, testosterone implantation influenced the expression (both propor-
tion and intensity) of orange much more strongly than yellow. In reptiles, yellow–red coloura-
tion is generated by carotenoids, pteridines, or a combination of these two classes of pigment
[26, 35, 44]. In C. decresii, preliminary assays suggest that yellow and orange throat colouration
is primarily generated by pteridine pigments [Pryke and Stuart-Fox, unpublished data], which
are synthesised within pigment cells from common precursors [26, 44, 45]. Testosterone has
been suggested to be involved in pteridine biosynthesis [46, 47], so the production of yellow
may involve different precursors and/ or cofactors than the production of orange [20]. By con-
trast, there is little evidence that testosterone affects the expression of carotenoid-based orange

Fig 2. Effect of testosterone on female throat colour expression for eachmorph. Pre-testosterone
implantation (left) versus same lizard at peak of morph expression (right): A) orange,B) yellow,C) orange
+yellow,D) grey.

doi:10.1371/journal.pone.0140458.g002
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colouration in lizards [20]. The disparity, therefore, between expression of yellow and orange
may indicate differential effects of testosterone on different pigment types underlying the col-
our expression. Additionally, the expression of orange and yellow colouration could potentially
involve different genetic or developmental mechanisms and different associated proximate and

Fig 3. Discriminant function analysis (DFA) confirming the presence of four discrete throat colour
morphs following testosterone implantation.Orange: red squares; orange+yellow: orange triangles;
yellow: yellow triangles; and grey: grey diamonds. Individuals are plotted for canonical variablesA) 1 and 2;
B) 1 and 3; andC) 2 and 3, with 95% confidence ellipses.

doi:10.1371/journal.pone.0140458.g003

Table 1. Effect of testosterone implantation on components of female colour expression. The change in proportion of throat colours (red, yellow and
grey) was derived from segmentation analysis of digital images, and the chromatic (colour) and achromatic (luminance) contrast of the primary throat and bib
was derived from spectral measurements. For significant quadratic interactions between morph and time (denoted by *), each morph was analysed sepa-
rately (Table 2). Values remaining significant after applying FDR corrections in bold.

Dependent Fixed factor Fdf p-value

Proportion Red Time 56.341,270 <0.0001

Morph 1.043,270 0.3746

Morph x Time 29.363,270 <0.0001

Time2 29.211,270 <0.0001

Morph x Time2 14.423,270 <0.0001*

Proportion Yellow Time 1.861,270 0.1742

Morph 10.603,270 <0.0001

Morph x Time 0.403,270 0.7544

Time2 0.801,270 0.3721

Morph x Time2 0.353,270 0.7864

Proportion Grey Time 51.871,269 <0.0001

Morph 6.083,269 0.0005

Morph x Time 16.553,269 <0.0001

Time2 23.341,269 <0.0001

Morph x Time2 6.913,269 0.0002*

Chromatic Contrast: Throat Time 125.871,270 <0.0001

Morph 1.253,270 0.2909

Morph x Time 28.793,270 <0.0001

Time2 64.491,270 <0.0001

Morph x Time2 15.073,270 <0.0001*

Achromatic Contrast: Throat Time 203.451,270 <0.0001

Morph 0.623,270 0.6034

Morph x Time 0.993,270 0.3985

Time2 130.231,270 <0.0001

Morph x Time2 0.683,270 0.5668

Chromatic Contrast: Bib Time 2.061,242 0.1523

Morph 4.563,242 0.0040

Morph x Time 0.583,242 0.6290

Time2 9.071,242 0.0029

Morph x Time2 0.813,242 0.4891

Achromatic Contrast: Bib Time 52.491,242 <0.0001

Morph 0.803,242 0.4941

Morph x Time 0.183,242 0.9079

Time2 45.731,242 <0.0001

Morph x Time2 0.603,242 0.6174

doi:10.1371/journal.pone.0140458.t001
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ultimate costs. The proportion of orange-throated males increases and yellow-throated males
decreases with increasing aridity among populations of C. decresii [McLean, Stuart-Fox &
Moussalli, unpublished data]. Furthermore, in C. decresii, orange throat colouration is more
conspicuous than yellow against the rock and lichen background of their native habitats [3].
Thus, it is plausible that there are different ultimate costs of yellow versus orange colour
expression in this species, which may explain why mature females express some yellow but not
orange throat colouration. Further research is needed to better understand how testosterone
influences expression of specific pigment classes and the proximate and ultimate costs of
expression of yellow versus orange colouration.

Our results are concordant with a number of both correlative and manipulative studies
showing that testosterone induces female colour expression in lizards. For example, develop-
ment of orange colouration on the throat or ventro-laterally is associated with elevated circulat-
ing plasma testosterone levels in female spiny lizards, Sceloporus pyrocephalus [25], both
captive and wild female-keeled earless lizards, Holbrookia propinqua [48] and captive Lake
Eyre dragon lizards, Ctenophorus maculatus [49]. Female colour expression is also intensified

Fig 4. Mean percent of A) red, B) yellow and C) grey components of throat colouration over time. Data
for each morph category were derived from digital images using segmentation analysis (n = 40). Significant
effect of time for proportion red in O and OYmorph, and proportion grey in OY morph (quadratic trendline
fitted); p < 0.0001 in each case.

doi:10.1371/journal.pone.0140458.g004

Table 2. Linear and quadratic changes in colour over time for eachmorph separately. Only colour variables for which there was a significant interaction
between colour morph and time are presented. Values remaining significant after applying FDR corrections in bold.

Dependent Morph Fixed factor Fdf p-value

Proportion Red Grey Time 1.951,54 0.1681

Time2 0.031,54 0.8612

Orange Time 31.781,76 <0.0001

Time2 11.191,76 0.0013

Orange-Yellow Time 72.851,86 <0.0001

Time2 39.901,86 <0.0001

Yellow Time 7.341,54 0.0090

Time2 0.631,54 0.4314

Proportion Grey Grey Time 0.061,54 0.7999

Time2 2.151,54 0.1479

Orange Time 31.051,76 <0.0001

Time2 8.961,76 0.0037

Orange-Yellow Time 60.981,85 <0.0001

Time2 29.641,85 <0.0001

Yellow Time 0.211,54 0.6483

Time2 0.271,54 0.6033

Chromatic Contrast: Throat Grey Time 0.871,54 0.3563

Time2 0.151,54 0.7047

Orange Time 66.331,76 <0.0001

Time2 33.021,76 <0.0001

Orange-Yellow Time 116.281,86 <0.0001

Time2 60.311,86 <0.0001

Yellow Time 6.431,54 0.0142

Time2 4.011,54 0.0503

doi:10.1371/journal.pone.0140458.t002
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by experimental elevation of testosterone using implants, such as in eastern fence lizards, Scelo-
porus undulatus [13, 50]. Interestingly, in all these cases, testosterone is associated with expres-
sion of orange colouration in females, although it is not known whether orange is generated by
carotenoid or pteridine pigments in these species. In C. decresii, a number of females exhibited
some degree of yellow bib and lower throat colouration prior to testosterone implantation
whereas orange colouration was entirely absent. We observed dramatic increases in the propor-
tion and intensity of orange over time but no similar increase in yellow. Thus it is possible that
yellow and orange+yellow morph females express alleles for yellow colouration from sexual

Fig 5. A) Chromatic (CC; colour) and B) achromatic (AC; luminance) contrast of primary female throat colouration against a neutral background
(30% grey), for each colour morph. CC and ACmeasured in units of just noticeable differences (JND).

doi:10.1371/journal.pone.0140458.g005
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maturity, whereas alleles for orange colouration are not expressed. An analogous situation may
occur in side-blotched lizards, Uta stansburiana, where males are polymorphic with blue,
orange or yellow throats (carrying b, o or y alleles respectively) whereas females express minor
amounts of blue or orange but no yellow such that oy versus oo and by versus bb phenotypes
cannot be distinguished [51].

The effects of testosterone on colour expression may depend on the developmental stage at
which it is applied [15, 52], and may continue beyond the period over which plasma testosterone
levels are elevated [53]. In our study, circulating testosterone levels at four weeks were still ele-
vated relative to pre-treatment samples but had dropped significantly from one-week after
implantation. Wemonitored colour expression over 12 weeks but do not know whether testos-
terone remained elevated beyond four weeks. While across our treatment population there is lit-
tle evidence of colour reversion, several individual lizards lost their throat colouration after their
peak in expression (ranging from three to twelve weeks). Salvador, Veiga [20] speculate that in
the lizard Psammodromus algirus, the effect of testosterone is age dependent, given the possible
molecular mechanisms that can influence hormone responses at different target tissues and life-
history stages. There may be a developmental window (either prenatal or at adolescence) that
will cause the induced colour to remain fixed [12, 15, 54, 55]. Thus, the large variation we
observed in the extent and duration of colour expression among individual C. decresii females
may partially be accounted for by variation in age, which ranged from 2 to>5 years.

Given the lack of a treatment with an empty implant, it is possible that the stress of the
implant, rather than testosterone, affected colour expression, as glucocorticoids can modify the
expression of pre-existing colouration in lizards [23, 56–58]. However, our results show that
testosterone implantation led to the appearance of orange colouration (never naturally
observed in females) in only a subset of females and did not significantly affect the expression
of yellow. It seems unlikely that stress response hormones could induce the full expression of
male colour polymorphism, and specifically orange, in this way. Thus, we are confident that
the observed changes in colour expression reflect the effects of testosterone rather than the
stress of implantation per se.

Overall, we have demonstrated that females in the polymorphic lizard C. decresii express the
same set of colour morphs as males and in similar relative morph frequencies. However, the
effect of testosterone differs for orange and yellow, suggesting that their expression may be gov-
erned by different proximate mechanisms. This has important implications for understanding
the relative costs and information conveyed by these two colour components of the throat sig-
nal. Furthermore, differential induction of orange and yellow by testosterone suggests that cau-
tion is required when using testosterone implantation in females to study the genetic basis of
colour polymorphisms in lizards.

Supporting Information
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S1 Fig. Reflectance of grey, yellow and orange across 300–700nm; the visual spectrum of
lizards. Colours have minimal ultraviolet reflectance (300–400nm).
(PDF)
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